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Abstract

The T-stress is considered as an important parameter in linear elastic fracture mechanics. In this paper, several
closed form solutions of T-stress in plane elasticity crack problems in an in®nite plate are investigated using the

complex potential theory. In the line crack case, if the applied loading is the remote stress or the concentrated
forces, the T-stress can be derived from the basic ®eld. Here, the basic ®eld is de®ned as the ®eld caused by the
applied loading in the in®nite plate without the crack. For the circular arc crack, the T-stress can be abstracted

from a known solution. For the cusp crack problems, the T-stress can be separated from the obtained stress
solution for which the conformal mapping technique is used. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The stress distribution in the vicinity of a crack tip was investigated by Williams (1957). In the
cylindrical coordinates (r, y), the stress components can be expressed by"
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where the ®rst two terms in the expansion form are singular at the crack tip, K1 and K2 denote the
mode I and mode II stress intensity factors, respectively, and the functions fij�y�, gij�y� represent the
angular distributions of the crack tip stresses (Williams, 1957). Meantime, the third term is ®nite and
bounded. In the notation of Rice (1974), the third term is denoted as the T-stress and can be regarded
as the stress acting parallel to the crack ¯anks.

Recently, analytical, numerical and experimental studies have attempted to describe fracture in terms
of two parameters, i.e. the stress intensity factor and T-stress. Comparatively speaking, the stress
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intensity factor solutions are well investigated in literature, and a few of the T-stress solutions are
available. To evaluate the T-stress, the Eshelby technique was used (Kfouri, 1986). Using the weight
function method, the idea for evaluating the T-stress was proposed (Chen, 1985, 1997; Sham, 1991). The
T-stress in the multiple crack problem was solved (Chen, 1994). Also, the compendium of T-stress
solutions in the crack problems was carried out (Sherry et al., 1995). The plane±strain elastic±plastic
crack-tip ®elds were modeled with modi®ed boundary layer formulation based on two parameters, the
stress intensity factor and the T-stress (Betegon and Hancock, 1991).

In this paper, we solve the T-stress problems in the in®nite plate with: (1) a line crack, (2) a circular
arc crack, (3) a symmetric airfoil crack and (4) a symmetric lip crack. The loading condition is the
remote stresses s1x , s1y , s1xy, or the concentrated forces applied at a prescribed point z � z0. By using the
complex variable function method in plane elasticity, all the mentioned problems can be solved in closed
form.

For the line crack problem, we prove that the T-stress at the crack tip is equal to

T � sx�B� ÿ sy�B� �2�

where sx�B �, sy�B � are the components at the position of crack tip, which are derived from the basic ®eld.
For the second to fourth cases, techniques for separating the T-stress from the total stress expressions
are suggested.

2. T-stress for a line crack with concentrated force or remote stress

In this paper, the complex variable function method in plane elasticity is used to evaluate the T-stress
in crack problems (Muskhelishvili, 1953). According to this method, the stresses (sx, sy, sxy), the
displacements (u, v ), the resultant force function (X, Y ) can be described by the two complex potentials
f�z�, c�z� as follows

sx � sy � 4 Re f 0�z�
sy ÿ sx � 2isxy � 2

�
�zf 00�z� � c 0�z�� �3�

sx ÿ isxy � 2 Re f 0�z� ÿ � �zf 00�z� � c 0�z��
sy � isxy � 2 Re f 0�z� �

�
�zf 00�z� � c 0�z�

� �4�

f � ÿY� iX � f�z� � zf 0�z� � c�z� �5�

2G�u� iv� � kf�z� ÿ zf 0�z� ÿ c�z� �6�
where G is the shear modulus of elasticity and k � �3ÿ v�=�1� v� for the plane stress problem,
k � 3ÿ 4v for the plane strain problem, with v being the Poisson's ratio.

Let us consider the single crack problem, in which the concentrated forces px, py are applied at the
point z � z0 (Fig. 1(a)). Clearly, using the superposition principle, the physical ®eld (Fig. 1(a)) can be
considered as the sum of the basic ®eld (Fig. 1(b)) and the perturbation ®eld (Fig. 1(c)).

