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Abstract

The process of damage evolution concerns various scales, from micro- to macroscopic. How to characterize the
trans-scale nature of the process is on the challenging frontiers of solid mechanics. In this paper, a closed trans-scale
formulation of damage evolution based on statistical microdamage mechanics is presented. As a case study, the damage
evolution in spallation is analyzed with the formulation. Scaling of the formulation reveals that the following dimen-
sionless numbers: reduced Mach numberM, damage number S, stress wave Fourier number W, intrinsic Deborah num-
ber D*, and the imposed Deborah number De*, govern the whole process of deformation and damage evolution. The
evaluation of W and the estimation of temperature increase show that the energy equation can be ignored as the first
approximation in the case of spallation. Hence, apart from the two conventional macroscopic parameters: the reduced
Mach number M and damage number S, the damage evolution in spallation is mainly governed by two microdamage-
relevant parameters: the Deborah numbers D* and De*. Higher nucleation and growth rates of microdamage accelerate
damage evolution, and result in higher damage in the target plate. In addition, the mere variation in nucleation rate
does not change the spatial distribution of damage or form localized rupture, while the increase of microdamage growth
rate localizes the damage distribution in the target plate, which can be characterized by the imposed Deborah number
De*.
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1. Introduction

When a medium with micrometer structure is
subjected to strong stress pulse with microsecond
duration, a number of micrometer cracks may
nucleate and grow, and finally the medium fails.
ed.
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Nomenclature

a acoustic speed
A(c,rs,h) average growth rate of microdamage

with current size c

c current size of microdamage
c0 nucleation size of microdamage
C specific heat
D macroscopic damage
D* intrinsic Deborah number
De, De* imposed Deborah number
e specific internal energy
E elastic modulus in uni-axial strain state
f dynamic function of damage (DFD)
h heat flux
k modulus of Weibull distribution
K empirical material constant
L thickness of target plate
lj length of thermal diffusion zone
M reduced Mach number
n(t,x,c) number density of microdamage with

current size c

n0(t,x,c,c0) number density of microdamage
with current size c and nucleation size c0

nN nucleation rate density of microdamage
q heat production per unit mass
S damage number
T time in Lagrangian coordinates
t time in Eulerian coordinates
u particle displacement in Y direction
wc elastic surface energy of microcracks
wd internal energy blocked in dislocations
we elastic deformation energy
wt thermal part of internal energy
v particle velocity vector
v particle velocity in Y direction
V(c,c0,rs,h) growth rate of microdamage with

current size c and nucleation size c0

vf velocity of the flying plate
x element position vector in Eulerian

coordinates
Y element position in one-dimensional

Lagrangian coordinates
y element position in one-dimensional

Eulerian coordinates

Greek symbols
e nominal strain
ee elastic strain
ep plastic strain
es true strain
ce density of surface energy
g empirical material constant
j thermal diffusivity
k thermal conductivity
l,m material constants
h temperature
h0 reference temperature
q0 mass density of elements with no defor-

mation or damage
r nominal stress
r0 material parameter
rs true stress
r* threshold stress for microdamage nucle-

ation
R crack surface area
s(c) failure volume of an individual micro-

damage with size c

W stress wave Fourier number

Superscripts
* characteristic parameters
— non-dimensional and normalized vari-

ables
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It has been found that the failure shows very
strong rate effect and cannot be formulated by
continuum momentum or energy criterion (Curran
et al., 1987; Meyers, 1994; Shen et al., 1992). For
instance, a commonly used empirical criterion is,

r
r0

� 1

� �g

� DT ¼ K ð1Þ
where g and K are two empirical material constants
(Tuler and Butcher, 1968; Butcher et al., 1964).
Provided the parameter g is 1 or 2, Eq. (1) implies
continuum momentum or energy criterion, respec-
tively. However, experimental measurements
showed that for an aluminum alloy, g is neither
one nor two, but a damage-dependent parameter
between 1 and 2 (Shen et al., 1992). The fact dem-
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onstrates that we have to go into mesoscopic kinet-
ics of microcracks to find out the mechanism gov-
erning the ls- and lm-damage evolution.

