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Abstract

In this paper\ a method is presented to calculate the plane electroÐelastic _elds in piezoelectric materials
with multiple cracks[ The cracks may be distributed randomly in locations\ orientations and sizes[ In the
method\ each crack is treated as a continuous distributed dislocations with the density function to be
determined according to the conditions of external loads and crack surfaces[ Some numerical examples are
given to show the interacting e}ect among multiple cracks[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

It is well known that piezoelectric materials produce an electric _eld when deformed\ and
undergo deformation when subjected to an electric _eld[ The coupling nature of piezoelectric
materials has attracted wide applications in electricÐmechanical and electric devices\ such as
electricÐmechanical actuators\ sensors and transducers[ In addition\ they play an important role
in the emerging technologies of smart materials and structures[ When subjected to mechanical and
electrical loads in service\ these piezoelectric materials can fail prematurely due to their brittleness
and presence of defects or ~aws produced during their manufacturing process[ Therefore\ it is
important to study the electroÐelastic interaction and fracture behaviors of piezoelectric materials[

Although many studies have been made on the electroÐelastic fracture mechanics based on the
modeling and analysing of one crack in the piezoelectric materials "see\ for example\ Deeg\ 0879^
Pak\ 0889\ 0881^ Sosa\ 0881^ Suo et al[\ 0881^ Park and Sun\ 0884a\ b^ Zhang and Tong\ 0885^
Zhang et al[\ 0887^ Gao et al[\ 0886#[ To our knowledge\ no e}orts have been made to analyse the
interacting _elds among multiple cracks in these materials[ In fact\ piezoelectric materials
"especially piezoceramics# are usually brittle and contain many cracks[ The existence and inter!
actions among these defects may greatly a}ect the material properties\ especially the fracture
behavior of these materials\ which is sensitive to local electroÐelastic _elds[

This paper attempts to analyse the fracture behavior of interacting multiple cracks in piezoelectric
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materials[ It takes into consideration the locations\ orientations and geometries of multiple cracks
and analyses the electricÐelastic _elds[ The method presented here is limited to two!dimensional
problems[ In the present analysis\ each crack is described by a continuous distributed dislocations
which includes electric!potential dislocations[ The dislocation density function is expressed as a
_rst Chebyshev polynomial series with a set of unknown coe.cients\ and the electricÐelastic _eld
can be expanded as series[ The governing equations for the multiple crack problem are developed
based on the basis of superposition technique and boundary collocation method\ which is shown
to have high computative e.ciency and accuracy[

1[ Basic formulae for a single crack

In this section\ the extended Stroh formalism for piezoelectric plane problems "Barnett and
Lothe\ 0864^ Pak\ 0881^ Suo et al[\ 0881# will be used[

In the absence of free charges and body forces\ the elastic and electric _eld equations can be
written as]

sij\i � 9\ Di\i � 9 "0#

sij � Cijrsgrs−esjiEs\ Di � oisEs¦eirsgrs "1#

where a\ g\ D and E are stress\ strain\ electric displacement "electric induction# and electric _eld\
respectively[ The elastic\ piezoelectric and dielectric constants of the medium are represented by
the fourth!\ third! and second!order tensors C\ e and o\ respectively[

If u is the elastic displacement vector and f the electric potential\ the in_nitesimal strain g and
the electric _eld E are derived from gradients]

gij �
0
1
"ui\ j¦uj\i#\ Ei � −f\i "2#

Substituting into eqn "1# yields\

sij � Cijrsur\s¦esjif\s\ Di � −oisf\s¦eirsur\s "3#

Inserting into eqn "0# yields\

"Cijrsur¦esjif#\si � 9\ "−oisf¦eirsur#\si � 9 "4#

For two!dimensional problems\ in which all the _elds are dependent on x and y only\ the general
solution can be sought in the form]

U � "ur\f#T � af"z0x¦z1y# "5#

where a �"a0\ a1\ a2\ a3#T and the superscript T denotes the transpose[ Without loss of generality\
one can always take z0 � 0\ z1 � p[

The number p and the column a are determined by substituting eqn "5# into "4#\ which gives

