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Abstract-A new kind of failure mode is observed in circular brass foils in which their peripheries are 
fixed and their surfaces are subjected to a long pulsed laser over a central region. The failure is 
classified into three stages; they are referred to as thermal bulging, localized shear deformation and 
perforation by plugging. A distinct feature of the failure mode is that bulging and plugging occurred 
in the direction opposite to the incident laser beam. To study the failure mode, we investigate the 
non-linear response of heated, non-homogeneous circular plates. Based on the large deflection 
equations of Berger [J. Appl. Mech. 22 (3), 465472 (1965)], Ohnabe and Mizuguchi [lnt. J. 
Non-Linear Mech. 28 (4), 365-372 (1993)] and the parabolic shear deformation theory of 
Bhimaraddi and Stevens [J. Appl. Mech. 51 (l), 195-198 (1984)], we have derived new coupled 
governing equations of shear deformation and deflection. The new equations are solved, for the plate 
with a clamped edge, by the Galerkin and iterative methods. The numerical results for the shear 
deformation distribution are in good agreement with the experimental observation. 0 1997 Elsevier 
Science Ltd. 
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1. INTRODUCTION 

Interaction of a high power laser with materials leads to two kinds of coupled damage, 
mechanical and thermal damage, depending on the laser parameters and target material 
mechanical properties [l-11]. As far as the laser parameters are concerned, the intensity 
I and the duration z are usually considered as the two main governing factors, of which the 
different values could produce different types of damage [3,4]. Depending on the intensity 
and concentration of a laser beam over a solid, material damage could occur by spallation, 
melting and/or vaporization [4]. However, in the previous studies on laser-induced mater- 
ial damage, people ignored more or less the fact that the spatial shapes of the laser beam 
could also play an important role in controlling the failure mode. Those situations prevail 
where the size and intensity of the laser beam are such that the spatial structure effect will 
contribute to the mode of failure such as bulging followed by plugging. Such are the cases 
considered in this investigation. 

A new kind of failure mode is observed in circular brass foils in which their peripheries are 
fixed and their surfaces are subjected to a long pulsed laser over a central region, as shown 
in Fig. 1. The z- and r-direction are aligned normal and parallel to the specimen. The foil has 
a thickness of 0.1 mm. The spatial distribution of the laser intensity is non-Gaussian, but 
roughly uniform within the laser irradiated region and declines very sharply towards the 
edge where the laser spot terminates. Let 2a. denote the diameter of the laser spot that can 
vary from 2 to 6 mm. Illustrated schematically in Fig. 2 is the evolution of specimen failure 
[12-141. Figure 2(a) shows bulging of the brass foil at the earlier stage of laser irradiation. 
Note that this occurs towards the side of the incident laser beam where the temperature 
would be higher. Considerable shear deformation occurs around a rim near the outer edge 
of the laser beam which is shown in Fig. 2(b). This leads to the softening of the material due 
to intense heating. 
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Fig. 1. Schematic of a normal incident laser beam impinging on a circular brass foil specimen. 
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Fig. 2. Schematic of damage evolution: (a) bulging; (b) localized shear deformation; (c) plugging 
initiation and (d) perforation. 

Further intensification of the energy around the periphery of the laser beam leads to the 
initiation of plugging and final perforation which are shown in Fig. 2(c) and (d), respectively. 
The plugging mode of failure is customarily known to be associated with metal projectiles 
penetrating through metal targets in plate form [15,16]. A plug of the target material is 
ejected in the direction of the energy source that is the moving projectile. In the case of an 
incident laser beam, plugging occurred opposite to the incoming direction of the energy 
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Fig. 3. Photo of sectioned brass foil at the bulge state with a laser energy of 8.25 over an area of 
2.3 mm in diameter. 

source. The initial bulge occurs on the side with higher temperature that determines the 
direction of plugging. Figure 3 is the photo of a polished section of brass specimen that 
shows the target bulging in the direction opposite to the laser beam [13]. 

