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MODE [ CRACK TIP FIELD WITH STRAIN
GRADIENT EFFECTS

Chen Shaohua Wang Tzuchiang
(LNM , Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China)

ABSTRACT A plane strain mode 1 crack tip field with strain gradient effects is investigated. A new
strain gradient theory is used. An elastic-power law hardening strain gradient material is considered and two
hardening laws, i.e. a separation law and an integration law are used respectively. As for the material with
the separation law hardening, the angular distributions of stresses are consistent with the HRR field, which
differs from the siress results'® ; the angular distributions of couple stresses are the same as the couple stress
results'™® . For the material with the integration law hardening, the stress field and the couple stress field can
not exist simultaneously, which is the same as the conclusion'™ , but for the stress dominated field, the an-
gular distributions of stresses are consistent with the HRR field; for the couple stress dominated field, the an-
gular distributions of couple stresses are consistent with those in Ref.[19]. However, the increase in stresses
is not observed in strain gradient plasticity because the present theory is based on the rotation gradient of the
deformation only, while the crack tip field of mode 1 is dominated by the tension gradient, which will be

shown in another paper.
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I . INTRODUCTION

Many experiments have shown that materials display strong size effects when the characteristic

length scale associated with non-uniform plastic deformation is on the order of microns'' -

The classical plasticity theories can not predict this size dependence of material behavior at the
micron scale because their constitutive models possess no intemal length scale.

In order to explain the size effect, it is necessary to develop a continuum theory for the micron
level. Fleck and Hutchinson'”’ developed a phenomenological theory and a material length scale was

introduced for dimensional purposes. While explaining experimental findings of indentation'>*'" | fr-

nl [10,12]

acture  , it has been found necessary to introduce two length parameters

. One is the length, I,
that refers to rotational gradients as originally proposed in connection with the torsion measurements and
the other, I;, which refers to stretch gradients. The latter is needed to rationalize length scale phe-

nomena found in indentation and fracture. In 1998, Nix and Gao'™

started from the Taylor relation
and gave a kind of hardening law for gradient plasticity. Using the law, they derived the relation be-
tween the indentation hardness H and the depth of indentation which could show excellent agreement

with the experiment results”> . Motivated by the indentation hardening law, Gao, Huang et al.b® pro-

» Supported by the National Natural Science Foundation of China (No.19704100), Science Foundation of Chinese
Academy of Sciences (Project KJ951-1-20) , CAS K. C. Wong Post-doctoral Research Award Fund and the Post
Doctoral Science Fund of China.

Received 19 June 2000.



Vol.13, No.4 Chen Shachua et al.: Crack Tip Field with Strain Gradient Effects « 291 -

posed a mechanism-based theory of strain gradient plasticity (MSG) . In contrast, no work conjugate of

[15.16

strain gradient has been defined in the alternative gradient theories "', which represent the strain

gradient effects as terms relative to Laplacian of effective strain. Retaining the essential structure of

conventional plasticity and obeying thermodynamic restrictions, Acharya and Bassani'"”’

conclude that
the only possible formulation is a flow theory with strain gradient effects represented as an internal vari-
able, which acts to increase the current tangent-hardening modulus. However, there has been no sys-
tematic way of constructing the tangent modulus to validate this framework. In 2000, Chen and Wan-
gm] developed this idea and established a systematic way to validate this framework .

Owing to the crack tip singularity, strain gradient effects are important near a crack tip. There is
limited progress in applying strain gradient plasticity to the estimation of crack tip fields'® " . Refer-
ence [ 19] investigated the mode 1 near tip fields in elastic as well as elastic-plastic materials with
strain gradient effects. They showed that stresses and couple stresses near a crack tip can not have the
same order of singularity. The near tip field is either stress dominated (stresses are more singular than
couple stresses) or couple stress dominated (couple stresses are more singular than stresses) . Refer-
ence [21] presented a finite element study as well as an asymptotic analysis for mode | and mode Il
crack tip fields in strain gradient plasticity. Their asymptotic solution and the finite element analysis
also confirmed that stresses and couple stresses near a crack tip do not have the same order of singulan-
ty. A common disadvantage to the finite element calculation in all references is that the calculation re-
sult is sensitive to the finite formulation.