"Cajrbar¦eajba3#zazb � 9\ "−oaba3¦earbar#zazb � 9 "6#

where a\ b � 0 or 1[ This is an eigenvalue problem consisting of four equations\ a nontrivial a

exists if p is a root of the determinant polynomial[
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Since the eigenvalue p cannot be purely real "Suo et al[\ 0881#\ four conjugate pairs of p can be
arranged as]

pa¦3 � p¹a\ Im "pa# × 9\ a � 0\ 1\ 2\ 3 "7#

The most general real solution can be written as a linear combination of four arbitrary functions]

U � "ur\ f#T � 1 Re s
3

a � 0

aafa"za# "8#

where aa is pa associated eigenvector\ and za � x¦pay[
Furthermore\ the stress and the electric displacement obtained from eqns "3# and "8# are given

by

t � "s1j\ D1#T � 1 Re s
3

a � 0

baf ?a"za# "09#

s � "s0j\D1#T � −1 Re s
3

a � 0

bapa f ?a"za# "00#

where for a pair "p\ a#\ the associated b is

bj �"C1jrbar¦ebj1a3#zb � 9\ b3 �"−o0ba3¦e1rbar#zb � 9 "01#

Equations "5#Ð"01# are valid for g22 � E1 � 9 "plane strain and complex shear#[ For the case of
s22 � E2 � 9 "plane stress and complex shear#\ the following substitution has to be made

C?ijrs � Cijrs−Cij22C22rs:C2222\ e?sji � esji−Cij22es22:C2222\ o?is � ois¦ei22es22:C2222[ "02#

For the sake of convenience\ we write the general solutions in compact forms as]

U � 1 Re "Af"z## � Af"z#¦Af"z# "03#

t � 1 Re "Bf?"z## � Bf?"z#¦Bf?"z# "04#

s � −1 Re "BPf?"z## � −BPf?"z#¦BPf?"z# "05#

where A � "a0\ a1\ a2\ a3#\ B � "b0\ b1\ b2\ b3#\ P � diag "p0\ p1\ p2\ p3#\ and f"z# � "f0"z0#\f1"z1#\
f2"z2#\ f3"z3##T[

Assuming there is a jump "called dislocation# in mechanical displacement as well as in electric
potential at a point x of the y � 9 axis\ de_ne the jump as]

d"x# � U"x#¦−U"x#− "06#

Substituting into eqn "03#\ it can be expressed as

d"x# � ðAf"x#−Af"x#Ł¦−ðAf"x#−Af"x#Ł− "07#

For there is no electro!mechanical line loads in the solid t"x# is continuous across the x!axis\
that is
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t"x#¦ � t"x#− "08#

From eqn "04# we have

ðBf?"x#−Bf?"x#Ł¦ � ðBf?"x#−Bf?"x#Ł− "19#

So the function Bf?"z#−Bf?"z# can be analytically continued into the entire plane[ Assuming there
is no far _eld\ the function must vanish on the whole plane\ that is

Bf?"z# � Bf?"z# "10#

From eqns "07# and "10# we obtain

id?"x# � Hðh¦"x#−h−"x#Ł "11#

where

H � Y¦YÞÞ \ Y � iAB−0\ h"z# � Bf?"z# "12#

A crack in a piezoelectric solid can be represented by continuous distributed jump or dislocations
"Pak\ 0881#[ For a single crack of length 1a that lies on the y � 9 axis with the crack center at the
coordinate origin\ we can integrate the dislocation result "11# to obtain the total contribution of
the distributed dislocations\ as

Hh"z# �
0

1pi g
a

−a

id?"x#
x−z

dx "13#

Considering the singular behavior of the dislocation density function\ and noting the condition
of the net dislocations of the crack being zero\ we express d?"x# as the following series]

d?"x# � −1s
�

0

gm"0−t1#−0:1Tm"t# "14#

where t� x:a\ Tm" # is Chebyshev polynomials of the _rst kind and gm is vector to be determined[
Using the formula

0
p g

0

−0

"0−t1#−0:1Tm"t#
z−t

dt � Rm"z# "15#

where Rm"z# �"z−zz1−0#m:zz1−0\ from eqn "13#\ we obtain

Hh"z# � s
�

m �0

gmRm"z:a# "16#

Noting eqn "12#\ we have

f ?"z# � B−0H−0 s
�

m�0

gmRm"z:a# "17#

Substituting the expression "17# for f?"z# into eqns "03#Ð"05#\ the electroÐelastic _elds can be
expressed as series[ Especially the quantity t"x# on the crack surface can be expressed as\



