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Abstract. For understanding the correctness of simulations the behaviour of
numerical solutions is analysed. In order to improve the accuracy of solutions
three methods are presented. The method with GVC (group velocity control) is
used to stmulate coherent structures in compressible mixing layers. The effect
of initial conditions for the mixing layer with convective Mach number 0.8 on
coherent structures is discussed. For the given initial conditions two types of
coherent structures in the mixing layer are obtained.
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1. Introduction

Numerical characteristics of simulated unsteady flow fields remain largely unclear as yet,
and have to be studied for correct simulation of this kind of flows, such as turbulent flows.

For simulating complex flow fields, high-order accuracy schemes are needed in order
to capture the flow field structures in a wide range of scales. When low-order accuracy
schemes are used to simulate the turbulent flow, incorrect coherent structures with wrong
dissipation and dispersion can be obtained. Many high-order accurate schemes have been
developed (Rai & Moin 1991; Lele 1992; Fu Dexun & Ma Yanwen 1995; Ma Yanwen &
Fu Dexun 1996).

The commonly used method to analyse the accuracy of schemes was assessed based on
evaluation of dissipative error, but for unsteady flows, in addition to the dissipative error,
influence of the group velocity of wave packets (or phase velocity) and harmonic content
in numerical solutions are also important.

In the present paper, the behaviour of numerical solutions is analysed. For improving the
resolution efficiency of the schemes, three methods are presented. They are: (1) Increasing
the accuracy of approximation (IAA), (2) accuracy balance control (ABC), and (3) group
velocity control (GVC). The GVC method is used to simulate the coherent structures in the
compressible mixing layer. The effect of the initial conditions of the compressible mixing
layer on coherent structures is discussed.
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2. Behaviour analysis of numerical solutions
2.1 Model equation

Consider the following model equation and its semi-discrete approximation:
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where F;/Ax is an approximation for du/dx, §;/Ax is an approximation for 3%u/9x>.
With initial condition u(x. 0) = exp(ikx) the exact solution of (1) is as follows

u(x, 1) = exp(—uk’r)yexplik(x — ct)l. (3)

With initial condition u (x i»0) = exp(ikx;) the exact solution for (2) can be written as

K K K
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where K, = K, + iK; is the modified wave number and o = kAx. Comparing (4)
with (3) it can be seen that K; is related to the phase speed in numerical solutions, K, is
related to damping of the difference solution due to discretization of the convection term,
K4 is related to physical dissipativity of the solution. For particular schemes analytical
expressions for K;., K, and K4 can be obtained for the linear case. They are functions of
kAx. From (3) with 4 = 0, it can be seen that all waves with different £ have the same
phase speed and uniform group velocity of wave packets. This means that the initial waves
given at 1 = 0 will keep the shape as time advances. But K;, K, and K are functions of
o = kAx in numerical solutions. This means that the error in numerical solutions of the
schemes is different for different wave numbers k. Nonlinear dependence of K; on « leads
to nonuniform group velocity which is defined as dK; /de in the present paper. This is the
reason for the production of the oscillations and the deviation of the moving direction of the
wave packets with different wave numbers & in the numerical solutions (Trefethen 1982;
Fu Dexun & Ma Yanwen 1997). From figure 1, it can be seen that different discretization
can give good resolution for the lower wave numbers with K; /o ~ 1, dK;/da ~ 1 and
K,/Ax ~ 0. The range of wave numbers k with correct simulation can be enlarged for
higher order accurate schemes.

For semi-discrete approximation (2) after Taylor series expansion, we can get the cor-
responding modified equation
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where
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Figure 1. Variation of k; (a), dk; /da (b), and k, (c) vs. kAx.
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They are more convenient for analysing the characteristics of numerical solution in the
physical space. The coefficient u' is related to approximation of the viscous term. Only
the symmetrical approximation is used for the viscous term. The coefficient u; obtained
from the truncation error with even derivatives is related to the dissipativity. The stability
requires nonnegativity of the coefficient u3. a is related to modification of the phase speed
or the group velocity of wave packets for approximation of the convection term.