As pointed out previously (Chen, 1994), it is easier to obtain the T-stress by analyzing the stress
component in the vicinity of the left crack tip, z � t� �t4 a, t<a�. Obviously, we have
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sx � sx1 � sx2 �7�

where sx, sx1, sx2 has been indicated in Fig. 1.
In this case, we have the following solution for the basic ®eld (Fig. 1(b)) (Muskhelishvili, 1953)

f�z� � F log �zÿ z0�

c�z� � ÿk �F log �zÿ z0� ÿ F �z0
zÿ z0

, where F � ÿ px � ipy
2p�k� 1� �8�

Therefore, from (4) we obtain

sx1 � T1 � Re
�
2f 0�z� ÿ �zf 00�z� ÿ c 0�z��jz�a �at the point z � a� �9�

In addition, in the perturbation ®eld (Fig. 1(c)), the stresses sx, sxy applied on the crack face are
denoted by P�t�, Q�t�, respectively, which in turn are the inverse of the stresses in the basic ®eld. Thus,
the stresses applied on the crack face can be expressed by (Chen, 1994)

�sy ÿ isxy�� � �sy ÿ isxy�ÿ � P�t� ÿ iQ�t� � �ÿ2 Re f 0�z� ÿ zf 00�z� ÿ c 0�z��jz�t, jtjE a �10�

Particularly, we have proved that (Chen, 1994)

sx2 � ÿ 2K2�������������������
2p�aÿ t�

p � T2 �O� ����������
aÿ t
p �, �t4 a, t < a� �11�

where K2 is the stress intensity factor of second mode and

T2 � P�t�jt�a � Re �ÿ2f 0�z� ÿ �zf 00�z� ÿ c 0�z��jz�a �12�

Finally, from (7), (9), (11) and (12) the T-stress is obtainable

T � T1 � T2 � ÿ2 Re � �zf 00�z� � c 0�z��jz�a �13�

By using (3) and (13), the T-stress can be rewritten as

T � �sx�B� ÿ sy�B� �jz�a �14a�

Fig. 1. A single crack with concentrated force loading px, py, (a) the physical ®eld, (b) the basic ®eld, (c) the perturbation ®eld.
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where the subscript (B ) means that, the sx�B �, and sy�B � are the stress components in the basic ®eld (Fig.
1(b)). Naturally, the following theorem is proposed.

Theorem: If the single crack in an in®nite plate is applied by the concentrated forces px, py at the
point z � z0 (Fig. 1(a)), the T-stress at the left crack tip will be

T � �sx�B� ÿ sy�B� �jz�a �14b�

where the components sx�B �, sy�B � are the stresses at the point z � a in the basic ®eld (Fig. 1(b)).
Substituting (8) into (13) yields

T � ÿ2 Re

"
F
� �z0 ÿ a�
�z0 ÿ a�2 � kF

1

�z0 ÿ a

#
, with F � ÿ px � ipy

2p�k� 1� �15�

Two particular cases are cited below.

1. If the concentrated forces px, py are applied at a point of real axis, i.e. z0 � x0, from (15) we have

T � Px

p�x0 ÿ a� �16�

2. If the concentrated forces Px, Py are applied at the upper side of the left crack tip, z0 � a� ih
(h-real), from (15) we have

T � Py

ph
�17�

From above analysis we see that, eqns (13) and (14b) do not depend on the concrete form of complex
potentials f�z�, c�z� in the basic ®eld. Therefore, the theorem can also be used for the following cases.

In the second case, it is assumed that a moment M is applied at the point z � z0. The complete
potentials then take the form (Muskhelishvili, 1953)

f�z� � 0, c�z� � iM

2p�zÿ z0� �18�

Substituting (18) into (13) yields

T � Re

�
iM

p�z0 ÿ a�2
�

�19�

In the third case, it is assumed that the remote stresses s1x , s1y , s1xy are applied at in®nity. In this case
we have the solution for the basic ®eld (Muskhelishvili, 1953)

f�z� � 1
4

ÿ
s1x � s1y

�
z, c�z� �

h
1
2

ÿ
s1y ÿ s1x

�� is1xy
i
z �20�

Substituting (20) into (13) yields

T � s1x ÿ s1y �21�

This result coincides with that obtained previously (Chen, 1994).
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3. T-stress in the circular arc crack problem

