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A rectangular structural unit cell of a-Al2O3 is generated from its hexagonal one. For the rectangular structural crystal with a
simple interatomic potential [Matsui, Mineral Mag. 58A, 571 (1994)], the relations of lattice constants to homogeneous
pressure and temperature are calculated by using Monte-Carlo method at temperature 298 K and 0 GPa, respectively. Both
numerical results agree with experimental ones fairly well. By comparing pair distribution function, the crystal structure of
a-Al2O3 has no phase transition in the range of systematic parameters. Based on the potential model, pressure dependence of
isothermal bulk moduli is predicted. Under variation of general strains, which include of external and internal strains, elastic
constants of a-Al2O3 in the different homogeneous load are determined. Along with increase of pressure, axial elastic
constants increase appreciably, but nonaxial elastic constants are slowly changed.
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1. Introduction

Sapphire or Corundum (a-Al2O3), as the most stable

phase of alumina, has important physical and chemical

properties for application: great hardness, chemical

inertness and a high melting point. Indeed, corundum

has been widely used as a window material in shock-wave

experiments [1], as well as, coating material in wear-

resistant cutting tools [2]. It is thus important to know

high-pressure elastic properties of the alumina. The elastic

properties of corundum, such as pressure dependence

[3,4], temperature dependence [5] and high-order elastic

constants [6], have been measured in experiments.

However, few atomistic simulation studies on them due

to limited development of its potential models. Based on

the Buckingham potential and the core-shell model,

elastic constants and dynamical properties of solid

a-Al2O3 are reported [7,8]. By implying electrostatic

energy to the embedded-atom method, an electrostatic

potential for solid a-Al2O3 is suggested and applied to

determine surfaces relaxation [9]. Recently, a simple

potential model named as CMAS94 is proposed by

combining the Buckingham potential and Ewald

summation of Coulomb interaction [10,11]. It can be

applied to describe the structural properties of solid and

liquid a-Al2O3 [10–13].

In this paper, a rectangular structural unit cell of single

crystal a-Al2O3 is proposed. Based on the CMAS94

potential model, structural parameters in relations to

pressure and temperature are determined by using Monte-

Carlo method and compared with experimental results.

Pressure dependence of isothermal bulk moduli and elastic

constants are predicted.

2. Crystallography, model and method

The crystallographic specification of a-Al2O3 belongs to

the space group R�3c and its crystallography is rhombohe-

dral. It is commonly described in the hexagonal structural

unit cell with a ¼ 4:759 �A and c ¼ 12:991 �A [14]. The

unit cell with 30 atoms (12 Al and 18 O) embedded in

body coordinates is generated by using the procedure

described in [15]. After transformation from body

coordinates (j,h,z) to Cartesian coordinates (x,y,z) by

using

x ¼

ffiffiffi
3

p

2
aj; y ¼ ah2

1

2
aj; z ¼ cz; ð1Þ
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we cut and paste a triangular prism, so that the rhombic

prism is changed to a cuboid, which has only periodic

conditions in y and z directions. In x direction, two half

sides (I and II) are interlaced with another ones. In order

to keep the periodic condition in x direction, we add

another cuboid in the direction. The order of two half

bodies (I and II) of the cuboid is exchanged in y direction.

Thus, two hexagonal structural unit cells (rhombic prisms)

are divided and combined as a rectangular one in figure 1.

The three-dimensional crystal structure with 60 atoms (24

Al and 36 O) is drawn in figure 2. It preserves the periodic

boundary condition of crystal structure and has crystal

lengths of lx ¼ a, ly ¼
ffiffiffi
3

p
a and lz ¼ c. Since the

transformation from hexagonal structural unit cells to

the rectangular one is reversible, the lattice parameters in

both unit cells are correspondent.

