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Size dependent nanoindentation of a soft film on a hard substrate
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Abstract

Nanoindentation experiments on Al/glass systems show that, as the indentation depth increases, the hardness decreases during a

shallow indentation, and increases when the indenter tip approaches the film–substrate interface. We associate the rise in hardness

during two stages with the strong strain gradient effects, the first stage is related with the small scale effects and the second stage with

the strain gradient between the indenter and the hard substrate. Using the strain gradient theory proposed by Chen and Wang and

the classical plasticity theory, the observed nanoindentation behavior is modeled and analyzed by means of the finite element

method, and it is found that the classical plasticity cannot explain the experiment results but the strain gradient theory can describe

the experiment data at both shallow and deep indentation depths very well. The results prove that both the strain gradient effects

and substrate effects exist in the nanoindentation of the film–substrate system.

� 2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The indentation hardness of a ductile metal is usually

considered to be a measure of its yield stress in com-

pression. According to the conventional plasticity the-

ory, in which material properties are independent of the

length scale, the measured hardness values should be
independent of the indentation size. Recently, hardness

has been shown to be size-dependent when the width of

impression is below some limit, say about 50 lm [1–4].

The measured hardness may double or even triple as the

size of indent decreases from about 50 to 1 lm. In fact,

the smaller the size of indent, the stronger the solid

appears. Similar size effects have been observed for a

wide range of plasticity phenomena. For example, in a
thin-wire torsion and micro-thin beam bending it is

shown that materials display strong size effects when the

characteristic length scale is on the order of microns

[5,6]. The strength of a particle-reinforced metal matrix

composite increases with decreasing particle diameter at

a fixed volume fraction of particle [7].
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The conventional plasticity cannot predict any of

those microstructural effects because no length scales

are contained in it. Recent developments of strain gra-

dient theories of plasticity have combined the micro-

structural and continuum descriptions of plasticity

together [8–19], in which the material length scales are

explicitly contained and the flow stress depends not only
on the strain at a particular point, as in the conventional

plasticity theory, but also on the gradients of strain at

that point.

Indentation problems were investigated with several

strain gradient theories. Shu and Fleck [20] failed to

explain the indentation behavior using the strain gradi-

ent theory proposed by Fleck and Hutchinson, which

only considered the rotation component of the strain
gradient [8]. Begley and Hutchinson [21] used the theory

proposed by Fleck and Hutchinson in 1997 [9] to de-

termine the effect of the material length scale on the

predicted hardness for small indents. Huang et al. [22]

used mechanism-based strain gradient (MSG) theory to

analyze this kind of problem and successfully explained

a linear dependence of the square of the hardness, H 2,

on the inverse of the indentation depth, 1=h, i.e.
H 2 / 1=h. Saha et al. [23] used the MSG theory to in-

vestigate the strain gradient effects in nanoindentation
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of the film–substrate system and found that the MSG

theory could describe the new phenomena well. Chen

and Wang [24] successfully explained the experimental

results of microindentation for the polycrystalline cop-

per and single-crystal copper using the strain gradient
theory proposed in [18,19].

In the present paper, nanoindentation experiments on

Al/glass systems have been carried out. Small scale ef-

fects have been found at a narrow indent depth and

strain gradient effects are also found between the in-

denter and the substrate. The strain gradient theory

proposed by Chen and Wang [18,19] is used to analyze

the present experiment data, which has successfully ex-
plained the cleavage fracture in homogeneous material

[19] and bimaterial [25], the size effect in particle-rein-

forced metal matrix composites [26], thin-wire torsion

and ultra-thin beam bending [16,17]. In the present pa-

per, it is found finally that the strain gradient theory can

describe not only the decreasing hardness with the in-

creasing depth of indentation for shallow indentation,

which can be observed in bulk materials, but also the
increase in hardness when the indenter tip approaches

the film–substrate interface. The results in the present

paper show that the strain gradient effects do exist in

nanoindentation for a film–substrate system, and the

strain gradient theory proposed by Chen and Wang

[18,19] can describe the new kind of strain gradient

plasticity experiments.

Nanoindentation experiments and the experiment
results will be shown in Section 2. The strain gradient

theory used in the present paper is summarized in Sec-

tion 3. In Section 4, the finite element method and the

indentation model are given and the comparison of the

numerical results and the experiment data is shown in

Section 5. Conclusions are given in Section 6.
2. Nanoindentation experiment

The present nanoindentation experiments are moti-

vated by the work of Saha et al. [23], in which nanoin-

dentation on micro-meter film–substrate systems was

studied and it was found that the new kind of strain

gradient effects was different in part from the size effects

in bulk materials. In the present paper, we choose to
study the nanoindentation behavior of aluminum film

on glass substrate with the aluminum film thickness in

submicron meters.

