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Abstract. For understanding the correctness of simulations the behaviour of 
numerical solutions is analysed. In order to improve the accuracy of solutions 
three methods are presented. The method with GVC (group velocity control) is 
used to simulate coherent structures in compressible mixing layers. The effect 
of initial conditions for the mixing layer with convective Mach number 0.8 on 
coherent structures is discussed. For the given initial conditions two types of 
coherent structures in the mixing layer are obtained. 
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1. Introduction 

Numerical characteristics of simulated unsteady flow fields remain largely unclear as yet, 
and have to be studied for correct simulation of this kind of flows, such as turbulent flows. 

For simulating complex flow fields, high-order accuracy schemes are needed in order 
to capture the flow field structures in a wide range of scales. When low-order accuracy 
schemes are used to simulate the turbulent flow, incorrect coherent structures with wrong 
dissipation and dispersion can be obtained. Many high-order accurate schemes have been 
developed (Rai & Moin 1991; Lele 1992; Fu Dexun & Ma Yanwen 1995; Ma Yanwen & 
Fu Dexun 1996). 

The commonly used method to analyse the accuracy of schemes was assessed based on 
evaluation of dissipative error, but for unsteady flows, in addition to the dissipative error, 
influence of the group velocity of wave packets (or phase velocity) and harmonic content 
in numerical solutions are also important. 

In the present paper, the behaviour of numerical solutions is analysed. For improving the 
resolution efficiency of the schemes, three methods are presented. They are: (1) Increasing 
the accuracy of approximation (IAA), (2) accuracy balance control (ABC), and (3) group 
velocity control (GVC). The GVC method is used to simulate the coherent structures in the 
compressible mixing layer. The effect of the initial conditions of the compressible mixing 
layer on coherent structures is discussed. 
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2.  B e h a v i o u r  a n a l y s i s  o f  n u m e r i c a l  s o l u t i o n s  

2.1 Model  equation 

Consider the following model equation and its semi-discrete approximation: 

Ou Of 0 Ou 
O---t + Ox -- ~ x # - ~ x ;  f = cu, c ; /z  = const. (1) 

OUj F i sj 
Ot + C ~ x  - -  = # A-~- 2 , - - ~  < X < + ~ ,  (2 )  

where F j / A x  is an approximation for Ou/Ox, S j / A x  is an approximation for 02u/Ox 2. 

With initial condition u(x ,  O) = exp ( i kx )  the exact solution o f ( l )  is as follows 

u(x ,  t) = e x p ( - # k 2 t )  exp[ik(x - ct)]. (3) 

With initial condition u (x j ,  O) = e x p ( i k x j )  the exact solution for (2) can be written as 

= t - c - - t  (4) ( k ~ x )  2 Ax j exp ik - ~ i -  kAx ' 

where Ke = Kr + iKi  is the modified wave number and ~ = kAx.  Comparing (4) 
with (3) it can be seen that Ki is related to the phase speed in numerical solutions, Kr is 
related to damping of the difference solution due to discretization of  the convection term, 
Kd is related to physical dissipativity of  the solution. For particular schemes analytical 
expressions for K i, Kr and Kd can be obtained for the linear case. They are functions of  
k A x .  From (3) with/1 = 0, it can be seen that all waves with different k have the same 
phase speed and uniform group velocity of  wave packets. This means that the initial waves 
given at t = 0 will keep the shape as time advances. But Ki,  Kr and Kd are functions of  
ot = k A x  in numerical solutions. This means that the error in numerical solutions of  the 
schemes is different for different wave numbers k. Nonlinear dependence of  Ki on ot leads 
to nonuniform group velocity which is defined as dKi/do!  in the present paper. This is the 
reason for the production of  the oscillations and the deviation of  the moving direction of the 
wave packets with different wave numbers k in the numerical solutions (Trefethen 1982; 
Fu Dexun & Ma Yanwen 1997). From figure 1, it can be seen that different discretization 
can give good resolution for the lower wave numbers with Ki/ot ~ 1, dKi /dot  ~ 1 and 
K r / A x  ~ O. The range of  wave numbers k with correct simulation can be enlarged for 
higher order accurate schemes. 