Many efforts have been made to explore the
mesoscopic kinetics of microcraks and to find out
the mechanism coupling meso- and macroscopic
damage evolution (Curran et al., 1987; Bai et al.,
1992; Grady and Kipp, 1993; Han et al., 1997;
Lemanska et al., 1997; Voyiadjis et al., 2002; Zhou
and Clifton, 1997). However, as McDowell (1997)
pointed out, ‘‘rigorous treatment of non-uniformly
distributed defects requires tools not yet fully
developed in continuum damage mechanics’’.
‘‘Weighing the influence of distributed damage at
the microscale on the collective macroscale stiffness
and evolution of damage is a challenge as well.’’

Therefore, for the multi-scale and rate-depen-
dent process of damage evolution, how to charac-
terize its trans-scale nature is a key point.
Barenblatt made a very significant statement
addressing this in his closing plenary lecture at
the 18th ICTAM (Barenblatt, 1992). He stated that
in the mathematical models describing the govern-
ing influence of the microstructural variations on
the macroscopic behavior of bodies, the macro-
scopic equations of mechanics and the kinetic
equations of the microstructural transformations
should form a unified set that should be solved
simultaneously. This inevitably appeals to statisti-
cal considerations of microdamage ensemble.

In this paper, a closed trans-scale formulation
of damage evolution based on statistical micro-
damage mechanics is presented. In addition, scal-
ing in the formulation is analyzed. The scaling
shows that several dimensionless numbers control
deformation and damage evolution in the process
of spallation. The effects of these dimensionless
parameters are discussed.
2. Trans-scale formulation of damage evolution

Our trans-scale formulation of damage evolu-
tion is based on statistical microdamage mechan-
ics. In statistical microdamage mechanics, we
firstly need to define a mesoscale between micro-
and macroscale according to the features of dam-
age evolution. The microdamage on mesoscale is
the ensemble of our interest. We define microdam-
age nucleation as the appearance of mesoscopic
voids or cracks resulted from sub-mesoscopic pro-
cess (Curran et al., 1987). Once nucleated, the
microdamage may grow and coalesce leading to
eventual failure. Hence, the main issues in damage
evolution are the mesoscopic kinetics of micro-
damage nucleation, growth and coalesce, as well
as the statistical effects of them.

In order to investigate the mesoscopic kinetics of
microdamage, experimental measurements of
microdamage evolution in spallation process in an
Al alloy were performed. Bai et al. (1992) and Han
et al. (1997) described the experiments in detail.
The experiments show that microdamage is formed
at the scale of inhomogeneities, e.g., the second
phase particulates in the alloy. Hence, the scale of
the second phase particulates is chosen as the meso-
scale, which is on the order of micrometer. In addi-
tion, the nucleation size of microdamage is usually
the dimensions of the particulates or grains. Fur-
thermore, the total number of the microdamage
on the surface of a specimen is in the range of 102–
104 mm�2. The observations also reveal that the
nucleation rate of microdamage is governed by the
applied stress and the size distribution of inhomoge-
neities. In addition, the growth rate is controlled by
the applied stress, the current size (the instantaneous
size ofmicrodamage at the very time of observation)
and the nucleation size of microdamage. Further-
more, since coalescence lasts very short time before
failure, it will be neglected in the following formula-
tion. Based on the experimental observations, the
nucleation rate density and growth rate of micro-
damage can be approximately fitted to the following
functions (Bai et al., 1992; Han et al., 1997):

nNðc0; rs; hÞ ¼ n�NðhÞg1ð�rsÞpð�c0Þ ð2Þ

and

V ðc; c0; rs; hÞ ¼ V �ðhÞg2ð�rsÞð�c� �c0Þm ð3Þ
where

�rs ¼
rs

r� ; g1ð�rsÞ ¼
�rs � 1 if �rs P 1

0 if �rs < 1

� �
;

g2ð�rsÞ ¼ ½g1ð�rsÞ�l ð4Þ

�c ¼ c
c�
; �c0 ¼

c0
c�
; pð�c0Þ ¼ �ck�1

0 expð��ck0Þ ð5Þ
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where n�NðhÞ is the characteristic nucleation rate
density and V* the characteristic growth rate of
microdamage respectively, and the values of para-
meters in Eqs. (2)–(5) can be fitted from experimen-
tal data (Bai et al., 1992; Han et al., 1997).