The aim of the present paper is to investigate the near-tip fields for a crack in elastic-plastic mate-
rials with strain gradient effects under mode 1 loading and a new strain gradient plasticity theory is
used, in which three rotational degrees of freedom w, are introduced in addition to the conventional
three translational degrees of freedom u;, w; being not directly dependent upon u; . The strain energy
density is assumed to be a function of the strain tensor and the curvature tensor, and the anti-symmet-
ric part of Cauchy stress vanishes. Two kinds of expressions of strain energy density are used to analyze
the crack tip fields respectively. We will siart with a new strain gradient plasticity theory for plane
strain in Section 2. The near tip fields in elastic-plastic material with strain gradient effects are investi-

gated in Sections 3 and 4. A discussion is given is Section 5.

Il . THE NEW STRAIN GRADIENT PLASTICITY THEORY
A new strain gradient theory of plasticity is proposed within the framework of general couple stress

theorym]

, in which three rotational degrees of freedom w, are introduced in addition to the convention-
al three translational degrees of freedom u,, ,; being not directly dependent upon u;, which enables
the use of C, continuous elements in a finite element formulation. This will be very helpful to the finite
element calculation to avoid dramatic sensitivity to the element formulation.

The strain energy density w is assumed to depend only upon the strain tensor £ and the curvature
tensor ¥, i.e. the relative rotation tensor @ has no contribution to the strain energy density w. It fol-
lows that

7 =— =0 (1)

where 7, is the anti-symmetrical part of Cauchy stress in the general couple stress theory.
The equilibrium equations for stress and couple stress in the body are

o2 = O, m; = 0 (2)

YJ ysJ
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The traction boundary conditions for force and moment are

oun; = T, on S; (3)

mn, = q°, on S, (4)
The additional boundary conditions are

u, = ul, on S, (5)

w, = o, on S, (6)

The deviatoric part s, of Cauchy stress and deviatoric part m,’ of couple stress are defined as the work
conjugates of ¢,”, y,", respectively; o, and m, are defined as the work conjugates of ¢, and y,,,
respectively, giving
0w = s,0e, + m, 0y, + 0.0¢e, + m Oy, (7
where s, =0, - (1/3) 8,0, and m,” =m; - (1/3)8,;m,, .
The above equation enables one to determine s, ,m,” ,0,, and m, in terms of the strain and cur-
vature states of the solid as

dw , dw Jw Jw
s, = o = g, =

Yy aeij' ’ m axlj: s " aem y m = OXm (8)

For a plane strain problem, the nonzero in-plane

X2
stresses and couple stresses in polar coordinates are
6, 65(as), 0x,m,,m, . The field equations for
the equilibrium in 2D are given explicitly in polar
coordinates, where the polar coordinates (r, ) are r ,
centered at the crack tip (Fig.1) 9 -
aarr 1 aaﬂr O, — Og 0
ar YT a8 r = (9)
dog 1 dog 20, 0
ar vty T <
om 1 Im, m Fig.1 Schematic diagram of a crack and contour
3’_” 7 aé + _rz_ =0 (10) of path-independent J integral.
The relations between strains € and displacements u; are
_ 9y, _ 19 _ ___1_(1 Ju, Ju, ﬁ‘i) (11)
=T w7 gg =3\ T3t 7
The relations between the rotation vector w, and curvature tensor y; are
awt 1 aw:
x" = ar N ng = TW (12)
The compatibility equations of strain and curvature tensor are as follows:
e de P (re 2 E]
2”_,._"_2_(_£;)+’_(r2_eﬂ)= (13)
28 ar drdf ar ar
d Xz a(r Xz0 )
26 ~ —ar =0 (14)

For an elastic power law hardening material with strain gradient effects, similar to the strain energy
density suggested by Ref.[9], we take the strain energy density as

n
“n+1

2 223 (ae1(2n) 1 .2
60(53+IXe)n " +7K5m

where n is the hardening power, o, is identified with a measure of the tensile yield stress, K = E/(3