X[ Han\ T[ Wan` : International Journal of Solids and Structures 25 "0888# 3072Ð3191 3076

t"x# � h¦"x#¦h−"x# � −1H−0 s
�

m�0

gmUm−0"x:a# "18#

where Um" # is Chebyshev polynomials of the second kind[

2[ Multiple cracks in electroelastic media

This section concerns the problem of an electroelastic solid containing multiple nonintersecting
cracks[ Especially\ consider an in_nite plane containing some "such as N# arbitrarily oriented
cracks\ see Fig[ 0\ and the plane may be subjected to an arbitrary set of external electroÐelastic
loadings[ Besides of a global Cartesian coordinate system Oxy\ a set of local Cartesian systems
Okxkyk "k � 0\ 1\ [ [ [ \ N# situated at the center of each crack is employed with xk!axis coincident
with the crack surface[ The k!th crack centers situates at Ck\ the crack length is 1ak\ and the crack
surface makes angle uk with the Ox!axis[

On the crack surfaces\ there is no traction or charge[ Neglecting the electric induction in the
environment\ the electrical boundary condition along each crack surface is that the normal induc!
tion component should be zero\ as proposed by Deeg "0879# and Pak "0889#[

The problem of multiple interacting cracks in an electroelastic medium\ as in an elastic medium\
cannot be solved analytically except in special cases[ As in solving the multiple interacting crack
problems in an elastic medium\ the superposition technique is often used\ we also use it in present[
The problem of multiple cracks in an electroelastic medium "which will be called the original
problem# can be superimposed as a homogeneous problem and a perturbed problem[ The homo!
geneous problem deals with the in_nitely extended body without any cracks\ subjected to the same
external electroÐelastic loading as the original problem[ The perturbed problem is concerned with
N cracks subject to no external loading[ The perturbed problem is subdivided into N subproblems\
each having only a single crack in an in_nite body\ subject to zero remote loading[ Each single
crack is modeled as an unknown distribution of dislocations along the crack line[ The unknown

Fig[ 0[ An in_nite plane with multiple cracks[
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distribution of dislocations in each crack will need to be determined in such a way that all conditions
for the original problem are satis_ed[

Based on the superposition approach discussed above\ the solution of a single crack in an
in_nitely extended electroelastic solid subject to an arbitrary jump in mechanical displacement and
electric potential on the crack line "or distributed dislocations# is needed\ and have been given out
in the former section[ These formulae are expressed in a system corresponding to the local
coordinate one[ The _eld "t"k#\ s"k## produced by the single k!th crack in the local coordinate system
Okxkyk takes the form

t"k# "z"k## � 1 Re "B"k#f"k#?"z"k### "29#

s"k# "z"k## � −1 Re "B"k#P"k#f"k#?"z"k### "20#

where the superscript "k# means quantities in the k!th local system[
From eqn "17#\ f"k#?"z"k## can be expressed as series in the local system\ as

f"k#?"z"k## � B"k#−0H"k#−0 s
�

m�0

g"k#
m Rm"z"k#:ak# "21#

Then the _eld "t"k#\ s"k## can be expressed as series in any point[ Especially\ from eqn "18#\ the
quantity t"k# "x"k## on the k!th crack surface can be expressed as series\

t"k# "x"k## � −1H"k#−0 s
�

m �0

g"k#
m Um−0"x"k#:ak# "22#

When the quantities B\ P and H in one coordinate system are calculated out\ the corresponding
quantities in the local system can be obtained by the transformation "Suo et al[\ 0881#\

B"k# � RB\ H"k# � RHRT\ p"k#
j �"pj cos u− sin u#:"pj sin u¦ cos u# "23#

where the transformation matrix R is

R �

K

H

H

H

k

cos u sin u 9 9

− sin u cos u 9 9

9 9 0 9

9 9 9 0

L

H

H

H

l

"24#

and u is the rotation angle of the local coordinate system from one coordinate system\ such as
from the global system to the k!th local system\ then u � uk[

Due to the contribution of the k!th crack\ the stresses and normal electric induction along the
presumed location of the l!th crack\ can be written out according to the formulae of coordinate
system transformation\ as

t"ik# � cos u"lk#Rt"k#− sin u"lk#Rs"k# "25#

where u � u"lk# in the transformation matrix R\ and u"lk# is the angle from the local coordinate axis!
xk to axis!xl[