The observations of microdamage evolution
(Curran et al., 1987) suggest a statistical descrip-
tion of number density of microdamage n(t,x,c),
where x and t are the macroscopic position and
time, respectively. According to statistical micro-
damage mechanics, the evolution of microdamage
number density in phase space {c,x} is governed
by the following equation (Xia et al., 1995; Bai
et al., 2002):

on
ot

þ oðnAÞ
oc

þ oðnvÞ
ox

¼ nN ð6Þ

where v is particle velocity vector and A is the
average growth rate of microdamages with current
size c

A ¼
Z c

0

V ðc; c0; rs; hÞn0ðt; x; c; c0Þdc0�Z c

0

n0ðt; x; c; c0Þdc0 ð7Þ

and n0(t,x,c,c0) is the number density of micro-
damage when both current size c and nucleation
size c0 are taken into account, nðt; x; cÞ ¼R c
0
n0ðt; x; c; c0Þdc0.
We define continuum damage D as:

Dðt; xÞ ¼
Z 1

0

nðt; x; cÞsdc ð8Þ

where s is the failure volume of an individual
microdamage with size c. The failure volume of a
microdamage is defined as the volume which can
no longer be loaded because of microdamage
nucleation and growth. For example, for a micro-
crack with length c, the failure volume can be as-
sumed as a sphere with diameter c, then s � pc3/6.

Multiplying Eq. (6) by the microdamage failure
volume s and integrating the resulted equation
with respect to microdamage size c, from zero to
infinity, yield the continuum damage field equation
(Xia et al., 1995; Bai et al., 2002):

oD
ot

þ oðDvÞ
ox

¼ f ð9Þ
f ¼
Z 1

0

nNðc0; rs; hÞsdc0

þ
Z 1

0

nðt; x; cÞAðc; rs; hÞs0 dc ð10Þ

where s 0 = ds/dc. The function f is the dynamic
function of damage (DFD), the agent bridging
microdamage and continuum damage evolution.
To establish a complete formulation, Eq. (9)
should be associated with traditional, macroscopic
equations of continuum, momentum, and energy,
constitutive relation, the relationship between
nominal stress and true stress rs ¼ r

1�D, as well as
the damage number density evolution equation
(Eq. (6)).

To illustrate the framework, we use it to inves-
tigate the damage evolution in spallation. Let
us examine a one-dimensional strain state in
Lagrangian coordinate (T,Y). In such a state, all
displacement and velocity components and spatial
derivatives are zero, except the displacement com-
ponent u and the particle velocity v in the y direc-
tion, as well as the derivative operator o/oy. The
transformation from Eulerian (t,y) to Lagrangian
(T,Y) coordinates is o

oT ¼ o
ot þ v o

oy and o
oY ¼

ð1þ eÞ o
oy. With the transformation, an associated

system of continuum, momentum, energy and
damage evolution equations are obtained as
follows:

Continuum equation:

oe
oT

¼ ov
oY

ð11Þ

Momentum equation:

q0

ov
oT

¼ or
oY

ð12Þ

Damage evolution equation:

oD
oT

þ D
1þ e

ov
oY

¼ f ð13Þ

Energy equation:

q0

oe
oT

¼ r
oe
oT

� oh
oY

þ q0q ð14Þ

Constitutive equation:

rs ¼ rðes; hÞ ð15Þ



H. Wang et al. / Mechanics of Materials 38 (2006) 57–67 61
Relationships between rs and r, es and e:

rs ¼
r

1� D
; es ¼ e ð16Þ

Eqs. (11)–(16), (6), and (10) form a unified, closed
trans-scale formulation of damage evolution.