Equation (5) is useful for analyzing the behaviour of numerical solution and reconstruct-
ing the schemes for improvement of resolution of schemes. In the linear case for single
Fourier component we have

p = (ﬁ - 1) , (Ta)
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2.2 Dispersion effect

For correct simulation of unsteady flow field with a range of scales, the dispersion effect
in numerical solutions from approximation of the convection term must be considered.

2.2a  Classification of schemes by group velocity of wave packets: The commonly used
method of classification of schemes is by dissipativity of numerical solutions. The scheme
is called dissipative if ¢K, in (4) or 2 in (5) is positive. In the opposite case the scheme
is unstable. The stable scheme is nondissipative if K, = u> = 0.

The wave packets in numerical solutions are propagated by group velocity which defines
the dispersion effect of schemes. It may greatly affect the numerical accuracy. In order to
analyse the dispersion effect, schemes are classified by the group velocity of wave packets
in numerical solutions. The group velocity in numerical solutions is defined as

dK;
do *

dcK; o .
D)= —— =cD%w)., D"(x)= (8)
do

where D" («) 1s called density of group velocity.

By group velocity of wave packets the schemes are divided into three classes. The
scheme is called faster (FST) if D”(«) > 1 for 0 < o < w. This means that numerical
wave packets are propagated faster than physical ones. The scheme is called slower (SLW)
if D(a) < 1, in this case the numerical wave packets are propagated slower than physical
ones; it is called mixed (MXD) if D(«) > 1 for0 < o < ag < m and D°(«) < 1 for
oy < a <.
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The symmetrical schemes and weakly upwind biased schemes belong to SLW. Moder-
ately and strongly upwind biased schemes are MXD, but strongly upwind biased schemes

may be unstable (cK, < 0). The second-order Pade scheme belongs to FST.

2.2b  Behaviour analysis of dispersion error: It is obvious that the phase speed or the
group velocity of wave packets with low wave numbers in numerical solutions are very
close to the physical value. In the present paper this group velocity is called reference group
velocity. The reference density of group velocity D°(a) = 1. Nonlinear dependence of K;
on o = kAx leads to nonuniform group velocity for higher wave numbers. So different
propagation direction of wave packets can be obtained in numerical solutions for higher

wave numbers.
Consider a numerical example with the model equation

ou du

Bt dx

and initial condition

ulx,0) = exp(——16x2) sin(apx)

+{exp[—16(x + 1.5)%] + exp[—16(x — 1.5)%]} sin(a|x).

The following five schemes are used:
(1) Pade Scheme (FST)*
Fi+Fi_1=2(uj —uj_1).
(2) Second order central scheme (SLW)
Fij= SSMJ-.
(3) Second order upwind scheme (MXD)
Fi =6 [3u; —u;j 11/2.
(4) Second order central scheme with wide stencil (SLW)
Fj=(uj12 —uj_2)/4.
(5) Fifth order upwind compact scheme (MXD)
3F] 4§ = 5088 (< fika + LA + 4745 43075,

where §5g; = F(gj — gj=1). 89 = (8F +87)/2 and 82 = 575, .

*FST, SLW and MXD stand for ““faster”, “slower’” and “mixed” — see § 2.2a for further details

9

(10)

(11a)

(11b)

(11c)

(11d)

(11e)
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Some results of (9) with initial condition (10) for g = 100, ;3 = 25 are shown
in figure 2a. It can be seen that all waves move toward the right. Scheme (3) has high
dissipativity for high wave numbers. Low group velocity for scheme (4) is obvious for
high wave numbers. Figure 2b shows the results for ag = 157, oy = 25. For this case the
waves with high frequency for scheme (4) are standing waves. In figure 2c the results for
ap = 194, oy = 25 are given. This figure shows that the group velocity for scheme (4) is
negative.

From the above analysis the following conclusions can be obtained: For FST schemes
all waves are moving in the same direction as the reference waves, but the high frequency
waves are in front of the reference waves; for SLW schemes all waves are behind the
reference waves. Some of them are moving in the same direction as the reference waves,
some are standing waves, and some are moving in the opposite direction. For MXD schemes
in numerical solutions, the Fourier components have all the possible motions of both FST
and SLW schemes.

