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A B S T R A C T :  The influences of particle size on the mechanical properties of the 
particulate metal matrix composite are obviously displayed in the experimental ob- 
servations. However, the phenomenon can not be predicted directly using the conven- 
tional elastic-plastic theory. It is because that no length scale parameters are involved 
in the conventional theory. In the present research, using the strain gradient plas- 
ticity theory, a systematic research of the particle size effect in the particulate metal 
matrix composite is carried out. The roles of many composite factors, such as: the 
particle size, the Young's modulus of the particle, the particle aspect ratio and vol- 
ume fraction, as well as the plastic strain hardening exponent of the matrix material, 
are studied in detail. In order to obtain a general understanding for the compos- 
ite behavior, two kinds of particle shapes, ellipsoid and cylinder, are considered to 
check the strength dependence of the smooth or non-smooth particle surface. Finally, 
the prediction results will be applied to the several experiments about the ceramic 
particle-reinforced metal-matrix composites. The material length scale parameter is 
predicted. 

K E Y  W O R D S :  size effect, strain gradient plasticity, the particle-reinforced metal- 
matrix composite 

1 I N T R O D U C T I O N  

Due to the potential  applications of the particle-reinforced metal -matr ix  composites 

(PMMC), the respective researches have been paid much at tention in the past  decades. 

The researches include: the Young's modulus effect of the particle, the particle aspect ra- 

tio effect, the particle volume fraction effect and size effect, as well as the matr ix  material  

strain hardening effect. Some important  conclusions have been obtained in the research and 
manufacturing regions. The results of previous researches either experimental  or numerical 

have shown tha t  all effects mentioned above have an important  influence on the composite 
properties. Especially by the numerical simulations using the cell models [12], some detailed 

quanti tat ive information about  the composite strength has been built up. The composite 

always has either the high flow stress or the high strengthening because a higher triaxiality 

stress exists within the matr ix  region near the particle surface under  loading [1]. The partic- 

ulate aspect ratio and the volume fraction, as well a~ the  strain hardening exponent of the 
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matrix material had important  influences 011 the composite properties, and some quantita- 
tive relations were developed [1'2] t)y using cell models. The predicted results are consistent 

with experimental results. In addition, a self-consistent analytical model ha.s been used suc- 
cessfully to predict the behavior of the PMMC [3]. More recently, a systematic experimental 
research for the metallic fiber reinforced Al-alloy matrix for a series of the volume fraction 
of fiber was carried out [4]. The results showed that  the high material strengthening was 
obtained; however the composite flexibility was quite poor. On the researches of the particle 
size effects, the experimental results ['~~1~ showed that the strength of the PMMC was sen- 

sitive to the particle size. The conclusion was that the smaller the particle, the higher the 
composite strength. In order to predict the particle size effects, some analytical models were 
developed [11'12]. A motivated combination model of the effective medimn approach with the 
dislocation plasticity mechanisnl was presented based on the linkage theories of micro- and 

macro-scales, which was used to investigate the particle size effects. In order to obtain a 
perfect comparison with the ext)erimenta] resuh, the particle cracking was introduced in the 
analysis [11]. Another combination model of the incremental self-consistent method with the 

particle damage mechanism was used to study the particle size effec'~ [12]. Previously, the 
difference between results of the large particle sizes and ones with the small particle sizes was 

thought due to the more damage included ill the large particle case. Comparing with the re- 
searches about other factor effects, the research of the particle size effects has not been paid 

much attention because the size effect research is very difficult and no proper theories can be 
used, As well known, the conventional elastic-plastic theory can not be used to predict the 
particle size effects effectively, because no length scale parameter is included in the theory. 
Besides the size-effect phenomena in the PMMC, these phenomona have been found in many 
research regions, such as: in the micro-indentation test [13~b~], in the micro-torsion test of 
column [16], as well as the interface separation of metal/ceramic system [17]. The size effect 

phenomena for metal jointing with ceramic composite materials were thought as coming up 

within a linkage region between the microscopic region and the macro-scale region, where 
the conventional theory can not be used. In order to describe the size effects, in recent years, 
several strain gradient plasticity theories have been presented and developed [~s~2~ based in 
the frame of deformation theory. At the same time, an incremental theory of strain gra- 
dient plasticity has been developed and successfully used to the growing crack analysis [211. 
In the strain gradient plasticity theory, a very marked characteristic is that a length scale 
parameter is introduced, by which the size effect phenomena can be described. 