To explain the new failure mode, the non-linear response of heated, non-homogeneous 
circular plates has been considered based on the large deflection equations of Berger [17] 
and Ohnabe and Mizuguchi [lS] and the parabolic shear deformation theory of 
Bhimaraddi and Chandrashekhara Cl93 and Bhimaraddi and Stevens [20]. The new non- 
linear coupled governing equations are derived for the case of a clamped boundary 
condition which is restrained from radial movemen< The governing equations are solved by 
using the Galerkin and iterative methods. The numerical results for the shear deformation 
distribution show that the shear deformation induced by a non-Gaussian type laser beam in 
the laser spot edge region is much larger than that elsewhere. From the comparison of shear 
deformation distributions induced by a non-Gaussian and Gaussian type laser beam, one 
concludes that the distinct feature of the spatial distribution of the laser intensity induces 
the new kind of failure mode. 

2. NON-LINEAR COUPLED EQUATIONS 

We considered an elastic, heated circular plate of radius a as shown in Fig. 1. Let the 
non-homogeneity function of the material depend only on the coordinate r and be indepen- 
dent of cp and z, but strongly vary with temperature. Let the deformation be axisymmetric 
with respect to the center. Therefore, the terms of the circumferential displacement u and 
those with respect to a/acp are eliminated. Following Bhimaraddi and Stevens L-201, the 
displacement components are assumed to be 

where 
u = u + &p - zw’, w=w (1) 

and <*=s= I (2) 

In expression (l), U and @ are the displacements of any point (r, z) of the plate of the r- and 
z-directions, respectively; u and w are the displacements of any point on the middle surface 
(z = 0) of the plate in the r- and z-direction, respectively; 4 is the shear rotation of any point 
on the middle surface of the plate in addition to the flexural rotations w’; h is the total 
thickness of the plate; ( )’ indicates differentiation with respect to r. It may be seen that u, w 
and 4 are functions of r only. 

It may be noted that the preceding form of expressions for displacement components 
results in the parabolic variation of transverse shear strains as is evident from equation (5). 
To limit the complexity of the problem to a reasonable degree, the expression for w is chosen 
to be a constant and at the same time this allows us to have zero transverse shear strains at 
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the top and bottom surfaces of the plate. Using the above displacement forms, the 
strain-displacement relations relevant to the current study are written as 

&,, = u’ + gt#i - zw” + 3 (w’)Z 

U 4 
&ee = ;+5;-zfw’ 
Em = t 5v 

The stress and strain relationships are 

o’rr = & C&W + V&&j - (1 - v)c&] 

bee = & [see + V&W - (1 - vb4 

E 
Gz = l+v E,z 

where E, v, a are the Young’s modulus, the Poisson ratio and 
coefficient which are assumed to be functions of temperature T. 
8 = T - To is the temperature rise, T and To are the absolute 
temperature, respectively. 

The total potential energy V [21] is 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

the thermal expansion 
In the above formulas, 
temperature and room 

+ 2(1 + v) ‘I 
E (sz + de + 2~ + 2&t) - $ (E,, + Eee + E,,) - $$8' 

0 1 
(9) 

where p, C, are the mass density and specific heat capacity of materials, respectively. Due to 
the thin specimen and the free surface, the stress eZZ is assumed to be zero. Therefore, from 
the following equation 

E 
OEZ = - E,, + (1 + v;; _ 2v) (-% + Eee + EZZ) - g = O 

l+v 

we have 

l+vae- ’ E - ==l-v l_v (&IT + &eel (11) 

Substituting equations (l)-(8) and (11) in (9), one can obtain the following expression for V: 

v=.~~~,Zdz~~rdr{& [Ez, + 2VE,&efj + $0 - 2(1 + V)cte(E,, + Efjo) 

+ 21 - 4&I - (1 _ v)(l _ Zv) 

2(1 + ‘JE cae)2 pTc’ 02 
0 

5 
a rt 

(12) 

0 

rD dr{(V2w)2 - : (1 - v)w’w” + $ [E: + 2(v - l)~~] 

+ a(1 + v)$[mTv2w -El& - $(mT - nT)] +z 

[ 

6' + 24':(v - 1) 1 
-$ww+(v- ,J(wrt$+@;)]+y f(l-v)@ 

(13) 
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where D is the bending rigidity expressed by 
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and 

Eh3 

D = 12(1 - vz) (14) 

Wz 4 
mT = 

s 
t?z dz, 

-h/2 nT=3h2 -,,,2 s 

hlz 
tIz3 dz 

I 

hi2 

PT = Odz, qT = 
s 

h/2 

e2 dz 
-h/2 -h/2 

In expression (13) sl and e2 are the first and second invariant, 

(15) 

where 

- _ 
E2 = E&ee (16) 