2.2¢  Anisotropic effect: In multi-dimensional problems the dispersion effect appears
in the form of anisotropy. In order to analyse the anisotropic effect consider the following
model equation

a d d
‘—”%—a—M—I—bTLi =0. a.b=const., (12a)
at ax dy

with initial condition
u(x,0) =exp{i|K - X1} (12b)

where K = [k, k2], X = [x, y]T, and k. k> are wave numbers in x and y directions
respectively. Defining

s ]
- @+ O @2+ 212
it can be rewritten as
1 = [cos 8, sin QJT,

where 6 is azimuthal angle.
The exact solution for (12a) with initial condition (12b) can be expressed as follows

u(X, 1) = explilK - X — (@2 + 6% ’K - 11)). (13)
The semi-discrete approximation for (12a)

9 FF

Mgty bt =, (142)

at Ax Ay

with initial condition

u(X,0)=expli(K - X)]. (14b)
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Figure 2. Numerical results for (10): (a) ap = 100, a; = 25; (b) g = 157, o) = 25; (¢)
ap = 194, o) = 25.

has exact solution as follows
w(X, 1) = exp{—(a® + bH)'?K - L1} - exp(iK - [X — (a® + bH)2Uz]}, (15)

, K(l) i K(Q)
I = |cosf=Lt—, sin G ==

T
v o i } . a=kiAx.

(1) K(2)

T
I = [cose—é—,sin(i‘—;g—] , B=hkAy,

1
I are different. Consider the projection of numerical vectors I and I} on the exact L. For

nondissipative schemes 1, = 0. In this case we have

where K", KV, vectors I and I are functions of o and 8. For different schemes I} and

1V = (1/o)cos 0KV +sin0K V), 0<6 <2r, (16)

where KV =KV (a), K{? = K2(B), e =wcos(8), B = wsin(®) and w=(&® + )!/2.
The five approximations in (11) and the sixth order symmetric compact approximation
are used for discretizing the space derivative in (12a), the three-step R—K method is used
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for approximation of the time derivative for SLW and MXD schemes, and for the FST
scheme in (11) the Crank—Nicolson method is used. The computed results from (16) with
Wy =mr/10,m =0,1,...,9,0 <8 < 25 for different schemes are shown in figure 3.
From these results it can be seen that different schemes have different anisotropic effects
for high wave numbers. On increasing the order of accuracy of approximation, the range
of wave numbers with small anisotropic effect can be enlarged.

3. Improvement of numerical solutions

Only a one-dimensional case is considered in this section. Three methods of improvement
of numerical solutions are presented.
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3.1 Increasing the order of accuracy of approximation

From the figures of K;, K, vs. a (figure 4) it can be seen that approximation error of
schemes becomes smaller with increasing the order of accuracy in a wide range of wave
numbers. For the symmetric difference schemes K, = 0. For fifth order upwind compact
finite difference scheme (UCFDS5), K, is small in a wider range of wave numbers and
it is large for super high wave numbers. It is useful to damp the aliasing error when the
nonlinear problems are solved.

It is obvious that the stencil size is enlarged with increase in the order of accuracy. This
leads to difficult treatment of the boundary conditions, and difference approximations at
the points next to the boundary have to be treated specially. It must be noted that the
strongly one-side biased schemes at boundary points and near boundary points may not be
stable. In order to get high-order accurate scheme with less stencil size, the super compact
finite difference scheme (SCFDM) developed by us (Ma Yanwen & Fu Dexun 1996) is
introduced here briefly.

The basic idea for construction of the traditional difference schemes is that the approx-
imation of the derivatives is expressed explicitly by a linear combination of the function
values at the points near the considered point. For the compact scheme we have a linear
combination of both the function values and their derivatives at grid points. For obtain-
ing the approximation of derivative a linear system has to be solved. For the SCFDM
we use a linear combination of the function values themselves, the derivatives and their
higher derivatives at the grid points. For example, consider discretization of du/dx with
symmetric approximation.