In the present research, the Fleck-Hutchinson's strain gradient plasticity theory [18] is 
used to simulate the mechanical response of the PMMC. A detailed analysis of the particle 

size effects is carried out. Adopting the strain gradient plasticity theory, the composite 
stress-strain curves will depend on the following parameters: the Young's modulus ratio 
of both particle and matrix; Poisson's ratio; particle volume fraction; particle aspect ratio; 
strain hardening exponent of matrix nmterial: a normalized particle volume with the material 
length scale parameter.  Therefore, the purpose of the present research is to set up a series 
stress-strain relations depending on all the parameters mentioned above, especially on the 
normalized particle volume with material length scale parameter. In the present analysis, a 
cell model is adopted, and two kinds of particle shapes: ellipsoid and cylinder are considered. 
Finally, using analysis results to the experiments, the material length scale parameter is 

predicted. 
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2 S T R A I N  G R A D I E N T  P L A S T I C I T Y  

The general form of the deformational theory of strain gradient plasticity with com- 
pressibility has not been found in literature. Here a brief description is provided in the 
following subsections. 

2.1 C o n s t i t u t i v e  R e l a t i o n s  
The definitions of the strain and strain gradient are given by 

1 e p e p 
Eij : ~ ( U i , j  "F Uj, i)  = Eij "~ e i j  ~ i j k  = Uk,i j  = rlijk + Oijk (1) 

The expressions related with the constitutive relation are listed as follows 
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where 2~ and .~ are the equivalent stress and strain, respectively; L~ and L I ( I  = 1,4) are 
the material micro-length scales for elastic case and plastic case, respectively. From the 
discussion in [18], there exists a general relation among the material length scale parameters 

/--g- 
1 

L1 = L L2 = : L  L3 = ~]_~-:L (3) 
2 V 2 4  

In addition, take L4 = L/2. Similarly, Eq.(3) is valid also for the elastic strain gradient 
case, with L being replaced with L e. Moreover, the previous research has shown that  the 
solution is insensitive to the value of L e / L  within the range 0 < L ~ / L  < 1 [21]. Therefore, 
in the present analysis, we take LC/L  = 0.5. In formula (2), h p is the equivalent plastic 
modulus. Consider that  the matrix is made of a plastic material with a strain-hardening 
exponential law 

= . % ( E l a v )  S <_ a v  
(4) 

.~ -: E O ( 8 / f f V )  1 /N Z > a y  
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we have 
h v = E{ (X /a ) , )  1IN-'  - 1}-' (5) 

T(i/)ktmn(I = 1,4) in formulas (2) is the projection tensor in strain gradient plasticity, and 
its detailed expressions have been given in [21]. Thus, by using formulas (1) and (2) and 
the projection tensor normality, the compressible general form of the deformational theory 
of strain gradient plasticity can be derived as 

E2 ~ 1( E 1 --2u q ) ~i j  = ~Cij Jr- Ckkd, j  
l + u + ~E/hP l + u + ~E/hP 

(6) 

{ 3 L2 re2T(4) } 
"rij,, = 2E Z L}/L;2 + 2E/hvT~/)kt'n" +=4 "iym ..... 'it,n,, 

1=1 

2.2 T h e  E q u i l i b r i u m  or  V a r i a t i o n a l  R e l a t i o n  
Frequently, the equilibrium equation can be described by the displacement-based vari- 

ational relation. The finite element method (or numerical nmtho(t) is readily developed. 
The displacement variational relation for the strain gradient plasticity theory is given by [ls] 

v(aijcJCij d- Tijk(Jrlijl,.)dV = ~" 

Based on Eq.(7), the traction on surface 

tk = ni (aik OTifl"Oxj ) 

f~,6ukdI" + / i  t#JukdS + .Is rk(Dduk)dS 

S is defined by 

Jr- 71 i llj Tij k ( Dpnp) -- Dj (nir-ijk ) 

(7) 

(8) 

and the surface torque is defined by" ra. = n i T z j T i j k ;  The gradient operators are defined by 

0 0 0 
Dj - Ox/ njnk Oxk D = nk Ox--"7. (9) 

where ni is the directional cosine oll the surface S. 