When the in_nitely extended body is subject to mechanical and electrical loadings at in_nity\
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the stresses and normal electric induction along the presumed location of the l!th crack in the crack!
free homogeneous plane\ produced by the far!_eld loadings\ can be written out\ and represented as
t"l9#[

Summing the e}ect of all cracks and far!_eld loadings on the l!th crack\ and imposing the
boundary conditions on the crack surface\ we have

s
N

k �9

ðt"lk#Ł � 9\ l � 0\ 1\ [ [ [ \ N "26#

These are the governing equations for N cracks in an in_nite electroÐelastic plane[

3[ Numerical solution procedure and fracture parameters

Generally\ the governing eqns "26# are not easy to solve analytically[ We will solve them
numerically by a crack surface collocation method[

On the l!th crack surface\ we select Ml collocation points xli\ such as

xli � al cos 0
ip

Ml¦01\ i � 0\ 1\ [ [ [ \ Ml\ l � 0\ 1\ [ [ [ \ N

and by truncating the series of the dislocation density function at the Ml term\ then eqns "26# are
reduced to a system of algebraic equations[

After solving these equations\ the density function\ mechanical and electrical _elds produced by
any one crack are known[ According to the superposition principle\ the _elds produced by the
multiple cracks are obtained with the aid of the transformation formulae from the local coordinate
systems into the global one[

The main interest of this paper is to investigate local behavior of cracks\ such as "stress and
electric displacement# intensity factors\ and energy release rates of cracks[

The electroÐelastic _elds are singular at crack tips[ At a distance r ahead of the l!th crack tips\

t"l# "r# �"1pr#−0:1K"l# "27#

where K"l# � "K "l#
1 \ K "l#

0 \ K "l#
2 \ K "l#

D #T is de_ned as the stress and electric displacement intensity factors
of the l!th crack[

The intensity factors can be expressed further as

K"l# � 21zpalH
"l#−0 s

m

g"l#
m Tm"20#\ l � 0\ 1\ [ [ [ \ N "28#

where the quantities with upper and lower signs refer to the right! and left!hand tips of cracks\
respectively[

At a distance r ahead of the l!th crack tips\ the jump d"l# is

d"l# "r# �"1r:p#0:1H"l#K"l# "39#

Since\ in general\ the matrix H contains o}!diagonal elements\ a KD _eld will give rise to crack
opening\ and a K0 _eld give rise to voltage between the crack faces[
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The energy release rate at one tip of the l!th crack and along the crack line\ can be written as
"Suo et al[\ 0881#\

G "l# �
0

1L g
L

9

t"l#T"L−r#d"l# "r#dr "30#

where L is an arbitrary length[ It can be expressed further as

G "l# �
0
3

K"l#TH"l#K"l# "31#

Since\ the matrix H is inde_nite and with a negative component H33 "Suo et al[\ 0881#\ the energy
release rate is not positive de_nite and always negative in the absence of mechanical loads[ It is
reduced by the presence of de_nite mechanical loads and a strong electric loading^ it even has
negative values[

When the total energy release rate is used as a fracture criterion\ it indicates that the electric
_eld always impedes crack growth\ which is in contradiction to the experimental evidence that a
positive electric loading aids crack propagation\ while a negative electric _eld impedes crack growth
"Tobin and Pak\ 0882^ Park and Sun\ 0884b#[ Park and Sun "0884a\ b# discussed the suitability of
possible fracture criteria for piezoelectric materials\ namely\ the stress intensity factors\ the total
energy release rate and the mechanical energy release rate[ They found that it may be more suitable
to consider the mechanical energy release rate criterion as the fracture criterion\ and this criterion
predicts fracture loads accurately "Park and Sun\ 0884b#[ The mechanical energy release rate for
the l!th crack is