+ 3K I (15)
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~6v) is the bulk modulus, K, is the bend-torsion bulk modulus, and E and v are Young’s modulus
and Poisson’s ratio, respectively. It is called the integration law of hardening because e, and ly, are

coupled together inside the power.
It is pointed out in Ref. [19] that, for an elastic power law hardening material with strain gradient
effects, there is another possible expansion for the strain energy density in terms of the invariants of

) , we take another expression of strain en-

strains and curvatures. Similar to the strain energy density“9
ergy density

o'o[ee(n”)/" + (lXe)(’Hl)/"] n —;—KEZ,,, + %Kl lz sz (16)

It is called the separation law of hardening because contributions to w from e, and ly, are separated.
Equilibrium Eqs.(9) and (10), compatibility Eqs. (13) and (14), and constitutive law (8)

provide field equations for the asymptotic analysis near a crack tip in materials with strain gradient ef-

w =
n+1

fects.

IT . AN ELASTIC-PLASTIC MATERIAL WITH STRAIN GRADIENT
EFFECTS: SEPARATION LAW OF HARDENING
Mode | crack tip fields in an elastic-plastic strain gradient material with the separation law of
hardening are investigated in this section. The following method is similar to Ref. [19], in which
William’s expansion is adopted, and is suitable for the dominant as well as higher order asymptotic
analyses.

The constitutive relation can be obtained from Eqs.(8) and (16),

3 o‘e " sll 1

& = 2(5) PRy (7)
3 m, -1 m,‘]’ 1

Xs = 2(aol) ol Tk Pl k=i (18)

where 62 =3(s,s, + sgsw + 25,055 + 5. /2 and m> =3(m_m, + mym_)/2 are the Von Mises ef-
fective stress and effective couple stress, respectively.
Following Refs.[23,24], the asymptotic stress and couple stress fields near a crack tip can be
written as
o, (r,0) = 6 (0)r*+ 0(r") (19)
m,(r,a) = m@(0)r’+ 0(r?), a =r,0 (20)
where the power p and angular functions o (9) and m'” (9) are to be determined.
Similar to the classical HRR field'™, it has been shown for a power law hardening solid that
path independence of J-integral can be expressed as
J = Jp(wnl - Tu,, - qw;,)dS = Jr(wn, - noju,, - nmw,,)ds (21)
then, we can obtain
-1
n+1

p = (22)

Substituting Egs.(19) and (20) into the constitutive relations Eqs.(17) and (18), we obtain the

strain tensors and curvature tensors near the crack tip,

e, = [0 s0(0) (23)
20,
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Yo = s lm® ()1 m (677 24)
0

where s(f) (8),s(0), m'9(8), miO) (0) are angular functions for s;, o,, m,, and m,, respec-
tively .
Substitution of Eqs.(23) and (24) into compatibility Eqs. (13) and (14) yields the following

compatibility equations :

e ()1 ' [aV(0) - o (8)]] -4(np + 1) 35 i[ O (ol -

dt92
np(np +2)[a”(8)1"' [ (6) - 65 (8)] = 0 (25)
fgi[mi‘”(e)]"*'m‘,‘?(eﬂ - (op + DIm(0)]" ' m(6) = 0 (26)
Substituting Eqs.(19) and (20) into Eqs.(9) and (10), the equilibrium equations become
,(0)(6) _ (P + 1)0(0)(0) + 0‘(0)(5) (27)
o9 (8) =~ (p +2)5(0) (28)
m' 30 =- (p+1)mP(0) (29)

Equations (25), (27) and (28) for stresses and (26) and (29) for couple stresses are uncoupled and
can be solved independently.
The traction free conditions are
o0(x7) = og(x ) = me(zx ) =0 (30)
The symmetry condition gives

0,5(0) = @,(0) = u,(0) =0 (31)
The symmetry conditions at § =0 in Eq.(31) can be arranged as
0,,(0) = m,(0) =0 (32)
and because of the symmetric conditions, at @ =0, there are
a(0) =0, o’ (0) =0 (33)
and from Eq.(27), there is
o1/ (0) =~ (p + 1007 (0) + a5 (0) (34)

r

We find that in order to solve Eqs.(25), (27) and (28) for the stresses, s\, oﬁ,;?) are unknown at
=0 and m'9 is unknown at @ =0 for solving couple stress equations. The shooting method is used to
solve the ordinary differential equations for stresses and couple stresses, respectively .