(17) 

In equation (13) 

(18) 

is the Laplace operator and 

(19) 

In expression (13), according to Berger [17] and Ohnabe and Mizuguchi [18] eliminating 
the second strain invariant e2 and appling the Euler-Lagrange variational principle for 
minimum potential energy, the Euler-Lagrange differential equations become the following 
non-linear coupled governing equations for u, w and C$ 

$ (Dd = I--$ CD41 + 4~~1 

V2(DV2w) -; DqV2w -5 -$ [(l - v)D]w’ + $ C-1 - v)D]w” 
1 

+ $ Dcc(1 + v)(V2mT + pTV2w) + mrV2[Da(l + v)] + 2m$ -$ [Da(l + v)] 

-; {V”(D$) + 4’ ; [D(v - l)] + 4 $ [D(v - 1)]} = 0 

z 
[ 
DV’w + s Da(1 + v)(mT - nT) - gDc$ 1 

[D(v - l)] +; (1 - v)Dcj = 0 (22) 

The corresponding equations for the K&man equations can be obtained from the above 
equations using q5 = 0 and D = D,,, a = ao, v = v o, where Do, cto, v. are the corresponding 
material parameters at room temperature. 

3. THERMAL FIELD AND THE SOLUTION OF GOVERNING EQUATIONS 

3.1. Thermal field 
Determination of the temperature rise 8 = T - To = 0(r, z, t) becomes essential to reveal 

the mechanism of the new failure mode. Heat from a laser pulse with temporal profile 
g(t) and radial intensity distribution_/(r) is absorbed in the surface plane of the brass foil. 
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Fig. 4. Histories of the dimensionless temperature rise in the centers of the front and rear surfaces. 

Fig. 5. Variations of dimensionless temperature rise with z/a,, in the center of a brass foil. 
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From the experimental test [12-141, the laser intensity I is approximated by, 

I = I,,,e-‘1’(1 - e -8W(r) = I,,, g(Wo) (23) 

where t is time, I,,, is the maximum value of laser intensity, al and /I1 are determined 
experimentally, and equal to 1.5 x lo4 and 8.0 x lo4 s-r, respectively. Therefore, laser 
energy E, = ~lm~l,,,/al(al + PI) and we have [12-141 

f(r) = 
i 

1, if 0 < r 6 ao, 

0 if ao<r<cc (24) 

and 
f(r) = ,-(00,~ (25) 

to account for the non-Gaussian and Gaussian nature of the laser beam, respectively. 
The resulting thermal field 8 = T - To = e(r, z, t) was derived using Hankel transforma- 

tion and Bessel series expansion technique [22]. The temperature distribution is given 
analytically in the Appendix. Figure 4 shows the histories of the temperature rise in the 
centers of the front and rear surfaces, respectively. Also, the experimental results are given in 
the figure [22]. The good agreement of numerical results with the test can be seen in the 
figure. Figure 5 shows the variations of the temperature rise with z/a0 in the center of 
the brass foil. As would be expected, a high temperature state is built on the specimen front 
surface impinged by a normal incident laser beam. This means that the temperature 
gradient in the z-direction, i.e. %/az is high at the earlier stage of laser irradiation, and 
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Fig. 6. Variations of dimensionless temperature rise with r/a,, on the front surface, where the spatial 
shape of the laser is non-Gaussian (a) and Gaussian (b) type. 

then gradually decays. At the late stage of laser irradiation, the temperature gradient tends 
to zero. This temperature gradient plays a key role in leading to the brass foil bulging. 

The spatial profile of temperature distribution is influenced definitely by the spatial shape 
of the laser beam, as shown in Fig. 6(a) and (b). Therefore, different spatial shapes of laser 
beam lead to different temperature distributions even though the net energy and duration 
are the same. For a non-Gaussian type laser as used in the test, the spatial distribution of the 
temperature is uniform within the laser irradiated region and declines very sharply towards 
the edge where the laser spot terminates. The steep temperature gradient prevails across the 
periphery of the laser where the spot terminates. As we can see in the following section this 
causes that high shear deformation occurs around a rim near the outer edge of the laser 
beam. 