GM"l# �
0

1L g
L

9

s"l#T
i1 "L−r#Du"l#

i "r#dr "32#

The fracture criterion for piezoelectric materials is still a debatable issue[ About using the
mechanical energy release rate as a fracture criterion\ Park and Sun "0884a\ b# argued that fracture
is a mechanical process in nature and hence should be controlled only by the mechanical part of
the energy[ Though this argument seems not strict on physical grounds\ the mechanical energy
release rate criterion can well explain the experimental phenomena "Tobin and Pak\ 0882^ Park
and Sun\ 0884b#[ There may exist factors beyond the scope of linear piezoelectricity that would
a}ect fracture behavior[ A recent work by Gao et al[ "0886# might shed some light on the fracture
criterion[ By analogy to the classical Dugdale model\ Gao et al[ "0886# proposed an electric strip
saturation model\ and derived the local energy release rate which gives linear prediction on electric
_eld agreeing with the above!mentioned experimental results[ Since it is assumed that the electric
yielding zone remains unchanged during crack propagation\ only the mechanical energy is taken
into account in the local energy release rate[ In this sense\ the local energy release rate provides a
physical basis to the mechanical energy release rate[

In the present paper\ we adopt the mechanical release rate as the fracture criterion for the
moment "the criterion will be discussed further later on#\ and focus attention on the interacting
e}ects among cracks[ For multiple cracks\ besides the coupling behavior between elastic and
electric _elds\ there are interacting e}ects among cracks[ The interacting electroelastic _elds of
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multiple cracks are very complex\ their e}ects to fracture parameters of cracks should be analysed
concretely[

4[ Special case of practical signi_cance

For a class of materials of practical signi_cance] the poled ceramics\ which has transverse
symmetry around the poling axis "axis!2#\ its constitutive equation is given explicitly in Appendix
A[

For a two!dimensional problem in which the "x\ y#!plane coincides with the isotropic "0\ 1#!
plane\ the in!plane deformation "ux\ uy# is decoupled from the _eld "uz\ f#[ The former is identical
with the isotropic elasticity problem[ The latter can be simpli_ed greatly\ as only uz and f exist[

The more practical case on which we will focus\ is when the two!dimensional "x\ y#!plane
coincides with the isotropic "0\ 2#!plane[ For this case\ the characteristic equation becomes\

K

H

H

H

H

k

c00¦c33p
1 "c02¦c33#p 9 "e20¦e04#p

"c02¦c33#p c33¦c22p
1 9 e04¦e22p

1

9 9 "c00−c01#:1¦c33p
1 9

"e20¦e04#p e04¦e22p
1 9 −o00−o22p

1

L

H

H

H

H

l

K

H

H

H

H

k

a0

a1

a2

a3

L

H

H

H

H

l

� 9 "33#

The determinant equation of the eigenvalue problem is\

"c00−c01¦1c33p
1#"c9p

5¦c0p
3¦c1p

1¦c2# � 9 "34#

with

c9 � c33e
1
22¦c22c33o22

c0 � c22"e20¦e04#1−1c02e22"e20¦e04#¦c00e
1
22−1c33e20e22¦c22c33o00

¦"c00c22−c1
02−1c02c33#o22

c1 � 1c00e02e22−1c02e04"e04¦e20#¦c33e
1
20¦"c00e22−c1

02−1c02c33#o00¦c00c33o22

c2 � c00e
1
04¦c00c33o00

For a pair "p\ a#\ the associated b is

K

H

H

H

H

k

b0

b1

b2

b3

L

H

H

H

H

l

�

K

H

H

H

H

k

c33p c33 9 e04

c02 c22p 9 e22p

9 9 c33p 9

e20 e22p 9 −o22p

L

H

H

H

H

l

K

H

H

H

H

k

a0

a1

a2

a3

L

H

H

H

H

l

"35#

Equations "33#Ð"35# are valid for plane strain and complex shear deformation "gzz � Ez � 9#[
Assuming szz � Ez � 9\ the plane stress and complex shear problem can be treated by a change of
material constants as\
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C?00 � C00−
C1

01

C00

\ C?01 � C01−
C1

01

C00

\ C?02 � C02−
C01C02

C00

\ C?22 � C22−
C1

02

C00

e?20 � 00−
C01

C001 e20\ e?22 � e22−
C02

C00

e20\ o?22 � o22¦
e1

20

C00

"36#

Solving the eigenvalue problem\ the characteristic roots and associated vectors are known[
Especially\ the matrix H has a structure as