For semi-discrete approximation (2) after Taylor series expansion, we can get the cor- 
responding modified equation 

ot + ox - ox Ox / + Tx \ Ox / + U27x + Tx \ Ox2 } ' 

where 

I z = #2m Ox2m - 1 ' (6a) 
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Figure 1. Variation of ki (a), dki/dc~ (b), and k~ (c) vs. k Ax. 
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OxZm_ 1 " fu , (6b) 

a = [y~ 02m ¢'] / 02u 
C2m+l A X 2m "~x2~ J / Ox 2 . (6C) 

They are more convenient for analysing the characteristics of numerical solution in the 
physical space. The coefficient/z '  is related to approximation of  the viscous term. Only 
the symmetrical approximation is used for the viscous term. The coefficient/~2 obtained 
from the truncation error with even derivatives is related to the dissipativity. The stability 
requires nonnegativity of the coefficient/~2, a is related to modification of the phase speed 
or the group velocity of  wave packets for approximation of the convection term. 

Equation (5) is useful for analyzing the behaviour of numerical solution and reconstruct- 
ing the schemes for improvement of resolution of schemes. In the linear case for single 
Fourier component we have 

~ - 1 , (7a) 

cKr 
#2 = (7b) 

o tk '  

) a = ~- - 1 . (7c) 

2.2 Dispersion effect 

For correct simulation of unsteady flow field with a range of scales, the dispersion effect 
in numerical solutions from approximation of the convection term must be considered. 

2.2a Classification of schemes by group velocity of wave packets: The commonly used 
method of  classification of schemes is by dissipativity of  numerical solutions. The scheme 
is called dissipative if cKr in (4) or/z2 in (5) is positive. In the opposite case the scheme 
is unstable. The stable scheme is nondissipative if Kr = ~2 ~ 0. 

The wave packets in numerical solutions are propagated by group velocity which defines 
the dispersion effect of schemes. It may greatly affect the numerical accuracy. In order to 
analyse the dispersion effect, schemes are classified by the group velocity of wave packets 
in numerical solutions. The group velocity in numerical solutions is defined as 

dcKi dKi 
D(ot) -- -- cD°(ot), D"(ot) -- (8) 

dot dot 

where D~(ot) is called density of group velocity. 
By group velocity of wave packets the schemes are divided into three classes. The 

scheme is called faster (FST) if D~:'(ot) > 1 for 0 < ot < Jr. This means that numerical 
wave packets are propagated faster than physical ones. The scheme is called slower (SLW) 
if D'~(ot) < 1, in this case the numerical wave packets are propagated slower than physical 
ones; it is called mixed (MXD) if D"(ot) > 1 for 0 < ot < ot0 < Jr and D~(ot) < 1 for 
or0 <o t  < j r .  
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The symmetrical schemes and weakly upwind biased schemes belong to SLW. Moder- 
ately and strongly upwind biased schemes are MXD, but strongly upwind biased schemes 
may be unstable (cKr < 0). The second-order Pade scheme belongs to FST. 

2.2b Behaviour analysis of dispersion error: It is obvious that the phase speed or the 
group velocity of wave packets with low wave numbers in numerical solutions are very 
close to the physical value. In the present paper this group velocity is called reference group 
velocity. The reference density of group velocity D ° (or) = 1. Nonlinear dependence of Ki 
on ot = kAx leads to nonuniform group velocity for higher wave numbers. So different 
propagation direction of wave packets can be obtained in numerical solutions for higher 
wave numbers. 