3 M A T E R I A L  M O D E L  A N D  F I N I T E  E L E M E N T  M E T H O D  

3.1 M a t e r i a l  M o d e l  
Consider two kinds of particles, ellipsoid and cylinder. The simplified cell models are 

shown in Fig.1. For the axial-symmetrical condition, only the one-fourth of material region 
needs to be considered as shown in Fig.l(c). Tile normalized cell sizes (the material length 
parameter L, see Eq.(3), is taken ms the normalized length quantity) for ellipsoidal particle 
read 

(ak  ,/3vy 3 ( k-L- ' "  (lO) 
A = ~ l  -s B = ~. n = 2 , r l v J  L H = -# 

where Vp and fp are the partMe volume and volume fraction, respectively 

k = A / B  = R / H  (11) 

is the particle and cell aspect ratio. Note that the cell volume can not take unity as usual, 
because the reference length is L. instead of the usual cell size. Therefore, three independent 
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Fig.1 The cell models 

parameters for the cell geometry description are needed from Eq.(10), instead of only two 
independent parameters for the usual cell model description. From dimensional analysis, 
additional composite parameter, V y 3 / L ,  describing the cell size and the strain gradient 
effects, must appear in the analysis inevitably. 

Similarly, for the cylindrical particle case, we have 

A =  \ ~ ]  L B = - - k  R =  \ ~ p ]  ~- H = - - k  (12) 

The boundary conditions (see Fig.1 (c)) are described as 

u ~ = 0  T r = 0  on z = 0  

uz = EcH T T = 0  on z = H 

/o ~ u,. = const Tz = 0 T~dz  = 0 on r = R 

(13) 

In the present analyses, the metal matrix is treated as an elastic-plastic material con- 
sidering strain gradient plasticity, see formulas (4) to (6). The particle is treated as an 
elastic material with Young's modulus Ep and Poisson's ratio yR.  

The parameter dependence of the stress-strain relations of the PMMC can be written 
a s  ( Ep I/I/3 ) 

ac _ F  Sc, fp  k N ,  ~ P E (14) - - - -  - - ,  ~ V ,  / / p  
a y  E ' ' ' L a y  
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There are many" parameters included in Eq,(14). For the simplification, in the present 
analyses we consider (E/ay, u. up)  = (300, 0.3.0.3). Note that tile l)arameter, l'p/a/L, takes 
a dual-meaning: the particle size (when L is fixed) and the strain gradient strength (when 
Vy 3 is fixed). Therefore, when the composite parameter value V,I,/a/L is big, both cases of 

the large particle size and tile small strain gradient effect will be described; especially, when 
the parameter  value tends to the infinity, the problem is degraded to the conventional cell 
model case (no strain gradient effect). Inversely. when its value is small, the case corresponds 

to the small particle or large strain gradient effect. 

3.2 F i n i t e  E l e m e n t  M e t h o d  o f  the  S t r a i n  G r a d i e n t  P l a s t i c i t y  

Generally speaking, when the strain gradient effect is considered, the conventional fi- 
nite element method fails and a special finite element method, where the pure displacement 
derivatives are taken as nodal variables, is needed [~l~2al. However. when strain gradients are 
stretching-dominated, the valid result can be obtained by using the nine-node iso-parametric 
displacement element (see [21], [23]). Obviously, for the PMMC case under the boundary 

conditions as Eq.(13), the strain gradient deformation is truly stretching-dominated. There- 
fore, in the present analyses, we adopt the nine-node iso-parametric displacement element 

and a 2 x 2 Gauss integral scheme. 

The finite element method for using the deformational plastic theory can be described 

as follows: 

(1) obtain the elastic solution: 

(2) calculate for the higher strain-tmrdening exponent case through iteration, based on 
the elastic solution; 

(3) calculate for the lower strain-hardening exponent case by iterating, based on the 
solution in step (2). 

For example, the steps of calculating for case N = 0.1 can be described as follows. 

