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Abstract

By the semi-inverse method proposed by He, a Lagrangian is established for the large

deflection problem of thin circular plate. Ritz method is used to obtain an approximate

analytical solution of the problem. First order approximate solution is obtained, which

is similar to those in open literature. By Mathematica a more accurate solution can be

deduced.
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1. Introduction

Though the fast development of various numerical technologies by means of
high-speed computer, the analytical approaches to a physical problem, how-

ever, continue to keep their own primary importance and will become more

and more important. The numerical solutions can reveal the numerical feature

of the problem, but they can not reveal the important physical features in-

volved in the equations. For example, numerical methods can solve a nonlinear
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oscillation equation without any difficulties, but the solution can not reveal the

inherent characteristics of dependence of the nonlinear angular frequency upon
initial conditions. The analytical approach, in the other hand, provides phys-

ical insight into the nature of the solution of the problem.

Recently various analytical methods are proposed to solve nonlinear

equations, for example, variational iteration method [1], homotopy perturba-

tion method [2], a new perturbation technique depending upon an artificial

parameter [3], an iteration perturbation [4], where the numerical technique is

coupled with the classic perturbation method, resulting in a powerful tool, and

so on. A review on these methods can be found in details in Ref. [5]. In this
paper, we will use the Ritz method to solve von Karman equations for large

deflection problem of thin circular plate, to this end, we will apply the semi-

inverse method proposed by He [6,7] to search for the required variational

functional.

2. The von Karman equations

The large deflection problem of thin circular plate under uniformly loaded

pressure can be treated by means of von Karman equations, which can be

written in dimensionless form as [8–12]

St ¼ Sr þ 2x
dSr

dx
; ð1Þ

d2

dx2
ðxSrÞ þ

1

2

dw
dx

� �2

¼ 0; ð2Þ

3

16
P þ 3

4
ð1 � m2ÞSr

dw
dx

� 1

4

d2

dx2
x

dw
dx

� �
¼ 0: ð3Þ

The dimensionless quantities W ðxÞ, P, SrðxÞ and StðxÞ are defined, respectively,

as

W ðxÞ ¼ w
h
; P ¼ a4q

h4E
ð1 � m2Þ; SrðxÞ ¼

a2

Eh3
Nr; StðxÞ ¼

a2

Eh3
Nt;

and the dimensionless coordinate x is defined as x ¼ r2=a2, 06 x6 1.

Here h, a are the plate thickness and the plate radius, respectively, q, E are

the uniform load density and Young�s modulus of the plate material, respec-

tively, m is Poisson�s ratio, r is the radial coordinate, Nr, Nt are the radial and

tangential membrane force, respectively, w is the normal displacement of the
plate at distance r from the center of the plate.

Many researchers had done this problem by various different methods. A

tedious numerical computation was proposed by Way [8] by means of power
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series, and Levy [9] applied the trigonometric series to solve a rectangular plate.

Both the above methods involve the numerical determination of an infinite
number of coefficients, and hence the number of equations are excessive, thus

rendering these methods prohibitively expensive, if not altogether impractical,

for routine application purposes. To alleviate the above drawback, Chien

[10,11] proposed a perturbation technique, where he used the ratio of the center

deflection to the thickness as a small parameter, the method is now called the

composite expansion, and was generalized in Ref. [12].

3. Variational principle

In this paper we will use direct variational methods to search for an ana-

lytical solution for the problem. The direct variational methods have at least

the following two advantages [13]: (1) they provide physical insight into the

nature of the solution of the problem; (2) they generally have a higher rate of

asymptotic convergence and result in a much smaller system of equations. To

this end, we will apply the semi-inverse method [6,7] to the establishment of a

variational principle for the problem.
The essence of the semi-inverse method is to construct a trial functional with

an unknown function F. For the present problem we can construct the fol-

lowing functional with two fields Sr and W:

JðSr;W Þ ¼
Z 1

0

LðSr;W Þdx; ð4Þ

where LðSr;W Þ is a Lagrangian.

Supposing the stationary conditions of the above functional satisfy the field

Eqs. (2) and (3). In order to search for such a functional, we begin with the
following Lagrangian

LðSr;W Þ ¼ � 1

2

d

dx
ðxSrÞ

� �2

þ 1

2
xSr

dW
dx

� �2

þ F ðW Þ; ð5Þ

where F ðW Þ is an unknown function of W and its derivatives.

There exist various approaches to the establishment of trial functionals for a

physical problem, illustrative examples can be found in Refs. [14–19].

The above advantage of the trial functional lies on the fact that the sta-

tionary condition with respect to Sr is

oL
oSr

� o

ox
oL

oðoSr=oxÞ
¼ 0; ð6Þ
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i.e.

x
d2

dx2
ðxSrÞ þ

1

2
x

dW
dx

� �2

¼ 0: ð7Þ

In case x 6¼ 0, the above equation is equivalent to the field Eq. (2). The sta-

tionary condition with respect to W reads

� dW
dx

xSr

dW
dx

� �
þ dF

dW
¼ 0; ð8Þ

where dF =dW is called variational derivative defined as

dF
dW

¼ dL
dW

� d

dx
oL

oðdW =dxÞ þ
d2

dx2

oL

oðd2W =dx2Þ
� � � �

We search for such an F, so that Eq. (8) turns out to be Eq. (3). Compared with

Eq. (8), the field Eq. (3) should be made such a modification so that the un-

known F in (8) can be easily identified.