Consider a numerical example with the model equation 

Ou Ou 
a t  + ~ = o (9) 

and initial condition 

u(x, 0) = exp( -  16x 2) sin(oe0x) 

+{exp[-16(x + 1,5) 2] + exp[-16(x - 1.5)2]} sin(o~lX). (10) 

The following five schemes are used: 

(1) Pade Scheme (FST) * 

Fj + F j_  1 = 2(uj  - - u j - 1 ) .  ( l la )  

(2) Second order central scheme (SLW) 

rj =¢uj. (11b) 

(3) Second order upwind scheme (MXD) 

Fj -= 8~[3uj - uj_l]/2. ( 11 c) 

(4) Second order central scheme with wide stencil (SLW) 

Fj = ( u  j +  2 - u j _ 2 ) / 4 .  (1 ld) 

(5) Fifth order upwind compact scheme (MXD) 

2 ± 1 (~Tt F ± + ® + + 

w h e r e  8~x gj = zF(g j - g j+ l ) ,  80 = (8+x + 8 ; ) / 2  a n d  8 2 = 8+8;. 

( l i e )  

*FST, SLW and MXD stand for "'faster", "'slower" and "mixed" - see § 2.2a for further details 
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Some results of  (9) with initial condition (10) for ~0 = 100, a l  = 25 are shown 
in figure 2a. It can be seen that all waves move toward the right. Scheme (3) has high 
dissipativity for high wave numbers. Low group velocity for scheme (4) is obvious for 
high wave numbers. Figure 2b shows the results for a0 = 157, a l  = 25. For this case the 
waves with high frequency for scheme (4) are standing waves. In figure 2c the results for 
a0 = 194, Otl = 25 are given. This figure shows that the group velocity for scheme (4) is 
negative. 

From the above analysis the following conclusions can be obtained: For FST schemes 
all waves are moving in the same direction as the reference waves, but the high frequency 
waves are in front of  the reference waves; for SLW schemes all waves are behind the 
reference waves. Some of  them are moving in the same direction as the reference waves, 
some are standing waves, and some are moving in the opposite direction. For MXD schemes 
in numerical solutions, the Fourier components have all the possible motions of  both FST 
and SLW schemes. 

2.2c Anisotropic effect." In multi-dimensional problems the dispersion effect appears 
in the form of  anisotropy. In order to analyse the anisotropic effect consider the following 
model equation 

Ou Ou 3u 
Ot + a ~x + b Ov ---- O, a, b = const., (12a) 

with initial condition 

u(x,  0) = exp{i[K - X]} (12b) 

where K = [kl, k3] T, X ---- [x, y]V, and kl, k2 are wave numbers in x and y directions 
respectively. Defining 

[ o IT 1 =  (a 2 + b2)1/2 ' (a 2 +b2)1 /2  ' 

it can be rewritten as 

1 = [cos0, sin01 r 

where 0 is azimuthal angle. 
The exact solution for (12a) with initial condition (12b) can be expressed as follows 

u(X, t) = exp{i lK • X - (a 2 + b2) l /2K - It]}. (13) 

The semi-discrete approximation for (12a) 

at + a + b bA~J v = O. (14a) 

with initial condition 

u(X, 0) = exp[i CK • X)], (14b) 
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has exact solution as follows 

u(X,  t) = exp{- (a  2 + b2)]/2K • fr t} • exp{iK • [X - (a 2 + b2)U21~t]}, 

, , r  s i n  0 ol = k l  A x ,  1' r = cos 0 -V- ,  

/ ]- KCb 12)-,T 

|i = [cos O--g--, sin O ~ J , fl = k2 A y, 

(15) 

where K¢", K~ b, vectors 1' r and l'i are functions of o~ and/3. For different schemes 1' r and 
11 are different. Consider the projection of numerical vectors 1' r and 11 on the exact !. For 
nondissipative schemes 1,. = 0. In this case we have 

l . l '=(1/co)[cosOK¢ l) +sinOK~2)], 0 < 0 _ < 2 r r ,  (16) 

where K } ' ) =  K~ ') (oe), Kf2)=  K~(/3), oe = w  cos(0),/3 = co sin(0) and co= (~2 +/32)1/2 
The five approximations in (11 ) and the sixth order symmetric compact approximation 

are used for discretizing the space derivative in (12a), the three-step R - K  method is used 
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Figure 3. Anisotropic effect for different schemes. 
(a) Second-order central scheme; (b) second-order 
upwind scheme; (c) fifth-order compact scheme. 

for approximation o f  the time derivative for SLW and M X D  schemes,  and for the FST 
scheme in (1 l)  the Crank-Nico l son  method is used. The computed results from (16) with 
O )  m = mTr/lO, m = 0, 1 . . . . .  9, 0 < 0 < 27r for different schemes  are shown in figure 3. 
From these results it can be seen that different schemes  have different anisotropic effects 
for high wave numbers. On increasing the order of  accuracy o f  approximation, the range 
o f  wave numbers with small  anisotropic effect can be enlarged. 