For the circular arc crack problem, one may use the coordinates as shown in Fig. 2. It is assumed
that the stresses s1x , s1y , s1xy are applied at in®nity. In the derivation, we denote

C�z� � c 0�z�, F�z� � f 0�z�, O�z� � ÅF

�
1

z

�
ÿ 1

z
ÅF 0
�
1

z

�
ÿ 1

z2
ÅC

�
1

z

�
�22�

The obtained solution for the problem is as follows (Muskhelishvili, 1953)

F�z� � F1�z� � F2�z�, O�z� � F1�z� ÿ F2�z� �23�
where

F1�z� � 1

2X�z�

�
C0z� C1 � D1

z
� D2

z2

�
, F2�z� � D0

2
�

ÅG1

2z2
�24�

and

C0 � 1

2

ÿ
G1 ÿ ÅG1

�
sin2 �a=2� � 4G�

ÿ
G1 � ÅG1

�
sin2 �a=2� cos2 �a=2�

2
ÿ
1� sin2 �a=2�

� , C1 � ÿC0 cos a

D0 � 2Gÿ C0, D1 � ÿ ÅG1 cos a, D2 � ÅG1

G � 1

4

ÿ
s1x � s1y

�
, G1 � 1

2

ÿ
s1y ÿ s1x

�� is1xy

X�z� �
�������������������������������������������������������������ÿ
zÿ exp � ÿ ia��ÿzÿ exp �ia��q

,
�

taking the branch lim
z41x�z�=z � 1

�
�25�

Clearly, we have

sr � sy � sx � sy � 4 Re F�z� � 4 Re F1�z� � 4 Re F2�z� �26�
After using the translation and rotation transform of coordinates, the counterpart of the complex

Fig. 2. A circular arc crack.
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potential F1�z� will be denoted by G1�z1��z1 � x1 � iy1�. Also, in the vicinity of z1 � 0 (or in the vicinity
of z � exp�ia�) in Fig. 2, G1�z1� takes the form

G1�z1� � d1z
ÿ1=2
1 � d2z

1=2
1 � d3z

3=2
1 � � � � �z1 � x1 � iy1� �27�

That is to say, the complex potential F1�z� has no contribution to the T-stress.
Noting the property that sr � 0 along the circular arc crack face (Fig. 2), therefore, from (26) the

T-stress at the crack tip b �z � exp �ia�� will be
Tb � 4 Re F2

ÿ
exp �ia�� � 2 Re �D0 � ÅG1exp �ÿ2ia�� �28�

Similarly, from (26) the T-stress at the crack tip a �z � exp �ia�� in Fig. 2 will be

Ta � 2 Re
ÿ
D0 � ÅG1 exp �2ia�

�
�29�

Substituting G and G1 from (25), one may write the T-stress in the explicit form

Tb

Ta
� s1x

�
ÿ cos �2a� � �1ÿ cos a� �3� cos a�

2�3ÿ cos a�
�
� s1y

"
cos �2a� � �1ÿ cos a�2

2�3ÿ cos a�

#
32s1xy sin �2a� �30�

Clearly, letting a4 0 in (30), the T-stress for the single-line crack problem is obtainable

Taja�0 � Tbja�0 � s1y ÿ s1x �31�

4. T-stress in the cusp crack problems

The T-stress problem for a symmetric airfoil crack is considered below (Fig. 3). In the problem the
remote stresses s1x and s1y are applied at in®nity. In this case, the following mapping function is used
(Wu, 1982)

z � o �z� � z� �1ÿm�2
zÿm

�0 < m < 1� �32�

which maps the unit circle and its exterior region (in the z-plane) into the airfoil crack and its exterior
region (in the z-plane) (see Fig. 3).