Firstly, obtain the elastic solution. Then, based on the elastic solution, calculate for the 
case N = 0.3 through iterating. Thirdly. taking the solution of N = 0.3 as an initial 

solution, calculate for the case N = 0.1 by iterating. 

The element form adopted is shown in Fig.2. In the present analyses, the number of 

nine-node elements adopted is 1280. In Fig.2. for comparison, the cell models for two kinds 

of particles and for different particle volume fractions are shown. 

4 R E S U L T S  

4.1 Ell ipsoidal  Part ic le  Case 

Figure 3 shows the stress-strain curves of the composites for different particle volume 

fractions and different particle sizes when Young's modulus values of both particle and ma- 
trix are equal and the particle aspect ratio (the ratio of width with height of particle) is 
0.3. From Fig.3, both the particle volume fraction and the particle size have strong ef- 
fects on the composite strength. For a comparison, the case when Young's modulus ratio 
is equal to 3 is considered and the results are shown in Fig.4. By comparing the results of 
Figs.3 and 4, it is obvious that tile stress-strain curves of composites are very sensitive to the 
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b 

Fig.3 

Fig.2 Two kinds of cell models for different volume fractions. (a), (b) and 

(c) are ellipsoidal particle; (d),(e) and (f) are cylindrical particle 
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The dependence of the stress-strain curves of composite on the particle sizes and 

volume fractions when Young's modulus ratio of both particle and matr ix  is unity 
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Young's modulus ratio. The dependence of the stress-strain relations on the Young's mod- 
ulus ratios for spherical particle is shown in Fig.5. From Fig.5. the stress-strain curves are 
also very sensitive to the particle sizes, with Young's modulus ratio increasing. Figure 6 
shows that  the stress-strain curves are dependent on the particle sizes and particle aspect 
ratios. The results in Fig.6 include the three cases with different aspect ratio: the high and 
thin particle shape, the spherical particle and the fiat particle shape. From Fig.6, the com- 

posite strengthening is the smallest for the spherical particle case. When the particle volume 
fraction is fixed, for the big particle size case the composite strengths are sensitive to particle 

Fig.4 
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The dependence of the stress-strain curves of composite on tile particle sizes 

and the Young's modulus ratios for spherical particle cause 
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Fig.6 The dependence of the stress-strain curves of composite on the particle sizes 

and aspect ratio 
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Fig.7 Variations of stress with the particle size for several strain values 

aspect ratios, while with the particle size decreasing the stress-strain curves are getting 
to be insensitive to the particle aspect ratio. Figure 7 shows the stress variations with 
particle size in composite for the different strain values and the high volume fraction of the 
spherical particles. From Fig.7, the stress strongly depends on the particle size, especially 
for small particle and large composite strain. Composite strength also depends on the strain- 
hardening exponent of the matrix material from Fig.8 for the spherical particle case and the 
high particle volume fraction, when Young's modulus ratio is equal to 3. 
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Fig.8 The dependence of the stress-strain curves of composite on the particle sizes and 
the strain-hardening expcments of matrix 

4.2 Cyl indr ical  Par t ic le  Case and The Result  Compar i son  for Two Kinds  of  
Part icles  
The results of the cylindrical particle case are very similar to those for ellipsoidal 

particle. For the cylindrical particles, the comt)osite strength also strongly depends on the 
Young's modulus ratio of the particle and matrix materials, particle size and aspect ratio, 
particle volume fraction, as well as the strain-hardening exponent of matrix material. 

It is interesting to compare the results of ellipsoidal particle with those of cylind.rical 
particle when all other parameters are fixed. Figure 9 shows the detailed comparison of two 
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Fig.9 Detailed comparison of the results of both ellipsoidal particle case and cylindrical 

particle case for a series aspect ratios. From (a) to (c), k = 0.1, 1.0 and 10.0 

kinds of particles for different particle aspect ratios. Comparing the three aspect ratio cases 
in Fig.0, the following conclusions are readily obtained: (1) When particle size is large, 

there is a big difference between the results of two different kinds of particles. As the 
particle size decreases, two results tend to become consistent with each other; (2) when 
particle aspect ratio is very low (k = 0.1) or very high (k = 10), the difference between two 
results disappears very quickly. 
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5 A P P L I C A T I O N  T O  T H E  E X P E R I M E N T S  O F  A I - A L L O Y  / SiCp 
C O M P O S I T E S  