3. I m p r o v e m e n t  of  n u m e r i c a l  so lu t ions  

Only a one-dimensional  case is considered in this section. Three methods o f  improvement  
o f  numerical solutions are presented. 
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3.1 Increasing the order of accuracy of approximation 

From the figures of Ki, Kr vs. ot (figure 4) it can be seen that approximation error of 
schemes becomes smaller with increasing the order of accuracy in a wide range of wave 
numbers. For the symmetric difference schemes Kr = 0. For fifth order upwind compact 
finite difference scheme (UCFD5), Kr is small in a wider range of wave numbers and 
it is large for super high wave numbers. It is useful to damp the aliasing error when the 
nonlinear problems are solved. 

It is obvious that the stencil size is enlarged with increase in the order of accuracy. This 
leads to difficult treatment of the boundary conditions, and difference approximations at 
the points next to the boundary have to be treated specially. It must be noted that the 
strongly one-side biased schemes at boundary points and near boundary points may not be 
stable. In order to get high-order accurate scheme with less stencil size, the super compact 
finite difference scheme (SCFDM) developed by us (Ma Yanwen & Fu Dexun 1996) is 
introduced here briefly. 

The basic idea for construction of the traditional difference schemes is that the approx- 
imation of the derivatives is expressed explicitly by a linear combination of the function 
values at the points near the considered point. For the compact scheme we have a linear 
combination of both the function values and their derivatives at grid points. For obtain- 
ing the approximation of derivative a linear system has to be solved. For the SCFDM 
we use a linear combination of the function values themselves, the derivatives and their 
higher derivatives at the grid points. For example, consider discretization of Ou/Ox with 
symmetric approximation. 

The traditional difference approximation can be expressed as 

Fj -~ ~ bl Uj+l -- t l j_ l  (17) 
21 1 

For compact difference approximation we have 

2 (Fj+I + Fj_,) -= ~ bl uj+l - uj-I (18) 
l 2 ' l l 

Z a l =  Z b '=  1. 

SCFDM considers approximations of all necessary derivatives as unknown. SCFDM 
for odd derivatives with uniform grid mesh can be written as 

I LFj_I + (L + A)Fj - I LFj+1 = 60fje (19) 

where L, A are M x M matrices, F and e are M dimensional vectors, fi(2k-l)/Ax 2k-l 

is an approximation for (2k - 1)th derivative 32k-lf /Ox 2k- I with the accuracy of order 
2(M - K + 1), and 

1/1!, 1/3!, 1/5! . . . .  1/(2M - 1)! 
0, 1/2!, 1/4! . . . . .  1/[2(M - 1)1! 

a = 0, 0, 1/2! . . . . .  1/[2(M - 2)]! 

. . . . . . .  o , 0 , 0 1  J i l l  . . . . . . . .  
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L = 

0 0 0 . . . 0 0  
1 0 0 . . . 0 0  
0 1 0 . . . 0 0  

0 0 0 . . . 0  0 
0 0 0 . . . 1  0 

F = if(l), f(2) . . . . .  fI2M-I)]T. 

For the ease M = 1 w e  have the traditional central difference approximation 

f ) l )  = (20) 

For the case M = 2 from (19) we can get the classical fourth order accurate compact 
difference approximation 

(1/6)fj(/)! + (2/3)fj(1) + (1/6)fj(l+) 1 0 = 6 x j  ~. (21) 

For the case M = 3 from (19) we can get three equations for f(1), f(2) and f<3). It can 
be shown that the same order of accuracy of approximation SCFDM has higher resolving 
efficiency. 