In the following analysis, the complex potentials f�z�, c�z� previously used are rewritten as
f1�z�, c1�z�. In addition, we let

f�z� � f1�o �z��, c�z� � c1�o �z�� �33�
Also, from (3) we can obtain

sx � sy � 4 Re f 01�z� � 4 Re
ÿ
f 0�z�=o 0�z�� �34�

From eqn (5), the traction-free condition along the crack face can be expressed as

f�z� � �o �1=z�
o 0�z� f

0�z� � c�z� � 0 �z2C, Cÿ the unit circle� �35�
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Continuation of the complex variable function will give the following solution (Wu, 1982; Chen, 1984)

f�z� � Gzÿ �1ÿm2�2
1� 2m

H

zÿm
� G1

1

z
, c�z� � ÿ �f

�
1

z

�
ÿ �o �1=z�

o 0�z� f
0�z� �36�

where

H � f 0
�
1

m

�
� 1� 2m

1� 2mÿm2

ÿ
G�m2G1

�
, G � 1

4

ÿ
s1x � s1y

�
, G1 � 1

2

ÿ
s1y ÿ s1x

� �37�

From the singular behavior of the stress component, in the vicinity of crack tip the complex potential
f 01�z� can be expressed as

f 01�z� �
1

q

ÿ
a0 � a1q� a2q

2 � � � �
�
�q � q�z�� �38�

where

q � q�z� �
������������������������
zÿ �2ÿm�

p
�39�

In (38), a0=q is a singular term when z4 2ÿm. Since the cusp crack face is traction free, from (34)
and (38), it yields

T � 4 Re �a1 � �40�

and from (38) we see that

a1 � d

dq

n
qf 01�z�

o����
z�2ÿm

�41�

Substituting (32) into (39) yields

Q�z� � q�o �z�� � zÿ 1������������
zÿm
p �42�

After considering f 01�z� � f 0�z�=o 0�z�, from (41) we ®nally obtain

Fig. 3. A symmetric airfoil cusp crack.
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a1 �
(

d

dz

�
Q�z�f

0�z�
o 0�z�

��
dQ�z�

dz

)�����
z�1

�43�

Substituting (36), (42) into (43), and using (40), T-stress is obtainable

T � ÿ 4m2

1� 2mÿm2
Gÿ 2�1ÿm�2�

�
2m4

1� 2mÿm2

�
G1 �44�

or

T �
�
1ÿ 5m2 � 4m3 �m4

1� 2mÿm2

�
s1x ÿ

�
1ÿ 3m2 � 4m3 �m4

1� 2mÿm2

�
s1y �45�

In the second case, the symmetric lip crack is considered (Fig. 4), and the mapping function is

z � o �z� � zÿ m2

z
� �1ÿm2 �2

2

�
1

zÿm
� 1

z�m

�
�0 < m < 1� �46�

The mapping relation has been indicated in Fig. 4, and eqns (33)±(35) are still used in this case. The
applied remote stresses are denoted by s1x , s1y . As before, the continuation of the complex variable
function will give the following solution (Wu, 1982; Chen, 1984)

f�z� � Gz� S

�
1

zÿm
� 1

z�m

�
�
ÿ
m2Gÿ G1

�1
z
, c�z� � ÿ �f

�
1

z

�
ÿ �o �1=z�

o 0�z� f
0�z� �47�

where

S � ÿ �1ÿm4�2
2�1�m4� �1�m2 �m4�f

0
�
1

m

�
� ÿ �1ÿm4�2

2�1�m4�2 ��1ÿm4�G�m2G1� �48�

Similarly, we have

q�z� �
����������������������������
zÿ 2�1ÿm2�

p
�49�

Fig. 4. A symmetric lip cusp crack.
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Q�z� � q�o �z�� � �zÿ 1��z�m2���������������������
z�z2 ÿm2

q
�

�50�

Clearly, Eqns (38), (40), (41) and (43) are still valid. Finally, from (40) and (43), the T-stress is
obtainable

T � 2

�1�m2�3 �d1G� d2G1� �51�

where

d1 � �1ÿm2��1� 6m2 �m4� ÿ �1ÿm2��1�m2�6
�1�m4�2

d2 � ÿ1� 4m2 � 2m4 ÿ m2�1�m2�5
�1�m4 �2 �52�

5. Remarks

In the above mentioned examples, from the line crack case, the circular arc crack case to the cusp
crack cases, the solution techniques for evaluating the T-stress are not exactly the same. However, from
the present analysis we can conclude that, if the closed form solution for the relevant problems can be
derived, the T-stress can be evaluated immediately.
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