Multiplying Eq. (3) by 4x=ð3ð1 � m2ÞÞ, then differentiating the obtained

equation with respect to x, we have the following equation

1

4ð1 � m2Þ P þ d

dx
xSr

dW
dx

� �
� 1

3ð1 � m2Þ
d

dx
x

d2

dx2

�
x

dW
dx

�� �
¼ 0: ð9Þ

We set

dF
dW

¼ dW
dx

xSr

dW
dx

� �

¼ � 1

4ð1 � m2Þ P þ 1

3ð1 � m2Þ
d

dx
x

d2

dx2
x

dW
dx

� �� �
ð10Þ

in Eq. (8), so that Eq. (8) satisfies (9). From (10), the unknown F can be readily

identified as

F ¼ � 1

4ð1 � m2Þ PW þ 1

6ð1 � m2Þ
d

dx
x

d

dx
W

� �2

: ð11Þ

Substituting (11) into (5), we obtain the required Lagrangian, which reads

LðSr;W Þ ¼ � 1

2

d

dx
ðxSrÞ

� �2

þ 1

2
xSr

dW
dx

� �2

þ 1

6ð1 � m2Þ
d

dx
x

d

dx
W

� �2

� 1

4ð1 � m2Þ PW : ð12Þ
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4. Ritz method

In the above section we success in obtaining a necessary variational principle

for the discussed problem, in this section we will apply direct variational

methods to the problem. The direct variational methods such as Ritz and

Kantorovitch techniques have been, and continue to be, popular tools for

nonlinear analysis.

Consider the case of fixed boundary, the boundary conditions can be written

as

W ¼ dW
dx

¼ 0 at x ¼ 1; ð13Þ

2
dSr

dx
þ ð1 � mÞSr ¼ 0 at x ¼ 1; ð14Þ

Sr and
dW
dx

remain finite at x ¼ 0: ð15Þ

We choose the following trial functions which satisfy the boundary conditions:

W ¼ Að1 � xÞ2
; ð16Þ

Sr ¼ BðC þ xÞ; ð17Þ

where A, B are unknown constants, and C ¼ �ð3 � mÞ=ð1 � mÞ.
Substituting (16) and (17) into (12), we have

LðA;BÞ ¼ � 1

2
B2ðC þ 2xÞ2 þ 2BA2xðC þ xÞð1 � xÞ2 þ 4A2

6ð1 � m2Þ ð1 � 2xÞ2

� 1

4ð1 � m2Þ PAð1 � xÞ2
:

So the functional (4) now becomes

JðA;BÞ ¼
Z 1

0

LðA;BÞdx ¼ � 1

12
B2½ðC þ 2Þ3 � C3	 þ 2BA2


 C
2

�
þ 1 � 2C

3
þ C � 2

4
þ 1

5

�
þ 2A2

9ð1 � m2Þ �
1

12ð1 � m2Þ PA:

ð18Þ

The stationary conditions require that

oJ
oA

¼ 4BA
5C � 2

60

� �
þ 4A

9ð1 � m2Þ �
1

12ð1 � m2Þ P ¼ 0; ð19Þ

oJ
oB

¼ � 1

6
B½ðC þ 2Þ3 � C3	 þ 2A2 5C � 2

60

� �
¼ 0: ð20Þ
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From (20), we obtain

B ¼ 5C � 2

5½ðC þ 2Þ3 � C3	
A2 ¼ 5C � 2

10ð3C2 þ 4C þ 4ÞA
2: ð21Þ

In view of (21), Eq. (19) can be rewritten as

ð5C � 2Þ2

150ð3C2 þ 4C þ 4ÞA
3 þ 4

9ð1 � m2ÞA� 1

12ð1 � m2Þ P ¼ 0: ð22Þ

Define Wm the maximal deflection at center, i.e. Wm ¼ W ð0Þ. From (16) we

know A ¼ Wm, so Eq. (22) can be written in the form

3

16
P ¼ Wm þ bW 3

m; ð23Þ

where

b ¼ 3ð1 � m2Þð5C � 2Þ2

200ð3C2 þ 4C þ 4Þ ; C ¼ � 3 � m
1 � m

:

The relation (23) has been investigated approximated by a number of au-

thors [10,20,21]. They results differ each in the values of b.

To improve the accuracy of the approximate solution, we can use the fol-

lowing trial functions

W ¼ A0ð1 � xÞ2ð1 þ A1xþ A2x2 þ � � �Þ; ð24Þ

Sr ¼ B0ðC þ xÞ þ ð1 � xÞ2ðB1 þ B2xþ B3x2 þ � � �Þ; ð25Þ

where C ¼ �ð3 � mÞ=ð1 � mÞ, and Ai and Bi unknown constants, which can be

determined from the following relations

oJ
oAi

¼ 0 ði ¼ 0; 1; 2; . . .Þ; ð26Þ

oJ
oBi

¼ 0 ði ¼ 0; 1; 2; . . .Þ: ð27Þ

The constants Ai and Bi can be easily determined by Mathematica.

5. Conclusion

In this paper we suggest another approach to the solution of the large de-

flection problem of thin circular plate by direct variational method. The

variational principle is deduced by the semi-inverse method. The present paper
aims at providing a more complete theoretical basis for the finite element ap-

plications, direct variational methods such as Ritz�s, Trefftz�s and Kantoro-

vitch�s methods.
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