Al films are prepared on glass substrates by the

sputtering method and the base pressure in the chamber

prior to sputtering is 5� 10�7 Torr. The sputtering

pressure is 1.0 Pa. The nominal thicknesses of Al films

are 244.7 and 850.9 nm, respectively. The deposition
rate is 160 �A/min and the sputtering power is 1000 W.

The mechanical properties of the substrates and films

are characterized using Nanoindentation XP II with a
Berkovich indenter. Continuous stiffness mode (CSM) is

used in all experiments. The indentations are under a

constant nominal strain rate 0.05 s�1. Five indentations

are made in each sample and the average of these in-

dentations is taken. Hardness and Young�s modulus are
firstly determined by means of the Oliver and Pharr

analysis method [27]. It should be noted that Oliver and

Pharr�s method is for monolithic materials and only for

sink-in with a fixed empirical formula. Pile-up will be

produced in some materials and the degree of sink-in for

different materials is different, however, it is a standard

method of analysis for nanoindentation and is fre-

quently used for thin film studies. In order to avoid the
calculation of the contact area, which sometimes causes

some deviations in the results due to sink-in or pile-up,

especially because the film–substrate system in the

present paper is made up of soft films and hard sub-

strates, and extensive pile-up of aluminum material on

the sides of the indenter is to be expected, as is proved by

Tsui and Pharr [28] and Saha et al. [23,29]. In the

present paper, we will use the method given by Joslin
and Oliver [30], which avoids the contact area calcula-

tion and only use the loading and the unloading stiff-

ness, to analyze the experiment data. Aluminum film

and glass substrate are chosen and constant Young�s
modulus assumption is made because the Joslin and

Oliver method can only be used for the elastically

homogeneous materials and aluminum has Young�s
modulus close to that of the glass material.

With depth-sensing nanoindentation devices, elastic

modulus is determined [31] from

Er ¼
ffiffiffi
p

p

2b
S

1ffiffiffi
A

p ¼
ffiffiffi
p

p

2b
dP
dh

1ffiffiffi
A

p ; ð1Þ

S ¼ 2bffiffiffi
p

p
ffiffiffi
A

p
Er; ð2Þ

where A is the projected area of the contact, b is a

constant that depends on the geometry of the indenter.

S ¼ dP=dh is the slope of the load-displacement curve at

the beginning of the unloading and Er is the reduced

Young�s modulus.

If the Young�s modulus of the film is close to that of
the substrate, i.e. Ef � Es, then the reduced Young�s
modulus can be written as

1

Er

¼ 1� m2i
Ei

þ 1� m2f
Ef

; ð3Þ

where Ei, Ef are Young�s moduli of the indenter and the

film, respectively. mi,mf are Poisson�s ratios of the in-

denter and the film, respectively.

Hardness is usually defined as

H ¼ P
A
: ð4Þ
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Eliminating the contact area from Eqs. (1) and (4),

the composite hardness for the film–substrate system is

obtained as

H ¼ 4b2

p
P
S2

E2
r : ð5Þ

If the film has a Young�s modulus close to that of the

substrate, the reduced modulus, Er will approximately

be a constant, which is called the constant Young�s
modulus assumption.

The method proposed by Joslin and Oliver [30], Eq.

(5), is used in the present paper. The Young�s modulus

of glass is measured to be 88.5 Gpa by nanoindentation

and the measured Young�s modulus of Al/glass system

keeps a constant, which means that the film has a

Young�s modulus close to that of the substrate, we take

the Young�s modulus of Al as EAl ¼ Eglass ¼ 88:5 Gpa.
During the test, Poisson�s ratios are taken as

mAl ¼ mglass ¼ 0:3. The Young�s modulus of the Berko-

vich indenter is taken as 1140 Gpa and the Poisson�s
ratio is 0.07, as is found from literatures. The constant b
is taken as 1.034, corresponding to the Berkovich in-

denter geometry. According to Eq. (5), the hardness is

determined from the load, P , and the contact stiffness, S,
through the parameter, P=S2. Fig. 1 shows the com-
posite hardness as a function of the normalized inden-

tation depth for Al/glass systems with two different film

thicknesses. From Fig. 1, one can see that at a very small

indentation depth, the composite hardness decreases as

the indentation depth increases, which is due to the size

effects as expected on the basis of the indentation in the

bulk material. With the indentation getting deeper, the

hardness obtained tends to a constant value of about
1.1 Gpa for the 244.7 nm film and 0.9 Gpa for the