3.2. Solution of the non-linear coupled equations 
When the material parameters and the temperature rise 0 are known, the governing 

equations (20)-(22) for the deflection and the shear deformation can be solved for the plate 
with a clamped edge which is restrained from radial movement. 

u(0) = u(a) = 0, w’(0) = w(a) = w’(a) = 0, (b(O) = 444 = 0 

From equation (20) and the boundary condition u(0) = u(a) = 0, we obtain 

(24) 

d(ru) 1 r 1 
-=- 

dr h 
olr(1 + v)pT + c* - - - rwf2 

D 2 (27) 
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where 
1 a 

rwr2 dr - - 
s h o 

ar(l +v),,dr]/([iidr) 

Substituting equations (27) and (28) into (21), we obtain 

V2(DV2w) -; c*V’w -; $ [(l - v)D]w’ + $ [(l - v)D]w” 

+ $ Da(1 + v)V’mr + mrV2 [Da(l + v)] f 2rni i [Da(l + v)] 

-; V2(D& + i#i $ [D(v - l)] + 4 $ [D(v - l)] = 0 

(28) 

Now, the governing equations (22) and (29) for the unknown variables 4 and w are the 
new non-linear coupled equations of shear strains and large deflections with the corres- 
ponding boundary conditions (26). They are solved with the help of the Galerkin method 
and the iterative method. The approximate expression for w is selected directly from the 
linear theory of plates with small deflections, and is 

w= 5 2 m-b1 

c, 
m=l ( ) 

1-S (30) 

By using the Galerkin method, the unknown coefficients c, (m = 1,2,. . . ,8) can be 
obtained from the following non-linear algebraic equations. 

V2(DV2w) - $ c*V’w -b 

+ $ 
I 

Da(1 + v)(V2mT + p~V’w) + mTV2[Da(l + v)] + 2m; i [Da(l + v)] 

- ; V’(D$) + 4’ 5 [D(v - l)] + 4 $ [D(v - l)] i)[l--(ky]“‘dr=O (31) 

The non-linear coupled equations of shear strains and large deflections can be solved 
with the iterative method. First, we can solve the coefficient c, from the non-linear algebraic 
equations (31) with 4 = 0. As long as w is obtained from (30) and (31), the unknown variable 
4 can be solved from the two order differential equation (22) with the clamped boundary 
conditions 4(O) = &a) = 0. Then, when the unknown variable 4 is obtained from equation 
(22), the coefficient c, (m = 1,2, 3,. . . ,8) can again be obtained by solving the non-linear 
algebraic equations (31) with 4 # 0. Based on these iterative methods, the numerical results 
are obtained for deflections and the average shear strains are obtained at different times. 

4. NUMERICAL RESULTS AND DISCUSSIONS 

To analyse the shear deformations and the large deflections for the reverse bulging and 
plugging in brass foil induced by a long pulsed laser, we assume that Young’s modulus 
varies according to the temperature T. From the experimental test of Young’s modulus of 
brass [23], E(T) is given by 

E(T)=Eo i di 
i=O 

(32) 

where Eo, di and T are constants. The Poisson ratio v and the thermal expansion coefficient 
a are assumed to be constant. The material constants and the laser parameters are listed in 
Table 1. From equation (5), the average shear strain is y = 34. 

The numerical results for the deflection w and average shear strain y will be presented 
graphically for various cases. Case 1 corresponds to the classical Kirchhoff-Love plate 
theory, i.e. D = Do, c$ = 0 and eliminating the term (w’)’ in (3). In this case, equation (29) 
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Material constants Laser parameters 

E. = 8.23 x lo6 N/cm’ 
C, = 0.374 J/g K 
k. = 1.09 W/cm K 
p = 8.7 g/cm3 
z = 1.7 x 10-5/K 

do = 1.0 
d, = - 0.35 

dz = - 0.127 
d, = - 0.0205 

d., = - 1.566 x 1O-3 

d5 = 0.0202 
f = 510 K 

Y = 0.33 
a = 0.5 cm 
h = 0.01 cm 

dir = 1.5 x 104s-’ 
/J, =8.0x 104s-’ 

a,, = 0.25 cm 
R. = 0.9 

Time t(s) 

Fig. 7. Maximum deflections vs time for a non-Gaussian type laser beam and Er = 1OJ for various 
cases: case 1 - D = Do, 4 = 0 and eliminating the term w’* in (3); case 2 - D # 0, 4 = 0; case 