Let us consider a special case in which stress
and temperature are treated as parameters. In this
case, the basic solution of microdamage number
density n has been obtained as (Ke et al., 1990;
Han et al., 1997)

n ¼

Z c

0

nNðc0; rs; hÞ
V ðc; c0; rs; hÞ

dc0 c < cf;0Z c

c0f

nNðc0; rs; hÞ
V ðc; c0; rs; hÞ

dc0 c P cf ;0

8>>><
>>>:

ð17Þ

where c0f and cf,0 are determined by T ¼R c
c0f

dc0

V ðc0 ;c0;rs;hÞ and T ¼
R cf;0
0

dc0

V ðc0;0;rs;hÞ, respectively.

Substitution of Eq. (17) into the integral (Eq.
(10)) leads to a trans-scale DFD without micro-
damage number density but still with mesoscopic
kinetics. The trans-scale DFD is directly expressed
by two mesoscopic kinetic laws of nucleation rate
density and growth rate of microdamages (Bai
et al., 1998, 2000, 2002):

f ¼
Z 1

0

nNðc0; rs; hÞsdc

þ
Z 1

0

ðsf � s0ÞnNðc0; rs; hÞdc0 ð18Þ

where sf ¼ pc3f =6, and cf is defined as T ¼R cf
c0

dc0

V ðc0;c0;rs;hÞ
. For nucleation and growth laws like

Eqs. (2) and (3), the damage evolution equation
becomes

oD
oT

þ D
1þ e

ov
oY

¼ f ¼pn�Nc
�4

6
p3g1

� 1þ

R1
0

1þ ð1�mÞV � t
c� g2

� � 1
1�m 1

�c0

� �3

�1

 !
�c30pd�c0

p3

0
BBBB@

1
CCCCA

ð19Þ

where p3 is the third order moment of pð�c0Þ, p3 ¼R1
0

pð�c0Þ�c30 d�c0. Eq. (19) together with Eqs. (11),

(12), and (14)–(16) forms a closed formulation of
damage evolution, combining traditional contin-
uum mechanics and mesoscopic kinetics closely
and explicitly.

It is worth noticing that the closed DFD in
Eq. (19) is obtained based on the assumption of
stress and temperature being parameters. Other-
wise, it is quite difficult to obtain explicit, exact
expression of DFD. In fact, since D� 1 in the
process of spallation (we will show it later), the
difference between the nominal stress and true
stress in the case is negligibly small, based on Eq.
(16). In addition, the loading stress in spallation
tests is usually kept as a rectangular stress pulse
with short front, hence the nominal stress in
spallation tests is generally treated as a parameter.
Finally, in the present calculation stress is actu-
ally treated as a variable, which to some extend re-
flects the coupling effect of varying stress on
microdamage evolution. Furthermore, the most
significant point about Eq. (19) is that the DFD
consists of two terms, the nucleation term and
combination term of nucleation and growth.
This is in accord with the concept of simple and
compound damage proposed by Davison and Ste-
vens (1972) and Davison et al. (1977). Therefore,
the derived DFD demonstrates that the micro-
scopic bases of simple and compound damage
are the microdamage nucleation and growth,
respectively.

To specify the energy equation (Eq. (14)), we
confine our discussion to damageable materials
exhibiting elastic or elastoplastic behavior. In
addition, we approximately hypothesize that the
internal energy consists of mechanical part and
thermal part. The mechanical part corresponds
to the elastic deformation energy stored in the
material we, the energy blocked in dislocations
wd, and the surface energy of microcracks wc.
The mechanical part can be expressed in terms of
the elastic strain ee, plastic strain ep, macroscopic
damage D, and the crack surface area R. The
thermal part wt comes from ordinary external
heating and dissipation associated with irrevers-
ible bulk plastic flow and damage evolution. It is
also assumed that all dissipated energy is con-
verted to heat and causes the temperature increase.
Hence, the internal energy increment can be
written as:
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dðq0eÞ ¼ dwt þ dwe þ dwd þ dwc