H �

K

H

H

H

H

H

H

H

H

k

1
CL

9 9 9

9
1

CT

9
1
e

9 9
1

CA

9

9
1
e

9 −
1
o

L

H

H

H

H

H

H

H

H

l

"37#

5[ Numerical examples and discussion

We _rst consider a material that the piezoelectric tensor vanishes\ then the elastic _eld is
decoupled from the electric one[ For this case\ the elastic _elds of interacting multiple cracks
calculated by the present method conform to the corresponding results in an elastic plane[ An
example is given to show the accuracy and e.ciency of the present method[ Consider two equal
collinear cracks in an in_nite isotropic plane under a remote uniform tension as seen in Fig[ 1[
With the piezoelectric tensor vanishes and the elasticity tensor tends to isotropic one\ the normalized

Fig[ 1[ Two equal collinear cracks in an in_nite plane under remote tension[
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Table 0
The normalized SIF k"� K:szpa# for two equal collinear cracks in an in_nite isotropic plane under remote tension

k at tip A k at tip B

1a:b M Present Exact Present Exact

9[09 2 0[99021 0[99021 0[99019 0[99019
9[19 3 0[99455 0[99455 0[99351 0[99351
9[29 3 0[90272 0[90272 0[90906 0[90906
9[39 4 0[91606 0[91606 0[90676 0[90676
9[49 5 0[93685 0[93685 0[91684 0[91684
9[59 6 0[97939 0[97939 0[93983 0[93983
9[69 8 0[02215 0[02215 0[94675 0[94675
9[79 03 0[11783 0[11783 0[97096 0[97096
9[89 07 0[34276 0[34276 0[00630 0[00630

stress intensity factors obtained by the present method are shown in Table 0[ The series terms M
needed to get them are listed also[ From the table we can see that the results converge to the exact
solutions of Erdogan "0851# with high accuracy[ Though the number M of series terms needed is
high\ to assure a result with so high accuracy "with six _gures accuracy here#\ when the crack
distance is very small\ but in reality\ only few terms of series are enough to give out quite accurate
results[

In this section\ we can take an example material such as PZT!4H ceramic as the piezoelectric
medium[ The poled PZT!4H ceramic exhibits transversely isotropic behavior with the axis!2 as the
poling direction\ and the material properties are given in Appendix B[ Among many possible crack
orientations\ we will focus on a particular orientation\ that is the "x\ y#!plane which containing
cracks coincides with the material anisotropic "0\ 2#!plane\ see Fig[ 2[

Fig[ 2[ Alignment of the coordinate system with principal material axis[
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For a single crack of length a along the x!axis and the plane under far!_eld loads\ the intensity
factors calculated by the present method are the exact ones\

"K1\ K0\ K2\ KD# � "zpas�
yx\ zpas�

y \ zpas�
yz \ zpaD�

y #

This simple result holds for any kind of piezoelectric materials with arbitrary anisotropic orien!
tation[

For this case\ the matrix H has the structure of eqn "37#[ For plane strain and complex shear\
we have

1
CL

� 2[40923×09−00\
1

CT

� 2[10200×09−00\
1

CA

� 4[53863×09−00 m1

N
\

1
o
� 8[04476×096 Vm

C
\

1
e
� 1[44495×09−1 m1

C
[

While for plane stress and complex shear case\

1
CL

� 3[09829×09−00\
1

CT

� 2[38612×09−00\
1

CA

� 4[53863×09−00 m1

N
\

1
o
� 7[72315×096 Vm

C
\

1
e
� 1[74328×09−1 m1

C

which have higher values than for plane strain and complex shear case[ In following numerical
examples\ we focus on plane strain case[ The total energy release rate for the single crack is\
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For plane strain and complex shear case\ G has the same value for PZT!4H as that given by Pak
"0881#[ When G is used as a fracture criterion\ it indicates that the electric _eld always impedes
crack growth for which there is no experimental support[

Park and Sun "0884a\ b# found that the mechanical energy release rate criterion is superior to
other fracture criteria and predicts fracture loads fairly accurately "0884b#[ The mechanical energy
release rate for the single crack is\
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The dependence of the mode I mechanical energy release rate GM
I on D�

y is linear[ A positive
electric loading increases it and a negative electric loading decreases it\ while the electric loading
has no in~uence to the mode II and mode III ones[ A pure electric loading cannot induce mechanical
energy release rate[