The traditional difference approximation can be expressed as

Uiy —Ujg
Fj:Zbl’—“-‘——j+ 2[ / . (17)
1

For compact difference approximation we have

aj byuj —ujy
> S Fiwr+ Fiop) = 37 === (18)

I ! 2
Y= b=1
SCFDM considers approximations of all necessary derivatives as unknown. SCFDM
for odd derivatives with uniform grid mesh can be written as

—ALFj 1+ (L + AYFj — ALF; 11 =82 fje (19)

where L, A are M x M matrices, F and e are M dimensional vectors, fj(Zk_l) / AxZk—1
is an approximation for (2k — 1)th derivative 8¢~ f/9x2k—! with the accuracy of order
2(M — K +1),and
/11,1730 1/5!0 ... /2M — D!
0,172, 1/4), ..., 1/12(M — DH]!
A= 0,0,1/2!, ..., 1/[2(M — ]!
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Figure 4. Variation of k; (a) and k, (b) vs. «.
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For the case M = 1 we have the traditional central difference approximation

1
fj(

For the case M = 2 from (19) we can get the classical fourth order accurate compact
difference approximation

/60 £ + @31+ as6 £ =80 ;. 1)

F=80f;. (20)

For the case M = 3 from (19) we can get three equations for f{), £ and £3). Tt can
be shown that the same order of accuracy of approximation SCFDM has higher resolving
efficiency.

3.2 Method of group velocity control (GVC)

As mentioned earlier, the dispersion effect of schemes leads to production of oscillation
in numerical solution. If FST schemes are used to compute the shocks, the high frequency
waves appear in front of the reference waves, and if SLW schemes are used, the high
frequency waves appear behind the reference waves. In order to improve numerical so-
lutions the method of group velocity control can be used. This can be done by using the
function

SS() . du  0°u (22)
u) = sign| — - . 2
MM\ ox ax2

Suppose we have a given difference approximation (2). The scheme used can be recon-
structed so that it is FST behind the reference waves where SS(u#) > 0, and is SLW in
front of the reference waves where SS(u) < 0. According to the modified equation (5),
consider the following equation

du df 3 [ du ] 3u
ar + ax  dx (M E)x) + oo dx I: (u) - sign(a) -a 8x3} (29)

where

almf 8214
a = I:Z C?.m—i—lezm G2 :l /m (24)

In application only the leading term is used in (24). With the same way as for discretizing
the original equation (1) we can get a newly reconstructed scheme from (23). With suitable
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choice op(0 < o¢ < 1) the resolution of reconstructed scheme will be improved. This
method can be used to reconstruct 2-D and 3-D schemes easily. When flow field structures
with small scales and shocks are of interest, higher-order accurate schemes need to be
reconstructed.

3.3  Method of accuracy balance for components with different wave numbers

The main purpose of the improvement of numerical methods is to get high resolution
efficiency over a wider range of wave numbers on the given mesh, and not only formal
accuracy. It can be seen that the main contribution of increasing the order of accuracy
of approximation is to the Fourier components with low wave numbers. The components
with high or super high wave numbers are not so sensitive to increasing the formal order
of accuracy of approximation. The basic idea for the method of accuracy balance is to use
wider stencil size to get high resolution for components with higher wave numbers.

Consider the fourth order compact difference approximation. In order to get high
resolving efficiency over a wider range of wave numbers, this scheme can be reconstructed
as follows

1
1 2 1
> B [gFjHJrl + 3+t g Fimn - 52”j+l:|
I=—1

1

1
= Z 1 [E(Mj+i+2 —uji—2) — (Ujp — wjp-1) — 531;}41] . (25)
[=—1

Itis obvious that the leading term of truncation error of this equation is O(Ax>). Only con-
sider the symmetrical approximation. Symmetry requires 8 = f_1,ry = r_1. Suppose
Bo = 1. Putting the Fourier component into (25) we can get

3sina{l + 28| cosa] + 3[sin 2o — 2 sin«]{rg + 27 cos «]
- (1 +2B1cosa)(cosa + 2) + 6(cosa — 1)(rg + 2r) cosa)
K, =0.