In the CMSA94 model, the configurational (potential)

energy U is expressed as a sum of two-body potentials

U ¼ Up þ Ue ¼
1

2

XN
i¼1

XN
j–i

fpðrijÞ þ
qiqj

4p10rij

� �
; ð2Þ

where

fpðrijÞ ¼ 2
cicj

r6
ij

þ f ðbi þ bjÞ exp
ai þ aj 2 rij

bi þ bj

� �
: ð3Þ

Its terms represent van der Waals repulsion and

Coulomb interactions, respectively. Here, rij is the

interatomic distance between a pair of atoms i and j, f is

a standard force constant of 4:184 kJ �A21 mol21. The net

charge qi, repulsive radii ai, softness parameters bi and van

der Waals coefficients ci of the ion i are listed in table 1.

Monte-Carlo simulations are worked in the isothermal-

isobaric ensemble (NPT) for a rectangular structural cell

with N ¼ 2160 atoms (864 Al and 1296 O). The cell

box has 36 rectangular structural unit cells. Its lengths

are Lx ¼ 6lx ¼ 28:554 �A; Ly ¼ 3ly ¼ 24:728 �A and Lz ¼

2lz ¼ 25:982 �A: We evaluate the short-range terms using

direct summation under periodic boundary conditions.

The cutoff radius rc is taken as a half of the minimal

box length. The long-range coulomb term is treated by

using standard Ewald techniques as following [16,17]

4p10Ue ¼ 4p10ðUr þ Uk þ UcÞ

¼
1

2

XN
i¼1

XN
j¼1

qiqj
X01

jnj¼0
frðRijÞ

þ
1

2pV

X
m–0

exp 2p 2k2
m=k

2

k2
m

SðkmÞSð2kmÞ

2
k

p1=2

XN
i¼1

q2
i ;

ð4Þ

where

frðRijÞ ¼
erfcðkRijÞ

Rij

;

SðkmÞ ¼
XN
i¼1

qi exp ð2pikm·riÞ

ð5Þ

and Rij ¼ rij þ ½h�n, Rij ¼ jRijj and km ¼ ½h�21m,

km ¼ jkmj. [h] is a 3 £ 3 diagonal matrix with main

diagonal elements Lx, Ly and Lz. V is a volume of the

rectangular structural crystal. In the Ewald method, the

contribution of the summation between real- and

reciprocal-space is controlled by a parameter k, which is

weighted as k ¼ ðNp3=V 2Þ1=3 [18].

From classical Helmholtz free energy, using the

macroscopic Lagrangian strain [19] 1ab ¼ ð1=2Þðuab þ

ubaþ
P3

g¼1ugaugbÞ, the systematic stress tensor tab can
Figure 2. Schematic of the a-Al2O3 rectangular structural unit cell.
Light and dark circles denote the ions Alþ3 and O22, respectively.

Table 1. Configurational energy parameters in the simulation.

q(jej) a(Å) b(Å) c½ �A3ðkJ=molÞ1=2�

Al 1.4175 0.7852 0.034 36.82
O 20.945 1.8215 0.138 90.61

Figure 1. A plane schematic for combining two hexagonal unit cells to
a rectangular one through transformation of the body coordinates (j;h; z)
to Cartesian coordinates (x; y; z). Dot and solid lines denote the hexagonal
and the rectangular unit cells, respectively.
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be expressed as

tab ¼2
NkBT

V
dabþ

1

2

XN
i¼1

XN
j–i

6cicj

r7
ij

2 f exp
aiþ aj2 rij

biþ bj

� �" #
rijarijb

rij

þ
1

2

XN
i¼1

XN
j¼1

qiqj
X01

jnj
2

2kffiffiffiffi
p

p
Rij

exp ð2k2R2
ijÞ2

erfcðkRijÞ

R2
ij

" #

£
RijaRijb

Rij

þ
1

2pV

X
m–0

e2p 2k2
m=k

2

k2
m

1þ
p2k2

m

k2

� �
2kmakmb

k2
m

2 dab

� �
SðkmÞSð2kmÞ;

ð6Þ

where d is the Kronecker symbol, kB is Boltzmann’s

constant and a,b [ {x,y,z}.