¼ q0Cdhþ d
1

2
Eð1� DÞðeeÞ2

� 	
þ dwdðepÞ þ dðceRÞ

¼ q0Cdhþ rdee � 1

2
EðeeÞ2dD

� 	

þ dwd

dep
dep þ cedRðDÞ ð20Þ

In the concerned case, there is no external heat
source. In addition, the heat flux can be expressed
by Fourier�s law in terms of the temperature h as:

h ¼ �k
oh
oY

ð21Þ

Neglecting the point source of heat and substitut-
ing Eqs. (20) and (21) into Eq. (14) leads to:

q0C
oh
oT

þ r
oee

oT
� 1

2
EðeeÞ2 oD

oT

� 	
þ dwd

dep
oep

oT

þ ce
dRðDÞ
dD

oD
oT

¼ r
oe
oT

þ k
o2h

oY 2
ð22Þ

Since e = ee + ep, Eq. (22) can be rewritten as:

q0C
oh
oT

¼ r� dwd

dep

� 	
oep

oT

þ 1

2
EðeeÞ2 � ce

dRðDÞ
dD

� 	
oD
oT

þ k
o2h

oY 2
ð23Þ

According to Taylor and Quinney (1934), the
amount of plastic work dissipated as heat can be
in excess of 90%. Therefore, it is generally accepted
that the energy blocked in dislocations is negligible
compared to the plastic work dissipation. In addi-
tion, for ductile materials like Al alloy, the elastic
surface energy of microcracks is very small portion
of the elastic energy reduction due to damage evo-
lution. Hence, Eq. (23) can be simplified as:

q0C
oh
oT

¼ r
oep

oT
þ 1

2
EðeeÞ2 oD

oT
þ k

o2h

oY 2
ð24Þ

Eq. (24) is the simplified energy equation for dam-
aged, elastoplastic materials. It is a remarkable
fact that the three terms on the right side of Eq.
(24) are directly related to the temperature incre-
ment due to plastic work dissipation, damage evo-
lution and heat diffusion, respectively.
3. Scaling of the trans-scale formulation

of damage evolution

The trans-scale equations in Section 2 have
provided a fundamental tool to explore damage
evolution process. However, till now, the investi-
gation into the essence of the process is far
from complete. How to deal with the various
length and time scales on meso- and macro-
scopic levels is the biggest obstacle hindering the
exploration.

The existence of different length and time scales
indicates that different mechanisms are involved in
the process of damage evolution. The mechanisms
include wave propagation, work hardening effect,
softening effect caused by temperature increase or
damage evolution, heat diffusion, microdamage
nucleation, microdamage growth and so on. It is
impractical and unnecessary to consider all mech-
anisms thoroughly in the study. The most reason-
able way is to evaluate the relative importance of
these possible mechanisms, and to adopt a prop-
erly simplified model based on the evaluation.
So, to unveil the most predominant mechanisms
governing damage evolution is the essence of
scaling.

In order to understand the procedure of scaling,
in this section, we consider the problem of damage
evolution owing to the impact of a flying plate
with thickness L and velocity vf on a target plate,
i.e. spallation.

There are many dependent variables involved
in the problem, e.g. particle velocity (v), strain
(e), stress (r), temperature (h), damage (D), and
the number density of microdamage (n) etc. These
variables are linked by the trans-scale equa-
tions presented in last section. In view of the
fact that these variables have different dimen-
sions as well as different magnitudes, we non-
dimensionalize and normalize all the terms in the
equations. The corresponding scaled equations of
mass, momentum, damage evolution, and energy
are:
o�e

oT
¼ M

o�v

oX
ð25Þ

o�v

oT
¼ S

o�r

oX
ð26Þ
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oD

oT
þ Me�D
1þ�ee�

o�v

oX

¼ pp3g1
6

1

De�
1þ

R1
0

�
1þ ð1�mÞg2 T

De�

� � 1
1�m 1

�c0

� �3

�1

�
�c30pd�c0

p3

0
BBB@

1
CCCA

ð27Þ
o�h

oT
¼ �r

o�ep

oT
þ1

2
ð�eeÞ2D� oD

oT
þW

o
2�h

oY
2

ð28Þ

In Eqs. (25)–(28), the dimensionless variables are:

Independent variables:

T ¼ aT
L

; Y ¼ Y
L

ð29Þ

Dependent variables:

�v ¼ v
vf
; �r ¼ r

r� ;
�h ¼ q0Cðh� h0Þ

r�e�
;

D ¼ D
D� ; �e ¼ e

e�
; �ee ¼ ee

e�
; �ep ¼ ep

e�
ð30Þ

The dimensionless numbers are defined as follows:

Reduced Mach number:

M ¼ vf
ae�

ð31Þ

Damage number:

S ¼ r�

q0avf
ð32Þ

Intrinsic Deborah number:

D� ¼ n�Nc
�5

V � ð33Þ

Imposed Deborah numbers:

De� ¼ ac�

LV � ð34Þ

Stress wave Fourier number:

W ¼ k
q0CLa

ð35Þ

It is worth recalling that all dimensionless vari-
ables are in O(1). So in principle, the magnitudes
of the terms in the equations can be estimated
according to the dimensionless numbers before
them. That is to say, the five dimensionless num-
bers indicate the relative importance of the mech-
anisms involved in spallation process. Roughly
speaking, the five numbers can be cataloged into
three groups. The reduced Mach number and
damage number are the representation of macro-
scopic material properties and imposed loading.
The macroscopic stress wave Fourier number,
concerns the energy aspect of the phenomenon.
Another group, consisting of two Deborah num-
bers, is closely related to mesoscopic kinetics of
microdamage evolution. Some essential effects of
these numbers on spallation are discussed as
follows:

(1) The reduced Mach number M is directly re-
lated to the ratio of the inertial force to the applied
load, while the damage number S is defined as the
ratio of the threshold stress to the amplitude of
stress pulse. In addition, M and S can be corre-
lated by

M ¼ r�

Ee�
S�1 ð36Þ

For the aluminum alloy employed in our
spallation tests (Bai et al., 1992), r* � 450 MPa,
q0 � 2700 kg/m3, vf � 200 m/s, a � 5000 m/s,
e* � 0.005, then M � 7 and S � 0.167. Therefore,
in the spallation analysis, the dynamic analysis
must be adopted, and plasticity and damage evolu-
tion cannot be ignored.

(2) The intrinsic Deborah number D* character-
izes the damage rate ratio of two intrinsic pro-
cesses: nucleation over growth. In addition, as
the measure to normalize damage, D* implies a
certain characteristic damage. Actually, D* is a
proper indicator of macroscopic critical damage
to localization (Bai et al., 2002). For the aluminum
alloy, c* � 4 · 10�6 m, V* � 6 m/s, and n�N � 5�
104 mm�3 lm�1 ls�1. Then, D* � 0.009. There-
fore, in spallation test, the critical damage to local-
ization should be about (10�3–10�2). In particular,
D* is also an indicator of energy dissipation owing
to microdamage. From Eq. (28), since D* � 1, the
dissipation is very small in comparison with plastic
work.

(3) The imposed Deborah number De* is a un-
ique trans-scale dimensionless parameter, because
the acoustic speed a and the sample size L are mac-
roscopic parameters whereas microdamage size c*
and microdamage growth rate V* are mesoscopic
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ones. This is very different from all other dimen-
sionless parameters. Also, De* refers to the ratio
of microdamage growth time scale over the macro-
scopically imposed time scale. Hence, it represents
the competition and coupling between the macro-
scopically imposed wave loading and the intrinsic
microdamage growth. In current study, De* < 1,
which means that microdamage has enough time
to grow during the macroscopic wave loading.
Thus, the microdamage growth must be consid-
ered in spallation analysis. In addition, since dam-
age localization is directly related to microdamage
growth (Wang et al., 2002), De* is a key factor
governing damage localization process.