850.9 nm film. The hardness is approximately constant

when the indentation depth is about 0.6 times the film

thickness. Then the hardness starts to increase with in-

creasing indentation depth, a phenomenon that cannot
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Fig. 1. Hardness versus the normalized indentation depth for two

kinds of Al films on glass substrates using Joslin and Oliver method.
be found in bulk materials, and may be caused by

hardening related with strong gradients produced be-

tween the indenter and the substrate. When the inden-

tation depth gets to the film–substrate interface, a more

significant increase in hardness with the increasing in-
dentation depth can be found, which is mainly due to

the indenter penetration into the harder substrate.
3. Brief review of strain gradient theory

In order to explain the size effects in film–substrate

nanoindentation experiments, the strain gradient theory
proposed by Chen and Wang [18,19] will be used since

the classical plasticity theory does not contain intrinsic

material lengths and cannot predict the effects related

with the material size. The strain gradient theory is

briefly reviewed as follows. It preserves the basic struc-

ture of the general couple stress theory and involves no

higher-order stress or higher-order strain rates. Its key

features are that the rotation gradient influences the
material behavior through the interaction between

Cauchy stresses and couple stresses, while the stretch

gradient explicitly enters the constitutive relations

through the instantaneous tangent modulus. The tan-

gent hardening modulus is influenced by not only the

generalized effective strain but also the effective stretch

gradient.

In a Cartesian reference frame xi, the strain tensor eij
and the stretch gradient tensor gijk [32] are related to the

displacement ui by

eij ¼
1

2
ðui;j þ uj;iÞ gijk ¼ uk;ij: ð6Þ

The rotation gradient is related with the independent

micro-rotation vectors x as

vij ¼ xi;j: ð7Þ

The effective strain, effective rotation gradient and

effective stretch gradient are defined as

ee ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

3
e0ije

0
ij

r
; ve ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
v0ijv

0
ij

r
; g1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1Þijk g

ð1Þ
ijk

q
; ð8Þ

where e0ij, v
0
ij are their derivative parts and the definition

of gð1Þijk can be found in [32].

The constitutive relations are as follows

rij ¼
2Re

3Ee

e0ij þ Kemdij;

mij ¼
2Re

3Ee

l2csv
0
ij þ K1l2csvmdij; ð9Þ

E2
e ¼ e2e þ l2csv

2
e ; Re ¼ ðr2

e þ l�2
cs m

2
eÞ

1=2
;

r2
e ¼ 3

2
sijsij; m2

e ¼ 3
2
m0

ijm
0
ij;

(
ð10Þ

where Ee is called the effective generalized strain and Re

is the work conjugate of Ee; lcs is an intrinsic material



1092 S. Chen et al. / Acta Materialia 52 (2004) 1089–1095
length, which reflects the effects of the rotation gradient

on the material behaviors; K is the volumetric modulus

and K1 is the bend-torsion volumetric modulus.

In order to consider the influence of the stretch gra-

dient, a new hardening law [16] is introduced

_Re ¼ A0ðEeÞ 1þ l1g1
Ee

� �1=2

_Ee ¼ BðEe; l1g1Þ _Ee; RePrY;

_Re ¼ 3l _Ee; Re < rY;

8<
:

ð11Þ

where BðEe; l1g1Þ is the hardening function; l1 is the sec-
ond intrinsic material length associated with the stretch

gradient, rY is the yield stress and l the shear modulus.
Fig. 2. Diagram of the indentation model of a soft film on a hard

substrate, in which pile-up, the total indentation depth, the contact

depth, contact radius are shown.
4. Finite element method and model

4.1. Choice of elements

It is found that the choice of elements for gradient

plasticity is complicated and in particular, quite sensitive

to details of the constitutive relation. Xia and Hutch-
inson [33] discussed some choices of finite elements for

strain gradient plasticity with the emphasis on plane

strain cracks. Several elements have been developed for

the phenomenological theory of strain gradient plastic-

ity to investigate the crack tip field, microindentation

experiments and stress concentrations around a hole. A

review of these elements can be found in the paper

written by Shu et al. [34].
In order to consider the strain gradient, a second-

order element can be used, such as nine-node ele-

ments. We will use nine-node elements to study the

nanoindentation in the present paper. This element is

only suitable for solids with vanishing higher-order

stress traction on the surface. For example, the ele-

ment works very well in the fracture analysis of strain

gradient plasticity [19,24,35], where the higher-order
stress tractions vanish on the crack face and on the

remote boundary. This element also works well in the

study of microindentation experiments [22] because

the higher-order stress tractions are zero on the in-

dented surface. Since the strain gradient theory pro-

posed by Chen and Wang [18,19] does not include

higher-order stress or higher-order stress tractions, it

will work well in the present study as discussed in the
following section.
4.2. Calculation model