3.2 Method of group velocity control (GVC) 

As mentioned earlier, the dispersion effect of schemes leads to production of oscillation 
in numerical solution. If FST schemes are used to compute the shocks, the high frequency 
waves appear in front of the reference waves, and if SLW schemes are used, the high 
frequency waves appear behind the reference waves. In order to improve numerical so- 
lutions the method of group velocity control can be used. This can be done by using the 
function 

SS(u) = sign \ 3x " O.r 2 ] " (22) 

Suppose we have a given difference approximation (2). The scheme used can be recon- 
structed so that it is FST behind the reference waves where SS(u) > 0, and is SLW in 
front of the reference waves where SS(u) < 0. According to the modified equation (5), 
consider the following equation 

Ou + Of _ 0 (llaU~ a [SS(u).sign(a) 02u7 
o~ Ox Ox \ ax / + ~°Tx " a~.r2 J " 

(23) 

where 

a=[ZC2m+lAX2mO2mf-  /02 l '  
ox2m / 0 x  2. (24) 

In application only the leading term is used in (24). With the same way as for discretizing 
the original equation ( l ) we can get a newly reconstructed scheme from (23). With suitable 
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choice cr0(0 < or0 < 1) the resolution of  reconstructed scheme will be improved. This 
method can be used to reconstruct 2-D and 3-D schemes easily. When flow field structures 
with small scales and shocks are of  interest, higher-order accurate schemes need to be 
reconstructed. 

3.3 Method of  accuracy balance for  components with different wave numbers 

The main purpose of  the improvement of  numerical methods is to get high resolution 
efficiency over a wider range of  wave numbers on the given mesh, and not only formal 
accuracy. It can be seen that the main contribution of  increasing the order of  accuracy 
of approximation is to the Fourier components with low wave numbers. The components  
with high or super high wave numbers are not so sensitive to increasing the formal order 
of  accuracy of  approximation. The basic idea for the method of  accuracy balance is to use 
wider stencil size to get high resolution for components with higher wave numbers. 

Consider the fourth order compact difference approximation. In order to get high 
resolving efficiency over a wider range of wave numbers, this scheme can be reconstructed 
as follows 

1 1 2Fj+I + -~Fj-I+I - 6 ° U j + l  Z fll gFj+l+l  + 
/ = - 1  

= ~ v;1 - uj+z-2) - (Uj+l+l - u j+ l - I )  -- ~xFj+l . (25) 
l = - 1  

It is obvious that the leading term of truncation error of  this equation is O (AxS). Only con- 
sider the symmetrical approximation. Symmetry requires fil = /3-1, r~ = r_ l .  Suppose 
/3o = 1. Putting the Fourier component  into (25) we can get 

3 sin or[1 + 2/31 cos ot] + 3[sin 2~ - 2 sin ~][r0 + 2rl cos or] 
Ki = (26) 

(1 + 2/3j c o s a ) ( c o s ~  + 2) + 6 ( c o s a  - 1)(r0 + 2rl c o s a )  ' 

Kr = O. 

The coefficient ro, rl and fll in (26) can be defined from the requirement Ki (oti) = ~i, i = 
1,2, 3. In figure 5 the modified Ki is shown. It can be seen that the range of  wave numbers 
with high resolving efficiency for modified scheme is much improved. 

3.4 Numerical examples 

Consider the model equation 

Ou Ou 
- - + - -  = 0 .  
Ot Ox 

(27) 

Example I. Semi-circular wave: The initial condition is defined as 

0, 
u(x,  0) = (0.25 - x2) 1/2, 

0, 

x < - 0 . 5 ,  

- 0 . 5  < x < 0.5, 
0.5 < x. 
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Example 2. Square wave: The initial condition is given as 

O, x _< -0 .5 ,  
u ( x , O ) =  1, - 0 . 5 < x  <0.5 ,  

0, 0.5 < x. 

Different schemes are used to solve (27). Some results are given in figure 6. From 
the computed results it can be seen that the resolution of numerical solutions is much 
improved with group velocity control, and high order accurate schemes are needed for 
correct simulation of complex flow field with small structures. The numerical practice 
shows that the method of accuracy balance is not so effective. 