Of course, the ratio of the above two Deborah
numbers gives another imposed Deborah number
De ¼ a

Ln�
N
c�4. Similar to De*, De refers to the ratio

of microdamage nucleation time scale over the
macroscopically imposed time scale. However,
among the three Deborah numbers, only two of
them are independent of each other, for instance
D* = De*/De.

(4) Stress wave Fourier number W can be
rewritten as:

W ¼ k
q0CLa

¼ k=q0C
La

¼ k=a
L

¼ lj
L

� �2

ð37Þ

Thus, W represents the ratio of heat diffusion
region over sample size. In this study, k =
238 W/m K, q0 � 2700 kg/m3, C � 903 J/kg K,
a � 5000 m/s. So, lj/L � 10�3 and W � 10�6 � 1.
This means that the heat diffusion zone is much
smaller compared to the sample size. It follows
that the process of spallation in specimen can be
treated as an adiabatic one.

Under adiabatic assumption, Eq. (28) indicates
that the temperature increase is mostly contributed
by the plastic work in volume and microdamage
dissipation. Although exact data of plastic work
dissipation and microdamage dissipation are not
available, the temperature increment can be esti-
mated as follows. For the tested aluminum alloy,
r* � 450 MPa and e* � 0.005, so, the character-
istic temperature increase Dh� � r�e�

q0C
� 1 K. In

general spallation tests, ep� 0.008, ee � 0.016, r�
1400 MPa, hence, D�h ¼ �rD�ep þ 1

2
ð�eeÞ2D�DD � 4:7.

Therefore, the temperature increase due to bulk
plastic work and microdamage dissipation may
be about several degrees only. This rise of temper-
ature does not affect material properties effectively.
Hence, as the first approximation, energy dissipa-
tion can be ignored in the study of spallation.
4. Numerical analysis of spallation

The scaling in Section 3 suggests that as the first
approximation, the energy equation can be ne-
glected in the formulation of spallation process.
Therefore, only four dimensionless parameters (re-
duced Mach number M, damage number S, intrin-
sic Deborah number D* and imposed Deborah
number De*) govern the damage evolution process
in the target plate. Now that the effects of the mac-
roscopic numbers M and S on damage evolution
have been well documented in literature, the
emphasis in this paper is put on the effects of
two mesokinetics related numbers, D* and De*.

We perform numerical simulations of spallation
in terms of the associated system of the equations
of mass, momentum, microdamage evolution, Eqs.
(25)–(27), as well as the equation of constitutive
relationship, with the initial and boundary condi-
tions corresponding to our plate impact tests. In
the simulations, we fix the macroscopic numbers
M and S according to the experimental condition
but adopt variable Deborah numbers to examine
the evolution of maximum damage and the distri-
bution of damage in the target plate, aiming at
understanding the effects of mesoscopic kinetics
of microdamage on the eventual rupture in
spallation.

Fig. 1 illustrates the effect of the intrinsic Deb-
orah number D* on the evolution of maximum
damage in the target plate. In this figure, the re-
duced Mach number M, Damage number S and
the imposed Deborah number De* remain con-
stant for all curves. Accordingly, the increase of
the intrinsic Deborah number D* implies the in-
crease of the nucleation rate of microdamage only,
as shown in Eq. (33). Therefore, increasing D* re-
sults in higher damage in the target plate. This is in
agreement with numerical results (Fig. 1), which
shows that the maximum damage in the target
plate increases with D*, owing to higher nucle-
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Fig. 1. Effects of D* on the evolution of maximum damage in
target plate (M = 6.52, S = 0.153, De* = 0.415).
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ation rate of microdamage. Obviously, the result is
rational but trivial.