The first assumption made in the present calculation

is that the indenter is axis-symmetric, which greatly

simplifies the finite element analysis. Furthermore, we

consider a conical indenter shown in Fig. 2. The half-
angle of the indenter is taken to be u ¼ 70:3�, corre-
sponding to a Berkovich indenter. The displacement at
the tip of indentation is ht, whereas the contact radius of
the indentation is a and the contact depth is hc. Sec-
ondly, we assume that the indenter is frictionless such

that there is no sticking between the indenter and the

substrate.

For a frictionless indenter, the materials on the in-

denter are constrained to slide up or down the face of

the indenter only. For the small deformation theory and
the shallow indentation in Fig. 2, the boundary condi-

tions can be approximated by specifying the download

displacement in the following and allowing the radial

displacement to be free,

uzðrÞ ¼ �ht þ
r

tanu
; 06 r6 a; ð12Þ

where ðr; zÞ are cylindrical coordinates. No rotation

vectors are imposed on the boundary and the corre-

sponding couple stress vanishes on the free surface

outside the indenter as well as on the outer boundary in
the finite element analysis.

The contact between the indenter and the substrate is

simulated by assuming a contact radius, a, and the

proper indentation depth, ht, for that size of indent is

found by iteration. The proper indentation depth is

defined as the depth at which the normal pressure be-

tween the indenter and material goes to zero at the edge

of contact, i.e. at r ¼ a. Using small strain theory for
shallow indenters, the pressure is given by the traction in

the vertical direction. The pressure under the indenter is

rzz. The correct depth is found when the nodal forces go
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to zero at the edge of contact. Since the nodal forces

represent the integrated average of the tractions over the

element faces, this is consistent with the zero-traction

criterion. Similar method is considered in [20–23].

The contact depth, hc, as shown in Fig. 2 can be given
by

hc ¼
a

tanu
: ð13Þ

The total force, P , exerted on the indenter is the sum

of the nodal forces in the z direction of the nodes con-

tacted with the indenter, i.e. the nodes in the region of

06 r6 a.
The indentation hardness in the present paper is de-

fined as

H ¼ P
pa2

: ð14Þ

Since the finite element model is the same as those in

[23], pile-up or sink-in is a natural result of the inden-

tation analysis. The contact depth, hc, comparing with
the total depth, ht, could be used to determine the pile-

up or sink-in phenomena as follows

hc > ht; pile-up; ð15Þ

hc < ht; sink-in: ð16Þ
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4.3. Material model for film–substrate system

From experiment results, we obtain the Young�s
modulus of glass, Eglass ¼ 88:5 Gpa. The Young�s
modulus of aluminum is close to that of glass and we

take the Young�s modulus of aluminum as EAl ¼ 88:5
Gpa in the paper. The Poisson�s ratios of aluminum and

glass are taken as mAl ¼ mglass ¼ 0:3 in the experiment.

The yield stress of glass is very large and in the finite

element calculation we regard the glass as an elastic

solid, which is similar to the idea of Saha et al. [23]. The

uniaxial stress-strain constitutive relation of aluminum

is taken as a power law hardening form as follows

r ¼ EAle; r6 rY;
r ¼ r0en; rP rY;

�
ð17Þ

where rY is the yield stress of aluminum film, n is the

strain hardening exponent, which is related to the mi-

crostructure of films and r0 is the reference stress. As

pointed in [23,36,37], the yield stress of aluminum is
related to the film thickness by

rY ¼ rbulk þ
mthick

t
: ð18Þ
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Fig. 3. The hardness versus the normalized depth for 850.9 nm Al film

on a glass substrate with the experiment data and numerical results for

both strain gradient theory and the classical plasticity theory.
5. Comparison with the experiment results

As mentioned above, the glass is regarded as an

elastic solid and the aluminum film is an elastic–plastic
solid. Thus the strain gradient effect exists in aluminum

film when the indentation depth is very shallow, where

the substrate effect does not emerge. The hardness is

expected to increase when the indentation depth de-

creases at the shallow depth. When the indentation
depth increases the substrate will influence the hardness

little by little and the strain gradient between the in-

denter tip and the substrate will also influence the

hardness significantly, which will cause the hardness to

increase when the indentation depth increases.