The coefficient rg, r1 and 8; in (26) can be defined from the requirement K;{«;) = o, | =
1,2, 3. In figure 5 the modified K; is shown. It can be seen that the range of wave numbers
with high resolving efficiency for modified scheme is much improved.

(26)

i

3.4 Numerical examples

Consider the model equation

ou o _ 27)
or  ox

Example 1. Semi-circular wave: The initial condition is defined as

0, x < -0.5,
ux,0)=14 025 —xH2, —05<x <05,
0, 0.5 <x.
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Figure 5. Variation of k; (a), D(k;) (b) vs. c.
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Example 2. Square wave: The initial condition is given as

0, x<-05,
ux,00=4{ 1, —-05<x<0J5,
0, 05 <x.

Different schemes are used to solve (27). Some results are given in figure 6. From
the computed results it can be seen that the resolution of numerical solutions is much
improved with group velocity control, and high order accurate schemes are needed for
correct simulation of complex flow field with small structures. The numerical practice
shows that the method of accuracy balance is not so effective.

4. Numerical simnlation of compressible mixing layer

High-order accurate schemes with GVC has been used to solve the full time-dependent 3-D
compressible N-S equations. Basic idea of numerical method is as follows: the fifth order
accurate compact upwind finite difference (UCFDS) relation (Fu Dexun & Ma Yanwen
1995) is used to approximate the convection term in the N-S equations, the sixth order
accurate symmetrical compact difference relation (Lele 1992) is used to approximate the
viscous term, and a third order R-K method is used to approximate the time derivatives.
Periodic boundary conditions are used in the streamwise and spanwise directions. In the
v direction non-reflecting boundary conditions are used.

The effect of initial disturbance on coherent structures in the compressible mixing layer
with convection Mach number M, = 0.8 is studied. The convection Mach number is
defined as M. = (Uy — U»)/(Cy + Ca), where U; and U are the free-stream velocities,
Cy and C, are the corresponding sound speeds. In the computation, Uy = —U) is taken.
The mean streamwise velocity and the passive scalar field are specified by hyperbolic-
tangent profile. The mixture fraction of passive scalar function has value +1 in the field
with velocity U; and —1 in the field with U,. The Reynolds number is based on the vorticity
thickness and the velocity difference between the two streams. The vorticity thickness is
defined as &, = (U1 — Ua2)/1du/dy|max-

Two cases of initial perturbations are taken in computations.

(A) Ist case: A pair of equal and opposite oblique instability waves is taken as initial
perturbation in computation

f' = a1Re{ f(a, 0)ei*}
+ azRe{f(a, 'B)ei(txx+ﬁz) + fl(a, _ﬂ)ei(ax~ﬁz)}‘

f/ — ll/, v/‘ wr’ p', TI’

oy = 0,0.05, ar = 0.025,
where u, v and w are components of the velocity vector in the x, y and z direction
respectively, T is temperature and p is pressure. The eigenfunctions f are obtained
from solving the linearized N-S equations (Wang Qiang et al 1997).

(B) 2nd case:

The 2-D linear instability waves plus probability function in the Z direction are taken
as the initial perturbation in order to get vorticity pairing. The initial perturbation for

(28)
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Figure 7. Surface of constant pressure for first
case with a; = 0, o, = 0.025 at t+ = 30.38. (a)
— Side view, (b) front view, and (c) top view.