Furthermore, we compared the spatial distribu-
tions of damage obtained from the above cases
with different D* but the same M, S, and De*.
Fig. 2 demonstrates the distribution of normalized
cumulative damage at a given time. For each case
in Fig. 2, the damage is normalized by the maxi-
mum damage Dmax in the target plate. Fig. 2
clearly shows that all curves coincide with each
other and have a plateau although Dmax differs in
these cases. These two features mean that the mere
variation in nucleation rate of microdamage can-
not change the spatial distribution of damage or
form localized rupture. Actually, this is not irrea-
sonable, if one notice that all maximum damage
in Fig. 1 are less than their corresponding D*,
i.e. the indicator of critical damage to localization.
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Fig. 2. Effects of D* on damage localization (M = 6.52,
S = 0.153, De* = 0.415, T ¼ 2:91).
Now we turn to the effects of imposed Deborah
number De* on damage evolution. Actually, the
imposed Deborah number De*, as defined in Eq.
(34), characterizes the competition and coupling
between macroscopic loading and microdamage
growth. Smaller De* but the same M, S, and De

physically means that microdamage grows faster.
Hence, decreasing De* may accelerate the damage
evolution and result in higher damage in the target
plate. The numerical results (Fig. 3) do demon-
strate that the maximum damage increases with
decreasing De*.

Our further studies reveal that De* affects dam-
age localization significantly. Fig. 4 shows the nor-
malized cumulative damage distributions at a fixed
time. Similar to Fig. 2, the damage is normalized
by the maximum damage in the target plate. In
marked contrast to the distribution of damage in
Fig. 2, damage distributes very unevenly in the
plate (Fig. 4). In particular, when the imposed
Deborah number De* decreases, the damage gets
more localized in the plate. Since De* decrease is
directly related to the increase of microdamage
growth rate, Fig. 4 illustrates that damage localiza-
tion is caused by microdamage growth and dam-
age is prone to localize in materials with higher
microdamage growth rate. To further explain
damage localization, we calculate the intrinsic
Deborah number D* corresponding to each curve
in Fig. 3. One can notice that only for the case of
De* = 0.138, the maximum damage is about 0.02,
comparable with its corresponding D* = 0.0209.
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Fig. 3. Effect of De* on the maximum damage evolution in the
target plate (M = 6.52, S = 0.153, De = 6.59).
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This is why damage localization becomes clear in
this case.
5. Concluding remarks

For trans-scale formulation of damage evolu-
tion, there are several length scales and time scales
on meso- and macroscopic levels. The connection
between the two levels is usually based on non-lin-
ear coupling of stress field and the population of
microdamage. Hence, the associated system of
macroscopic continuum, momentum and energy
equations as well as the equation of microdamage
population evolution is proposed and discussed.

Several dimensionless numbers, such as the re-
duced Mach number M, damage number S, stress
wave Fourier number W, intrinsic Deborah num-
ber D*, and imposed Deborah number De* govern
spallation.

In respect of energy dissipation in spallation,
the stress wave Fourier number W indicates that
the heat diffusion region is very small compared
to the sample size, hence the process is nearly adi-
abatic. The temperature increase resulted from the
dissipative energy is estimated for the tested metal
and have minor effects on spallation. So, in the
concerned spallation process, as the first approxi-
mation, the energy equation can be ignored in
the analysis.

Apart from the reduced Mach number M and
damage number S, the damage evolution in spall-
ation is mainly governed by the intrinsic Deborah
number D* and the imposed Deborah number
De*. The intrinsic Deborah number D* is a char-
acteristic representation of competition and cou-
pling between microdamage nucleation and
growth, whilst the imposed Deborah number De*
characterizes the competition and coupling be-
tween the imposed wave loading and the intrinsic
microdamage growth.

Increasing nucleation or growth rate of micro-
damage accelerates damage evolution, and results
in higher damage in the target plate. In addition,
the mere variation in nucleation rate does not
change the spatial distribution of damage or form
localized rupture. However, the increase of micro-
damage growth rate localizes the damage distribu-
tion in the target plate, which can be characterized
by the imposed Deborah number De*.
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