3-D=DDo,##O;case4-D#DDo,+#O. 

is reduced to: 

v4w + ; cr(1 + V)V%nT = 0 (33) 

Case 2 corresponds to the large deflection theory of Ohnabe and Mizuguchi [18] without 
consideration of the effect of shear deformation 4 on the deflection w, i.e. D # DO and 4 = 0. 
Case 3 corresponds to the results obtained from the new non-linear coupled equations of 
deflection and shear deformation, but without consideration of the dependence of Young’s 
modulus on temperature, i.e. D = Do, 4 # 0. Case 4 corresponds to the numerical results 
obtained from the new equations (22) and (31) derived in the present work. 

4.1. Dejection 
Figure 7 shows the histories of maximum deflection with a non-Gaussian type of laser 

beam and E, = 1OJ for the various cases discussed in the above. The corresponding 
transient deflection distributions to the histories of maximum deflection of Fig. 7 are shown 
in Fig. 8. From these figures, one can see that: (a) the target sheet subjected to laser heating 
does bulge in the direction opposite to the incident laser beam; (b) only the deflection in case 
1 tends to zero when the time is long enough, but the delections in the other cases always 
increase with the increasing of time; (c) although the deflection in case 3 is constantly less 
than that in case 2, the contributions of the dependence of Young’s modulus on temperature 
and the shear deformation to the deflection are almost the same, so the effects of E(T) and 
7 on the deflection are all non-linear. 

To express the effect of absorbed laser energy by the target on the deflection, Fig. 9 shows 
the histories of the maximum deflection in cases 1 and 2 with E, = 1OJ and E, = 15J. 
Because of the dependence of Young’s modulus on temperature, the relationships of 
deflection with the absorbed laser energy E, are also non-linear. The non-linear relationship 
of deflection with laser energy E, can obviously be observed from Fig. 9. 
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it Case 1 

rbd 
Fig. 8. Transient deflection distributions at t = 100 ps for a non-Gaussian type laser beam and 
E, = 1OJ for various cases: case 1 - D = Do. 4 = 0 and eliminating the term w” in (3); case 

2 - D # 0, C#J = 0; case 3 - D = Do, cj # 0; case 4 - D # Do, C$ # 0. 

Time t(s) 

Fig. 9. The curves of maximum deflections vs time for the laser beam with non-Gaussian type and 
E, = lOJ, E, = 155. 

4.2. Shear deformation 
The numerical results of shear deformation are discussed in cases 3 and 4. Figure 10 

shows the transient average shear strain y vs the radial coordinate for the non-Gaussian and 
Gaussian types of laser beam with E, = 1OJ at different times in case 3. The histories of the 
maximum average shear strain y are shown in Fig. 11 for the non-Gaussian type laser beam 
with E, = 1OJ and E, = 15J in case 3. Note that the shear strains in case 3 tend to zero when 
the time is long enough. Figure 12 shows the transient average shear strain y distributions 
with E, = 1OJ at different time in case 3 for the non-Gaussian and Gaussian type laser beam. 

It is observed from Fig. 10 that only the shear strain y is not zero within the laser spot 
edge region. This important result confirms the experimental observations, i.e. the existence 
of large shear strain y within the laser spot edge region [12-141. From the comparison of 
the shear strain distribution induced by a non-Gaussian laser beam and by a Gaussian laser 
beam (Fig. 12), one can conclude that the former offers a formidable potential for the new 
type of failure by plugging, however, the latter has a little potential for the new type of 
failure by plugging. 
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rb-4 
Fig. 10. Transient average shear strain y vs the radial coordinate for the non-Gaussian type laser 
beam with E, = 1OJ at different times in case 3. Note that the maximum shear strain appears within 

the laser spot edge region. 

-l.OE-003 ;ct,, 
O.OOE+OOO LOOE-005 l.OOE-004 1.50E-004 2.00E-004 

Time t(s) 

Fig. 11. The curves of the maximum average shear strain y vs time for the non-Gaussian type laser 
beam with E, = 1OJ and E, = 15J in case 3. 