velocity is

u' = e1lg], cos(ayx) — ¢|; sin(a1x)]
+ ealgh, cos(anx) — @j; sin(aax)], (29)
v = e1[@1, sin(ax) + @1; cos(ar x) o
2
+ £2[@2r sin(aax) + ¢2; cos(onx)lar — (K /2)e™ cos(K:z2),
w = —e.e 7 sin(K.z2) -y,
g1 = &> = 0.05,
o = 0.4446, ar = %011.
The eigenfunctions ¢y, ¢1;i. ¢2-. @2; are obtained from linear stability theory.
Some numerical results for the first case with Re = 560 and oy = 0 at+ = 30.38 are
given in figures 7-9. In figure 7 a surface of constant pressure of small value is shown and
we can see that symmetrical A vortex structure according to x—y plane is formed from the

initial two equal and opposite oblique instability waves. It is similar to the A-structures
in transitional boundary layer flow. In figure 8 the contours of mixture fraction field are
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Figure 8. Contours of mixture frac-
tion field for first case with a; = 0,
ar = 0.025 at r = 30.38. (a) (x, 2)
plane at y = 0, (b) (y, z) plane at
z = (1/4)Lx, (¢) (v, z) plane at x =
(1/2)Lx.
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Figure 9. Contours of streamwise vorticity for the first case with oy = 0. o> = 0.025,
solid lines: positive values, dashed lines: ncgative values. (a) (v. 2) plane at v = (/) Lx,
(b) (v, z) planc at x = (1/2)Lx.

given. Figure 8a shows a structure in the x—z plane at ¥ = 0. Four main rotational regions
with three-dimensional saddle points are obvious.

The mushroom shaped structures in the y—: plane at ¥ = Lx /4 and Lx /2 are shown in
figures 8b and 8c respectively. The contours of streamwise vorticity for the first case, with
o) = 0, a2 = 0.025, are given in figure 9 where solid lines correspond to positive values,
and dashed lines correspond to negative values. We can see that the positive spanwise
vorticity appears in the field at the beginning of the flow transition and an oblique rib
structure is formed for streamwise vorticity.

The surface of constant pressure of small value for the first case with Re = 400, o) =
0.05, ap = 0.025 at r = 30.2 is shown in figure 10. The A vortex structure is also formed.
But it is not symmetrical to the x—v plane. That is the effect of initial two-dimensional
instability wave on the structures. In the development of flows in numerical simulation for
the first case there are no pairing or shocks formed.

All the above structures are very like the structures obtained by Sandham & Reynolds
(1991) with the mixed spectral and high-order finite difference method. It can be seen that
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Figure 10. (a) Pressure contour for the second case at + = 30.2. (b) Surface of constant
pressure for first case with ar = 0.05, ax = 0.025 at ¢ = 30.2. (a) Side view. (b) top view.

the high-order difference method presented in this paper is efficient for simulating the 3-D
complex flow field.

In figure 11 are shown some numerical results for the second case with Re = 400
and M, = 0.8. Vortex pairing can be seen at time 1 = 66 (figure 11a). A shock wave is
generated during the time of pairing as for the 2-D case. The shock wave leads to positive
spanwise vorticity in the 3-D flow field. It is important for the formation of 3-D coherent
structures (figure 11b) and flow transition.

5. Conclusion

Analysing the behaviour of numerical solutions is useful for correct simulation of complex
flow fields with a range of scales. Understanding and controlling both of dissipativity and
dispersion effects in numerical solutions are important for correctly capturing the small
structures in complex flow fields. A high-order accurate finite difference method with
group velocity control is suggested for reduction of numerical dissipativity and dispersion
and it is used to simulate the compressible mixing layer.

Two kinds of initial conditions for simulating the compressible mixing layer are dis-
cussed. When equal and opposite waves are taken as the initial perturbation, for all variables
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Figure 11. (a) Surface of constant spanwise vor-
ticity for second case at time of pairing (1 = 60).
(b) Contours of spanwise vorticity for second case
[ at t = 93; solid lines: positive values, dashed lines:
—_— negative values.

A-vortex can be found and 2-D initial perturbation is larger (case 1, oy # 0). When 2-D
initial perturbation is added to all velocity components, but 3-D perturbation is added only
to velocity components v and w, we can see rolling up, pairing and formation of shocks.
Shock formation leads to production of positive spanwise vorticity. It is important for
formation of 3-D coherent structures and flow transition.

The authors are grateful to the National Natural Science Foundation of China for financial
support.
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