In the NPT Monte-Carlo simulation [16], the Markov

chain is generated using Metropolis algorithm. Two kinds

of trial moves in each cycle are necessary to explore the

configuration space of the system: translations of the ion

centers of mass and changes of the size of the rectangular

cell. In special, we independently change Lx and Lz and

keep the relation Ly ¼
ffiffiffi
3

p
Lx=2. A trial move from the state

m to n is accepted with a probability equal to

min½exp ð2bdHnmÞ; 1�, where dHnm ¼ dUnm þ PðUn 2

UmÞ2 Nb21 ln ðUn=UmÞ. We throw away a half of

Mð¼ 1000Þ cycles and calculate ensemble averages in the

last half of M. Using the Monte-Carlo simulation, we can

arrive at an equilibrium state of system under a

homogeneous load.

3. Results and discussions

3.1 Pressure and thermal effects on structures

We perform the NPT Monte-Carlo method to investigate

pressure and thermal effects on structures. The configura-

tional energy is given by equation (2). Six independent

stresses are calculated by equation (6) to confirm the

homogeneous load in each simulation. Since the load on

the rectangular cell is homogeneous, three shear stresses

always keep zero and only three normal stresses are taken

for confirmation.

Firstly, the systematic temperature is fixed at 298 K and

P is constrained as different values. We calculate the

ensemble average of rectangular cell lengths and transfer

to , a . and , c . of hexagonal structural unit cell. The

results are drawn in figure 3(a) and (b). Along with the

increase of P, both , a . and , c . monotonically

decrease. To compare with experimental measurement

values, we also plot corresponding experimental data

[3,4], where the fluctuations for average values of a and c

are ^0.02 and ^0.10 Å, respectively. The standard

derivations (percent errors) of a and c between numerical

and experimental values are about 0.06 Å(1.3%) and

0.11 Å(0.8%), respectively. Our numerical results agree

with the experimental ones fairly well.

In order to analyze the evolution of crystal structure of

a2Al2O3 under pressure, we plot correspondent pair

distribution function gðrÞ in figure 4. It is found that the

function gðrÞ is almost independent of the increase of

pressure. The distribution of peaks does not change, but

their relative positions have a global move under pressure.

Figure 3. Lattice lengths of a-Al2O3 hexagonal structural unit cell vs
homogeneous pressure at T ¼ 298 K: (a) , a ., (b) , c .. Dots, crosses
and dags denote the current results, experimental results of [3] and [4],
respectively.

Figure 4. Pair distribution function of a-Al2O3 at T ¼ 298T and
different hydrostatic pressure P. Solid, dot and dash lines denote
P ¼ 0 GPa [gðrÞ], 5 GPa [gðrÞ þ 0:5] and 10 GPa [gðrÞ þ 1:0],
respectively.
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In the process, only the crystal size and relative positions

of ions are compressed, so the single crystal a2Al2O3 is

kept as the same phase.

Then, the systematic homogeneous pressure is con-

strained as 0 GPa in the change of T. The ensemble

averages , a . and , c . of hexagonal structural unit

cell vs the temperature are plotted in figure 5(a) and (b).

Along with the increase of T, both , a . and , c .

monotonically increase. To compare with experimental

results, we also draw correspondent experimental data

[20]. The standard derivations (percent errors) of a and c

between numerical and experimental values are about

0.05 Å(1.1%) and 0.15 Å(1.2%), respectively. Our numeri-

cal results with small percent errors keep an agreement

with the experimental ones.

Figure 6 displays the pair distribution function gðrÞ in

different temperature. Along with the increase of

temperature, gðrÞ decreases, but relative positions of the

peaks are independent. In the process, although the crystal

size is blown up, the relative position of ions, i.e. the

structure of crystal does not change. So the single crystal

a � Al2O3 is kept as the same phase.

So far, the CMAS94 model has been validated in the

ranges of hydrostatic pressure and temperature. By

comparing pair distribution function, the a phase of

Al2O3 is kept during the process. In the following, using

the model, we will predict elastic properties of a-Al2O3

under pressure.