Considering an electrical yielding condition\ the local energy release rate may be a promising
candidate for fracture criteria[ The local energy release rate for the single electrically yielded crack
is "Gao et al[\ 0886^ Wang\ 0887#\
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Fig[ 3[ The energy release rates for a single crack as a function of D�
y :s�

y [
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As for the mechanical energy release rate\ the local mode I energy release rate is increased by a
positive electric loading\ and decreased by a negative one[ The local energy release rate due to
mode II and mode III mechanical loading has no coupling e}ect with that due to electric loading[
A pure positive electric loading D�

y induces a local energy release rate pa:1CT:e
1D�1

y \ a negative
one induces crack closing\ while D�

x has no in~uence to energy release rate "both total and local
ones#\ this result may provide a possible explanation of the experimental phenomena] cyclic electric
_eld perpendicular to a crack can induce fatigue crack growth\ while a parallel one has no in~uence
"Cao and Evans\ 0883#[

Figure 3 shows the normalized mode I mechanical energy release rate GM
I :GM\ the local energy

release rate GL
I :GM and the total energy release rate GI:GM for varying D�

y :s�
y \ where

GM � pa:"1CT# s�1
y is the energy release rate without electric loading[ For an applied tension

loading and D�
y :s�

y × −e:CT"� −0[15×09−8 C:N#\ GM
I is positive and dependent linearly on

D�
y \ and the crack surface is opened[ Similar as GM

I \ GL
I is dependent roughly linearly on D�

y [
Without mechanical loading\ GM

I is zero\ while GL
I × 9 for D�

y × 9[ On the other hand\ GI ³ GM

when the electric load is outside the range 9 ³ D�
y :s�

y ³ 1o:e"� 9[447×09−8 C:N#\ and GI becomes
negative when outside the range −9[265×09−8 ³ D�

y :s�
y ³ 9[823×09−8 C:N[ Without mech!

anical loading\ GI is always negative[
For other anisotropic orientation\ such as the y!axis make an angle u with the poling axis!2\ the

matrix H in the "x\ y# coordinate system can be obtained by a transformation[ The mechanical
energy release rate and local energy release rate respectively are\
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where c and s denote cos u and sin u\ respectively[ It can be seen that\ in this case the electric
loading has no in~uence to GM

III[ For u � 89>\ that is the crack along the poling direction\ GM
I is

independent on the electric loading\ while GM
II is dependent on it linearly[ For other directions

except crack along or perpendicular to the poling direction\ GM
I and GM

II are dependent linearly on
the electric loading[ The in~uence of electric loading to GL is similar as it to GM\ except pure electric
loading contributes nothing to GM but pa:1CT:e

1D�1
y to GL[

The fracture criterion based on total energy release rate has doubtful issue and di.culty in
explaining experiments[ Fracture criteria based on mechanical energy release rate and on local
energy release rate can expect a similar e}ect of electric loading "except pure electric loading# and
these criteria seem to be in broad agreement with experimental observations[ For above!mentioned
reasons\ and considering our analysis is on the basis of linear electroÐelasticity\ in the following
we will mainly use the mechanical energy release rate as a criterion to investigate its change due to
crack interacting e}ect[

For two equal collinear cracks in piezoelectric materials as shown in Fig[ 1\ subjected to far
plane loads\ the normalized intensity factors at one tip have a same value k\ that is\ at one crack
tip\

K1

zpas�
yx

�
K0

zpas�
y

�
KD

zpaD�
y

� k

and k is the same as the normalized stress intensity factors in Table 0 for isotropic materials[ Thus
the energy release rate G and the mechanical energy release rate GM at one tip of collinear cracks
are\

G � k1G9\ GM � k1GM
9

where G9 and GM
9 are the corresponding energy release rate and mechanical energy rate for a single

crack without interaction with other cracks[ These results hold for any collinear cracks in piezo!
electric materials with arbitrary anisotropic orientation[ Which means\ if the fracture behavior of
a single crack in some direction under some loadings is known\ the interacting e}ect of collinear
cracks is just like the e}ect in isotropic elastic materials[

Figure 4"a# shows three equal parallel cracks along x!axis in PZT!4H ceramic\ subjected to far
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plane loads[ For the central crack\ the normalized intensity factors k1"� K1:zpas�
yx#\

k0"� K0:zpas�
y # and kD"� KD:zpaD�

y # against d:a are plotted in Fig[ 4"b#[ From the _gure we
can see that\ k0 ³ 0 and kD ³ 0 for any d[ The mechanical energy release rate for the central crack
is