The numerical results show that the stress field is the same as HRR field, which can be easily
found since the stress and the couple stress equations are uncoupled.

The couple stress field can be obtained analytically in the same way as it is obtained in Ref.

[19],

M)l ieen (o){n2+1 n- -1 _ }”[2("”)][singo(0)
[moi =T A 272 T 2 cos2[ 6 — ¢(0)] cosp(8) (35)

@(8) = —;*[0 - sin'l(%sinﬁ)] (36)

IV. AN ELASTIC-PLASTIC MATERIAL WITH STRAIN GRADIENT
EFFECTS: INTEGRATION LAW OF HARDENING
Mode ] crack tip field in an elastic-plastic strain gradient material with the integration law of

hardening is investigated in this section. The constitutive relation can be obtained from Egs.(8) and
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(15)
3 Ze na-1 5. 1
€ = 7(00) cﬁ * 9—KJ""8'7 (37)
3 Ze n-1 ,“’ 1
Xi = ?(ao) m—J tog, ey k=il (38)
1
where
= S+ b #2501 4 salmd, + mb] (39)

Following Refs.[23,24], the asymptotic stress and couple stress fields near a crack tip can be written

as Egs.(19) and (20). The corresponding strains and curvature tensors can be obtained via constitu-
tive relations (37) and (38),

€, = 2 "[2(0)(6)]nl (0)(0)’_ (40)
Xi = zanlz[z(,m(ﬁ)]"_'m(um(ﬁ)’w (41)
0
where
() 3, @ URY) ) 0o w_ 71"
22 (6) = [Z(a” - 0'69 ) ( ) ] 2l2 m, m, + m., M (42)

and s(,-JO) (9), m(;)) (8),3'”(8) are angular functions for s;» my, 2,, respectively. Substitution of
Eqs. (40) and (41) into compatibility Eqs. (13) and (14) gives the following compatibility equations:

[(2(0) n- l( (,:)) _ (0))]_4(np+1) [(2(0) n-1i (0)]

do*
np(ap + 2)(Z9)' « (6 —6) =0 (43)
d%f(z(,m)""m(f)] —(np + D)(E) - mY =0 (44)

Substitution of Eq.(42) into Eqs. (43) and (44) gives
(n-1D(n=2)6Y - @)= 4+ 2(n - DI (G - sP)ZO &
(220))2(6(:)” _ 0_;3)”) + (TL _ 1)220)(0_(:) _ J(Hg))ziﬂ)” _
4(np + 1)[(71 _ 1)2(0) (O)E(,O)’ + (2('0))20_52)/] _

np(np + 2)(Z )Y (¥ - 6%) =0 (45)
(n _ l)m(:)z(,m' 2(0) (0)/ (1 + np)Z(O) (0) =0 (46)
where
SO =2210 {%(a(,f” — 69)(69" - 697) 4 669697 4
FnPn® + 21} (47)
s©r _ 1 [i( 0 © ) (5O Oy 4 65050
e - - W 2 G, — 0w o, ~ Ogw + 6!9 [ +

@ ) (0, 1 o 0132
lZ( +m19m10 )] +22 {_(6 l_am,) +

3
_(U(r:)) _ U;g) )(O_S))ll _ (O)II) + 6(U(O)l 2 66(’2)6(,3)”

lz[( (0)/)2 + m(,?)mig)" + ( (0)/ 2 + m(,g)m(,g)”]} (48)
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The equilibrium equations are the same as Eqs.(27) - (29).