3.2 Pressure dependence of isothermal bulk moduli

To describe volume comprehensibility of a-Al2O3, we

calculate the proportional decrease in volume of a crystal

when subjected to hydrostatic pressure. The isothermal

bulk moduli K of a crystal is expressed as

K ¼ 2V
›P

›V

� �
T

: ð7Þ

The systematic temperature is fixed at 298 K. The

hydrostatic pressure is changed in the range of 0–

10 GPa. Under each pressure, P varying in ^0.2 and

^0.5 GPa, using the NPT Monte-Carlo method, we

calculate correspondent volumes. The data approaches to

a global continues function of the pressure. Using the 6-

order polynomial least-squares refinement method to fit

the relation of volume to pressure, we obtain the following

equation

VðPÞ ¼ 17749:1 2 63:1ðP2 5:0Þ

þ 7:6 £ 1021ðP2 5:0Þ2 2 1:0 £ 1022ðP2 5:0Þ3

2 4:6 £ 1024ðP2 5:0Þ4 2 2:2 £ 1024ðP2 5:0Þ5;

ð8Þ

where the dimensions of P and V are GPa and Å3,

respectively. In order to compare with experimental result,

from equations (7) and (8), we determine the isothermal

bulk moduli K ¼ 251.4 GPa at P ¼ 0 GPa. The experi-

mental isothermal bulk moduli [5] for P ¼ 0 GPa and

T ¼ 296 K is K ¼ 252.3 GPa. So the numerical simulation

result is very close to the experimental measurement

value.

In order to display the effect of pressure on isothermal

bulk moduli, from equations (6) and (7), we calculate K at

different hydrostatic pressure P and draw results in

figure 7. Along with the increase of P, K monotonically

increases. This behavior correspondents to the compres-

sibility of crystal size without any changes of crystal

structure under pressure.

Figure 5. Lattice lengths of a-Al2O3 hexagonal structural unit cell vs
temperature at P ¼ 0 GPa: (a) , a ., (b) , c .. Dots and line denote
the current results and fitting of experimental results of [20], respectively.

Figure 6. Pair distribution function of a-Al2O3 at P ¼ 0 GPa and
different temperature T. Solid, dot and dish lines denote T ¼ 298 K [gðrÞ],
600 K [gðrÞ þ 0:5] and 1000 K [gðrÞ þ 1:0], respectively.
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3.3 Pressure dependence of elastic constants

The crystal structure of a-Al2O3 has not a central

symmetry, so its general strains include of six external

strains ua;b and 3N internal strains rij. Under an

assumption of small strains ua;b can be transferred as the

macroscopic Lagrangian strain 1ab. To calculate the

elastic constants, following the derivation at zero Kelvin

[19,21], we obtain the second-order elastic constants for

a � Al2O3:

½C� ¼
1

V

›2U

›1ab›1mn

� �
2

›2U

›1ab›rij

� �
›2U

›rij›rjh

� �21
(

›2U

›rjh›1mn

� ��
;

ð9Þ

where m; n; j;h [ {x; y; z}, i and j are indices of atoms.

To check the generated rectangular structural unit cell

and the formula of elastic constants, we make a

comparison with the GULP software [22]. The hexagonal

structural parameters from the experimental data [14] are

chosen as initial ones in GULP and optimized to get

structural parameters at zero pressure and zero Kelvin:

a ¼ 4:683 �A; c ¼ 13:066 �A; zAl ¼ 0:348 and xO ¼ 0:315.

By using the above method a rectangular structural cell

with 2160 atoms is generated. Using equation (9), we

calculate elastic constants and display results in table 2,

where results obtained by GULP are also included. Since

the space group of a-Al2O3 is R�3c, only six independent

elastic constants are given. Both results are almost the

same. To check the elastic constants predicted by the

CMSA94 potential model, we present experimental results

[6,23] in table 2. Except C13, C14 and C44, the calculated

results are close to the experimental results. The axial

elastic constants are more exactly predicted than the

nonaxial ones. As reported in [10,11], the configurational

energy parameters in table 1 can reproduce the observed

structural data and isothermal bulk moduli of alumina as

accurately as possible. Thus, to exactly estimate the elastic

constants of alumina, the configurational energy par-

ameters will be renewed. However, if we accept the

absolute errors of ^40 GPa of elastic constants in realistic

application, the calculated results compare fairly well with

the experimental ones.