Fig[ 4"a#[ Schematic of three equal parallel cracks[

Fig[ 4"b#[ The normalized intensity factors of the central crack against d:a[
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Fig[ 4"c#[ The mode I mechanical energy release rate GM
I of the central crack against d:a[
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For mode II fracture\ GM
II is not dependent on the electric loading[ For mode I fracture\ GM

I is
plotted in Fig[ 4"c# against d:a for di}erent D�

y :s�
y [ The energy GM

I is dependent linearly on D�
y \

and always litter than the corresponding energy rate GM
9 for the crack without interaction with

other cracks\ and tends to it for d:a : �[ So\ under mode I fracture\ the stacked cracks can shield
the fracture of the central crack[

Figure 5"a# shows a crack array in PZT!4H ceramic subjected to loads s�
y and D�

y \ in which the
center crack is perpendicular to the axis!2 and surrounded by four symmetrically distributed equal
cracks[ The normalized intensity factors and mechanical energy release rates of the central crack
against the crack length ratio 1l:"b−a# are plotted in Fig[ 5"b# and "c#\ respectively\ with
"a¦b#:l9 � 3\ "b−a#:l9 � 9[4\ and d:"b−a# � 9[7\ where 1l9 is the original length of the central
crack[ When the main crack is away from the surrounding cracks\ k1 × 0\ kD × 0\ and GM

I × GM
9 \

where GM
9 is the corresponding energy rate for the single crack without interaction with other

cracks[ This means the main crack is ampli_ed[ When the main crack is under the surrounding
cracks\ k1 ³ 0\ kD ³ 0\ and GM

I ³ GM
9 [ This means the main crack is shielded[ The ampli_cation

and shielding domain is similar as the crack array in an anisotropic material with the same elastic
constants as those in the piezoelectric material[

Under pure electric loading\ the mechanical energy release rate is zero[ In this case\ the interacting
e}ect among cracks can be determined by the change of electric intensity factor[ As the change of
KD almost always has a similar tendency as the change of K0 due to crack interaction "KD and K0

are greater or less than one almost at the same time#\ which implies the interacting e}ect "shielding
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Fig[ 5"a#[ Schematic of a central crack surrounded by four identical cracks[

Fig[ 5"b#[ The normalized intensity factors of the central crack against 1l:"b−a#[
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Fig[ 5"c#[ The mode I mechanical energy release rate GM
I of the central crack against 1l:"b−a#[

or amplifying# among cracks under pure electric loading is just like it is under mode I mechanical
loading[

6[ Conclusions and remarks

A method is presented to calculate the elastoÐelectric _elds of multiple cracks in piezoelectric
materials[ The interacting e}ects among cracks are investigated through some examples[ As cracks
in anisotropic materials\ in general\ if crack locations are biased towards stacked arrangements\
then the shielding e}ect of interactions will dominate\ on the other hand\ amplifying e}ect will
dominate[

Though the interacting e}ects among cracks are obtained through some examples on combined
electric!mechanical loading conditions\ the conclusions are also true for pure electric loading
conditions[ Under pure electric loading\ though the mechanical energy release rate is zero\ but the
interacting e}ect among cracks can be determined by the change of electric intensity factor[ As the
change of KD almost always has a similar tendency as the change of K0 due to crack interaction
"KD and K0 are greater or less than one almost at the same time#\ which implies the interacting
e}ect "shielding or amplifying# among cracks under pure electric loading is just like it under mode
I mechanical loading[ The numerical examples are focused on plane strain deformation[ For plane
stress case\ though the energy release rates are di}erent from that for plane strain case "higher
than that#\ but the interacting e}ects among cracks will be similar as that under plane strain
deformation[
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Appendix A

Let axis!2 be poling direction of transversely isotropic piezoelectrics[ The constitutive relations
for the materials are given by
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Appendix B

Material properties for PZT!4H "Pak\ 0881#]

c00 � 015 GPa\
c01 � 44 GPa\
c02 � 42 GPa\
c22 � 006 GPa\
c33 � 24[2 GPa\
e20 � −5[4 C:m1\
e22 � 12[2 C:m1\
e04 � 06 C:m1\
o00 � 040×09−09 C:Vm\
o22 � 029×09−09 C:Vm[
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