In the numerical calculations, two film thicknesses are

considered, that is, 244.7 and 850.9 nm for aluminum

films and the thickness of substrate is assumed to be
much larger than that of films. The yield stress of the

bulk aluminum material is taken as 60 Mpa, i.e.

rbulk ¼ 60 Mpa. The thickness related parameter, mthick,

is taken as 60 Mpa for 850.9 nm thickness aluminum

film and 30 Mpa for 244.7 nm thickness aluminum film.

AFM images show that the microstructures of two

thickness films are different and the grain size of 850.9

nm film is a little larger than that of 244.7 nm film, thus
we take the strain-hardening exponent as 0.1 for 850.9

nm film and 0.05 for 244.7 nm film.

The experiment hardness data shown in Fig. 1 for

850.9 nm thickness aluminum film are also given in

Fig. 3 for comparison. It is observed that the hardness

predicted by the strain gradient theory in [18,19] agrees

very well with the experiment results over the entire

depth h6 t, even in the region of h > t, the numerical
results agree quite well with the experiment results. For

comparison, the numerical results calculated using the

classical plasticity theory with the same strain hardening

exponent and the yield stress for 850.9 nm film are also

shown in Fig. 3, from which one can see that the

hardness predicted by the classical plasticity theory is

below the experiment data. When the indentation is
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shallow, the hardness predicted by the classical plasticity

theory almost keeps a constant and no increase in

hardness can be observed. When the indentation depth

is comparable to the film thickness, the hardness can be

observed to increase due to the substrate effect but the
hardness value is smaller than the experiment data,

which demonstrates that the strain gradient effects exist

between the indenter tip and the substrate and cause an

increased hardness. Fig. 3 shows that in the nanoin-

dentation processing on film–substrate system, strain

gradient effects are important not only at the shallow

indentation depth but also at the deep depth, where the

indentation depth is comparable to the film thickness.
From comparison of the numerical calculation and the

experiment data, the intrinsic length for 850.9 nm

thickness aluminum film is l1 ¼ 0:35 lm, which lies in

the region of 0.1–10 lm.

The experiment data for 244.7 nm thickness alumi-

num film and the numerical calculation results are

shown in Fig. 4 for the hardness versus the normalized

indentation depth. From Fig. 4, one can see that the
strain gradient results agree well with the experiment

data while the results predicted by the classical plasticity

theory fall below the experiment data and at the shallow

indentation depth, the hardness predicted by the classi-

cal theory keeps a constant and then increases at some

indentation depth, which is caused by the substrate ef-

fects. From the comparison between the numerical cal-

culation results and the experiment data, the intrinsic
length for the aluminum film of 244.7 nm in thickness is

0.3 lm, i.e. l1 ¼ 0:3 lm.

Numerical calculation results show that pile-up

emerges more obviously in the deformed finite element

mesh as the indentation depth increases, which could

cause significant deviations of experiment hardness data

measured if the pile-up effect is not considered.
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Fig. 4. The hardness versus the normalized depth for 244.7 nm Al film

on a glass substrate with the experiment data and numerical results for

both strain gradient theory and the classical plasticity theory.
6. Conclusions

In the present paper, two kinds of film–substrate

systems with sub-micrometer thicknesses are studied

using nanoindentation experiments. The aim of the ex-
periment is to create a strong strain gradient by in-

denting a soft metal film on the hard substrate to

observe whether there is a strain gradient hardening

phenomena in the film–substrate system. From the ex-

periment results, strong strain gradient effects are found

when the indentation is shallow compared to the film

thickness, furthermore, substrate effects and strain gra-

dient effects between the indenter and the substrate are
found to influence the film–substrate hardness signifi-

cantly when the indenting depth is comparable to the

film thickness.

Strain gradient theory proposed by Chen and Wang

[18,19] is used and the numerical results can explain the

experiment data very well both at the shallow indenta-

tion depth and at the depth comparable to the film

thickness. Also the substrate effects can be described
well during the numerical calculation using the strain

gradient theory, which cannot be found in the nanoin-

dentation on a bulk material. It demonstrates that the

strain gradient theory used in the present paper can

describe this new kind of phenomena.
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