To calculate the elastic constants of alumina as a

function of external homogeneous pressure, we assume

that the lattice constants of a-Al2O3 are nearly the same

for T ¼ 100 and 0 K. This assumption appears to be

reasonable as the melting temperature of corundum is

above two thousands Kelvin. With this assumption, we

employ the averaged lattice constants calculated at various

external pressures from the NPT Monte-Carlo simulation

as the input lattice parameters in formula (9). Note that

formula (9) is derived for crystals at T ¼ 0 K. To examine

this assumption, we calculate the “zero-temperature and

zero-pressure” elastic constants based on the lattice

structure obtained at T ¼ 100 K. The results, marked by

T ¼ 0* (100) K in table 2, are close to the above realistic

zero-temperature and zero-pressure elastic constants.

Figure 8 displays plots of the elastic constants vs

homogeneous pressure. Along with increase of pressure,

C11 and C33 increase appreciably, C12, C13 and C44 only

increase slightly and C14 is nearly unchanged. To compare

pressure derivatives of the elastic constants at zero

pressure, we present our calculating results and exper-

imental data [4,6] in table 3, where the calculated results

are estimated from a numerical linear interpolation at

three different pressures, 20.5, 0 and 0.5 GPa. The

calculated and experimental results agree reasonably well.

4. Conclusion

In summary, a rectangular structural unit cell of a-Al2O3

is generated from its hexagonal one. For the rectangular

structural crystal, the relations of lattice constants to

homogeneous pressure and temperature are calculated by

using Monte-Carlo method. The numerical results with

small percent errors agree with the experimental

measurement values. By analyzing the pair distribution

function, the crystal structure of a-Al2O3 has no phase

Table 2. Elastic constants of a-Al2O3 at zero pressure.

T (K) C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C14 (GPa) C44(GPa)

Present work 0 478.0 183.1 151.9 524.9 18.7 117.1
GULP [21] 0 478.0 183.1 151.9 524.3 18.7 117.1
Present work 0* (100) 457.9 176.8 141.2 507.2 19.3 110.5
Ref. [6] 297 495.4 162.1 109.2 496.5 223.5 147.4
Ref. [22] 298 496.8 163.6 110.9 498.1 223.5 147.4

Figure 7. Isothermal bulk moduli K of a-Al2O3 vs homogeneous
pressure P at T ¼ 298 K.
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transition in the range of systematic parameters. Based on

the CMAS94 potential model, pressure dependence of

isothermal bulk moduli is predicted. At a given pressure,

for isothermal bulk moduli, the numerical result has a

good agreement with the experimental one. Under

variation of general strains, which include of external

and internal strains, elastic constants of a-Al2O3 in the

different homogeneous load are determined. Along with

increase of pressure, axial elastic constants increase

appreciably, but nonaxial elastic constants are slowly

changed.

To the best of our knowledge, pressure dependence of

isothermal bulk moduli and elastic constants of a-Al2O3

have not been reported in the literatures. Based on the

CMAS94 potential model, we predicate the pressure

dependence of isothermal bulk moduli and elastic

constants.
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[13] G. Gutiérrez, B. Jöhansson. Molecular dynamics study of structural
properties of amorphous Al2O3. Phys. Rev. B, 65, 104202 (2002).

[14] W.E. Lee, K.P.D. Lagerlof. Structural and electron diffraction data
for sapphire (a-Al2O3). J. Elect. Micro. Tech., 2, 247 (1985).

[15] H.D. Megaw. Crystal Structure: A Working Approach, W.B.
Saunders, Philadelphia (1973), Chap. 11.

[16] M.P. Allen, D.J. Tildesley. Computer Simulation of Liquids,
Clarendon Press, Oxford (1989), Chap. 5.
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