The analytical results obtained in the last section will be applied to the experiments of 
the A1-Alloy / SiCp composites. The first apt)lication is to the experiment of the A1-4wt% Mg 
alloy reinforced by the SiC particle [5]. The dependence of coml)ressive stress-strain relations 
on the particle sizes for the higher particle vohnne fraction case in experiment and analysis 
is shown in Fig.10. The experimental result corresponds to the two particle sizes, i.e., when 
particle radii are 13 micron and 165 micron. The analytical results correspond to the particle 
radii of 16 and 160 micron. According to these particle sizes, we can determine the particle 
volume Vp in the analytical results. Moreover, from Fig.10, when the composite length 
scale L is taken as 6.45 micron, both results are consistent qualitatively and quantitatively, 
when the strain value is smaller than 2~. But when the strain value is larger than 2%, for 
small particle, the analytical results go Ul) quickly and deviate from the experimental result. 
This is because that in the analytical model a perfect adhesion between particle surface 
and matrix is assumed and no particle fracture and damage are considered. Actually, the 
specimen contains always some damages and particle cracking [11']2]. 

1 2 0 0  . . . .  ' . . . .  ' . . . .  ~ . . . .  J . . . .  ' . . . .  i . . . .  I . . . .  
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Experiment for AI/SiCp ] 
8 0 0  I from Yang et al.[S] j 
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Fig.10 An application of analysis result to the experiment for Al/SiCe when particle 
volume fraction is high (fv = 0.5) 

The second application is to the experiment of the 2124A1 reinforced by SiC 
particles [~176 The dependence of the compressive stress-strain curves on the particle sizes 
for the lower particle volume fraction from experimental result and analytical result is shown 
in Fig. l l .  From Fig.11, when the composite length scale param,ter  L is taken as 4.25 micron, 
both results are consistent qualitatively and quantitatively. 

Roughly, from above applications the material length scale parameter L is dependent 
on the particle volume fraction. For the pure aluminum, the material length scale parameter 
is about 1.5 micron from micro-indentation test and analyses [~4] . 
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volume fraction is low (fp = 0.17) 

6 C O N C L U D I N G  R E M A R K S  

The results of the present study provide some detailed quantitative information on 
the particulate size effects in the particle-reinforced metal-matrix composites. The results 
show the dependence of the composite strength on the particle size, Young's modulus of the 
particle, particle aspect ratio and particle volume fraction, as well as the strain-hardening 
exponent of matrix material. For the large particle case or for the conventional theoretical 
result, the composite strength is strongly dependent on the particle aspect ratio. With 
the particle size decreasing, the composite strength increases and weakly depends on the 
particle aspect ratio. Another important conclusion is that for the large particle or for 
the conventional theoretical result, the composite strength is strongly dependent on the 
particle shapes, ellipsoid or cylinder, while with particle size decreasing, the results for both 
cases (ellipsoid and cylinder) tend to be indepcndent on the particle shapes. Especially for 
the very big particle aspect ratio or for the very small particle aspect ratio, the difference 
between two results is very small. Through applications of analyses to the experiments for 
Al-alloy reinforced by SiC particles for the higher particle volume fraction and lower particle 
volume fraction, a systematic value of the material length scale parameter is predicted. On 
the other hand, the present analyses and the applications suggest that for large strain case, 
in order to simulate the experiments using strain gradient plasticity perfectly, the damage 
or particle cracking must be considered. 

From the last section, there is a conclusion that the material length scale parame- 
ter L is dependent on the particle volume fraction. This conclusion is readily understood, 
because the composites reinforced with different volume fraction particles will have differ- 
ent macroscopic properties. From continuum mechanics point of view, the composites of 
metal/ceramic consisting of the different volume fraction ceramic particles could be thought 
as the different macroscopic materials, so that they should have different material length 
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scale p a r a m e t e r  values.  Cer ta in ly .  this  is still  open to quest ion and the  fur ther  va l ida t ion  is 

needed.  
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