Unlike the analysis in Section 3, the governing equations for stresses and couple stresses (27) -
(29) and (43) - (44) are coupled together through Z'” () and the equations are differential about
asjp)”(é’) and m(,-jO)”(H). For a solution by means of numerical calculation, the values of the other
components, i.e. a(,?)(e) R af,g) (9), mig) (a), m(,?)' (8), mig)' (G) at 6 = 0 should be initially
known except for Eqs.(32) — (34) . From Eq.(29), we obtain

m'>’(89) =—(p+1)m(,,°)(t9), atd =0 (49)
At 0 =0, substituting Eqs. (32) - (34) and (49) into Eq.(47), we obtain
' =7(0) =0, atf =0 (50)
Substituting Eq. (50) into Eq.(46), the following condition is obtained
m®(0) = (1 + np)m (0) (51)

Thus, the values of a(,?) (9), 022) (9), m(,g) (@) at @ =0 are unknown and should be initially guessed
and then determined by the crack tip face traction free conditions in Eq. (30). Since all governing

equations and boundary conditions are homogeneous, we impose the normalization

[(OF (02 2 (02
o + 1 m

ll/(n+l)
o 4 |g-0 0

[20

where ¢,1"""" appears only to balance the dimension ! This normalization condition can be written

as
lﬁlmig) 6=0 O'(r?) 6-0 . 0';2)[,,:0 . .
PN cos$, o[ = S $cos¢, PN sinpsing
0< % < /2, 0< ¢ <2n (52)

For each given ¢ and ¢, the Runge-Kutta method is used to start from initial conditions at 8 =0 and
to progress to the crack face 0 = . When the numerically calculated angular distribution of stresses
and couple stresses meets the crack face traction-free conditions Eq.(30), a near tip asymptotic field
is obtained. The success in choosing two parameters $ and ¢ to meet three boundary conditions in Eq.
(30) simultaneously indicates that the power of stress and couple stress singularity in Eq. (22) is cor-
rect.

The entire range of $ and ¢ is diseretized into 90 x 360 grids, i.e., one degree per increment
for $ and ¢. The above-mentioned shooting method is applied over all grid points. Two solutions are
obtained for mode | , giving ¢ = #/2 and ¢ =0, respectively. One solution corresponds to a stress-
dominated near tip field ($ = x/2, couple stresses vanishing and the stress dominated field is the same
as HRR field), while the other gives a couple stress dominated near tip field ($ =0, stresses vanish-
ing and the couple stress dominated field is the same as that obtained in Ref.[19] for mode I crack
tip field) . For the two types of near tip fields, the combined measure of effective stress =, becomes

the same as the Von Mises stress o, and effective couple siress m, , respectively. However, the two

fields can not exist simultaneously near a crack tip in a material with the integration law of hardening.

The angular distribution of stresses and couple stresses are shown in Fig.2 and Fig.3 for the
hardening exponent n = 10. It is observed for the stress dominated field that the stresses are consistent
with those in HRR field, but different from the corresponding components in Ref.[19]. The couple
stress dominated field is the same as the couple siress field for the separation law of hardening, i.e.
the same as that in Ref.[19] for mode I crack tip field.
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Normalized stress
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Fig.2 The angular distributions of the normalized siress. Fig.3 The angular distributions of the normalized

couple stress.

V . DISCUSSION
The mode | near tip field for a power law hardening material with strain gradient effects consists
of stress field and couple stress field, while the stress field is consistent with HRR field and the couple
stress field can be obtained analytically in the same way as the counterpart[m .

The near tip field for the separation law of hardening is the combination of stress dominated field

and couple stress dominated field. For the integration law of hardening stresses, strains and dis-
placements are identical to their counterparts in the stress dominated field, while couple stresses, cur-
vature tensors and rotation tensors are identical to their counterparts in the couple stress dominated
field. The structure of the near tip field is insensitive to the choice of separation or integration law of
hardening in strain gradient plasticity .

The near tip stress field of mode 1 obtained by means of the new strain gradient theory is differ-
ent from that in Ref.[19] since the stress dominated field (the couple stress is less singular and has
hardly any contribution to the strain energy)[m is different from HRR stress field.

The increase, however, is not observed in stresses because the strain gradient plasticity theory
used in the present study is based on the rotation gradient of the deformation only and the stress domi-
nated field can not exist simultaneously with the couple stress dominated field .

Further work will be done using the sirain gradient theory, in which the streich gradient effect is

considered .
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