This reveals that the spatial shapes of a laser beam, indeed, play an important role in 
controlling the damage types, The spatial structure effect is also important in laser 
processing of materials [24,25]. Hector and Hetnarski [24] studied the thermal stress field 
in an elastic half-space due to a single pulse from a laser for the general case of a mixed- 
mode structure beam. The investigations [24,25] show that the doughnut mode structure is 
useful for selected heat treating, cutting and welding applications while the Gaussian mode 
structure is employed in the vast majority of laser cutting applications. 

4.3. The efict of E(T) on shear deformation 
The transient average shear strain distributions are shown in Fig. 13 for the non- 

Gaussian type laser beam with E, = 1OJ at different times in case 4. Also, Fig. 14 shows the 
histories of the maximum average shear strain for a non-Gaussian type of laser beam with 
El = 1OJ in case 4. The value of the shear strain in case 3 is always negative, but the 
dependence of Young’s modulus on temperature will always yield positive shear strain 
(Figs 13 and 14). The two order differential equation (22) about the variable $J can be written 
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Fig. 12. Transient average shear strain y vs the radial coordinate for the non-Gaussian and 
Gaussian types of laser beam with E, = 1OJ at different times in case 3. 
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Fig. 13. Transient average shear strain distributions vs the radial coordinate for the non-Gaussian 
type of laser beam with E, = 1OJ at different times in case 4. 

again in the following form 

- $ DV’w + $ Da(1 + v)(mr - nr) 1 - w’ ;(v - 1)D’ = 0 

From the above equation, the variable coefficient of 4 is - [g(l/r)(D/r - vD’) + 
(4/h’)(l - v)D]. In case 3, D = Do, i.e. D’ = 0, the coefficient - [g(l/r)(D/r - vD’) + (4/ 
h2)( 1 - v)D] is constantly negative. In case 4, D # 0, D’ = (dD/dT) (dT/dr) > 0. The D’ is so 
large within the laser spot edge region that the coefficient - [g(l/r)(D/r - vD’) + (4/ 
h2)(1 - v)D] is positive. The change of the coefficient from a negative value in case 3 to 
a positive value in case 4 results in the change of the shear strain from a negative value in 
case 3 to a positive one in case 4. The average shear strain in case 4 is much larger than that 
in case 3. This means that the shear deformation comes under the strong inthtence of the 
dependence of the Young’s modulus E(T) on temperature T. The shear strain in case 
4 constantly increases with the increasing of time, this is not like that in case 3. 
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Fig. 14. The curves of the maximum average shear strain vs time for the non-Gaussian type laser 
beam with E, = 1OJ and E, = 15J in case 4. 

5. CONCLUSIONS 

In the present article, we have derived the new coupled governing equations of shear 
deformation and large deflections of a heated, non-homogeneous circular plate. The 
governing equations are obtained based on the large deflections of Berger [17], Ohnabe and 
Mizuguchi [18] and the parabolic shear deformation theory of Bhimaraddi and Stevens 
[20]. We use the new coupled governing equations to analyse the failure mode induced by 
laser. The new non-linear coupled equations were solved by employing the Galerkin and 
iterative methods. 

Numerical results of the deflection and the average shear strain for various spatial shape 
laser beams are shown in the graphs. It was found that large shear strain does exist within 
the laser spot edge region for a non-Gaussian laser beam. These important conclusions are 
in good agreement with the experimental observations [12-141. The non-Gaussian laser 
beam has a formidable potential for the new failure mode, however, the Gaussian laser 
beam has little potential for the new failure mode. It was also found that D(T) had 
important influence on the large deflections and the shear strain. 
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APPENDIX 

In this Appendix, the temperature rise distribution is expressed as the following formula, 

e = (1 - Ro)a&, 

ko 

- 6 $ 
0 

’ g(t) + 
e-“,l _ e-k: Dot/.: e-(n,+B,)r _ e-‘: Dwo; 

_ 

k,Z - aia$D’ k,2 - (=I + Bi)allD” 

2 e-m,r _ e-k:D’tia~e-(mn.o/h)‘l 

where ko, Do = ko/pC, are the thermal conductivity, thermal diffusion coefficient, respectively, and R. is the 
reflection coefficient of laser beam. k, are the roots of equations Jo(k.a/ao) = 0, J,(x) are the nth Bessel functions of 
the first kind. The transform coefficient f*(k.) is given by 

f*(h) = s ’ fW(J&/ad i dr. 642) 
0 