4. Numerical simulation of compressible mixing layer 

High-order accurate schemes with GVC has been used to solve the full time-dependent 3-D 
compressible N-S equations. Basic idea of numerical method is as follows: the fifth order 
accurate compact upwind finite difference (UCFD5) relation (Fu Dexun & Ma Yanwen 
1995) is used to approximate the convection term in the N-S equations, the sixth order 
accurate symmetrical compact difference relation (Lele 1992) is used to approximate the 
viscous term, and a third order R-K method is used to approximate the time derivatives. 
Periodic boundary conditions are used in the streamwise and spanwise directions. In the 
y direction non-reflecting boundary conditions are used. 

The effect of initial disturbance on coherent structures in the compressible mixing layer 
with convection Mach number Mc = 0.8 is studied. The convection Mach number is 
defined as Mc = (U~ - U2)/(C1 + C2), where U1 and U2 are the free-stream velocities, 
C1 and C2 are the corresponding sound speeds. In the computation, U2 = -U~ is taken. 
The mean streamwise velocity and the passive scalar field are specified by hyperbolic- 
tangent profile. The mixture fraction of passive scalar function has value ÷ l  in the field 
with velocity U1 and - 1 in the field with U2. The Reynolds number is based on the vorticity 
thickness and the velocity difference between the two streams. The vorticity thickness is 
defined as 8~, = (U1 - U2)/Idu/dylmax. 

Two cases of initial perturbations are taken in computations. 
(A) 1st case: A pair of equal and opposite oblique instability waves is taken as initial 

perturbation in computation 

f '  = oq Re{f(oe, O)e iax } 

+ oe2Re{f(a, fi)e i(c~r+[~z) + f(ot ,  - f l )e i (ax-~z)} ,  (28) 
f '  = u I, v', w',  pl, T p, 
~1 = 0, 0.05, or2 = 0.025, 

where u, v and w are components of the velocity vector in the x, y and z direction 
respectively, T is temperature and p is pressure. The eigenfunctions f are obtained 
from solving the linearized N-S equations (Wang Qiang et al 1997). 

(B) 2nd case: 

The 2-D linear instability waves plus probability function in the Z direction are taken 
as the initial perturbation in order to get vorticity pairing. The initial perturbation for 
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b) 

veloci ty  is 

Figure 7. Surface of constant pressure for first 
case with al = 0, if2 = 0.025 at t = 30.38. (a) 
Side view, (b) front view, and (c) top view. 

u = el [~p~,. c o s ( ~ l x )  - 9¢1; s i n (~ lx ) ]  
/ 

n t- ~ '2 [q0 ; r  COS(Ot2X ) - -  q02i sin(c~zx)], 

v = ej [q)lr s in (~ lx )  + q)li cos(c~lx)]~l  
9 

+ Ez[q)2r sin(ce2x) '+ q)2i cos(oezx)lot2 - (Kz/2)e -y- cos(K~z) ,  
_ .¢2 

w = - e : e  - s i n ( K : z ) . y ,  

el ----- g2 = 0.05, 

o~1 = 0 .4446,  oe2 = ½oq. 

The e igenfunct ions  9)1r, qgli, q)2r, q92i are obta ined f rom linear stability theory. 

(29) 

S o m e  numerical  results for  the first case with Re = 560 and ul  = 0 at t = 30.38 are 

given in figures 7-9 .  In figure 7 a surface o f  constant  pressure o f  small value is shown and 

we can see that symmet r i ca l /x  vortex structure accord ing  to x - y  plane is fo rmed  f rom the 

initial two equal and opposi te  oblique instability waves.  It is similar  to the A-structures  

in transitional boundary  layer  flow. In figure 8 the contours  o f  mixture fract ion field are 
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a) 

~ J ~ ~ ~ ~ " ~ " ~ Y ~ ' ~ " q  ":: -: . . . . . .  , . . . .  

b, t 

c~ 

F i g u r e  8. Contours  o f  mixture  frac- 
t ion field for first case  wi th  ~ = 0, 
~2 = 0.025 at t =- 30.38. (a) (x,  z) 
p lane  at y = 0, (b)  ( y , z )  p lane  at 
z = (1/4)Lx, (c) (y, z) p lane  a t x  = 
(1/2)Lx. 
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(a) 

..... "--" '- ..... 

(b) 

- _  / a l t e  ,r~--~...~,. r , , , . ,  i s 
. , . , 7 /  . . . .  , , ,  , , £  
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F i g u r e  9. C o n t o u r s  o f  s t r e a m w i s e  vort ici ty for the first c a se  with (~l = 0, cY~ = 0 .025 ,  
solid l ines:  posi t ive values ,  da shed  l ines:  nega t ive  values .  (a t  (y,  : )  p lane  at x = ( 1 / 4 ) L x ,  
(b) (y ,  ~) p lane  at x = ( 1 / 2 t L x .  

given. Figure 8a shows a structure in the x-z  plane at y = 0. Four main rotational regions 

with three-dimensional saddle points are obvious. 
The mushroom shaped structures in the y - z  plane at x = Lx/4  and Lx/2 are shown in 

figures 8b and 8c respectively. The contours of  s t reamwise vorticity for the first case, with 
c¢1 = 0, c~2 = 0.025, are given in figure 9 where solid lines correspond to positive values, 

and dashed lines correspond to negative values. We can see that the positive spanwise 
vorticity appears in the field at the beginning of  the flow transition and an oblique rib 

structure is formed for streamwise vorticity. 
The surface of  constant pressure of  small value for the first case with Re = 400, oej = 

0.05, oe2 = 0.025 at t = 30.2 is shown in figure 10. The /x  vortex structure is also formed.  
But it is not symmetrical  to the x - y  plane. That is the effect of  initial two-dimensional  
instability wave on the structures. In the development  of  flows in numerical simulation for 

the first case there are no pairing or shocks formed. 
All the above structures are very like the structures obtained by Sandham & Reynolds 

(1991) with the mixed spectral and high-order finite difference method. It can be seen that 
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(a) 

(b) 

Figure 10, (a) Pressure contour for the second case at t = 30.2. (b) Surface of constant 
pressure lbr first case with oq = 0.05, c~e = 0.025 at t = 30.2. (a) Side view, (b) top view. 

the high-order difference method presented in this paper  is efficient for simulating the 3-D 
complex flow field. 

In figure 11 are shown some numerical results for the second case with Re = 400 
and Mc = 0.8. Vortex pairing can be seen at t ime t = 66 (figure 1 la). A shock wave is 
generated during the time of  pairing as for the 2-D case. The shock wave leads to positive 
spanwise vorticity in the 3-D flow field. It is important for the formation of  3-D coherent  
structures (figure 1 lb) and flow transition. 

5. Conclus ion 

Analysing the behaviour of  numerical solutions is useful for correct simulation of  complex 
flow fields with a range of  scales. Understanding and controlling both of dissipativity and 
dispersion effects in numerical solutions are important  for correctly capturing the small 
structures in complex flow fields. A high-order accurate finite difference method with 
group velocity control is suggested for reduction of  numerical dissipativity and dispersion 
and it is used to simulate the compressible  mixing layer. 

Two kinds of  initial conditions for simulating the compressible  mixing layer are dis- 

cussed, When equal and opposite waves are taken as the initial perturbation, for all variables 
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Figure 11. (a) Surface of constant spanwise vor- 
ticity for second case at time of pairing (t = 66). 
(b) Contours of spanwise vorticity for second case 
at t = 93; solid lines: positive values, dashed lines: 
negative values. 

/x-vortex can be found and 2-D initial perturbation is larger (case 1, c~1 # 0). When 2-D 
initial perturbation is added to all velocity components ,  but 3-D perturbation is added only 
to velocity components  v and w, we can see rolling up, pairing and formation of  shocks. 
Shock formation leads to production of  positive spanwise vorticity. It is important for 
formation of  3-D coherent  structures and flow transition. 
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