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Abstract

Classical fracture mechanics is based on the premise that small scale features could be averaged to give a larger scale
property such that the assumption of material homogeneity would hold. Involvement of the material microstructure,
however, necessitates different characteristic lengths for describing different geometric features. Macroscopic parame-
ters could not be freely exchanged with those at the microscopic scale level. Such a practice could cause misinterpre-
tation of test data. Ambiguities arising from the lack of a more precise range of limitations for the definitions of physical
parameters are discussed in connection with material length scales. Physical events overlooked between the macroscopic
and microscopic scale could be the link that is needed to bridge the gap. The classical models for the creation of free
surface for a liquid and solid are oversimplified. They consider only the translational motion of individual atoms.
Movements of groups or clusters of molecules deserve attention. Multiscale cracking behavior also requires the dis-
tinction of material damage involving at least two different scales in a single simulation. In this connection, special
attention should be given to the use of asymptotic solution in contrast to the full field solution when applying fracture
criteria. The former may leave out detail features that would have otherwise been included by the latter. Illustrations are
provided for predicting the crack initiation sites of piezoceramics. No definite conclusions can be drawn from the
atomistic simulation models such as those used in molecular dynamics until the non-equilibrium boundary conditions
can be better understood. The specification of strain rates and temperatures should be synchronized as the specimen size
is reduced to microns. Many of the results obtained at the atomic scale should be first identified with those at the
mesoscale before they are assumed to be connected with macroscopic observations. Hopefully, “mesofracture
mechanics” could serve as the link to bring macrofracture mechanics closer to microfracture mechanics. © 2001
Published by Elsevier Science Ltd.

...reducing every problem to its smallest and simplest components so that it may be more easily un-
derstood and then solved. ...meddling in arcane disciplines where the mantra is “learn more and more
about less and less.

Descartes’ school of thought

1. Introduction

Fracture mechanics was born out of necessity

- . during the post-World War II period when large
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failure prevention, the discipline was developed as
a methodology rather than a science. Even though
the basic mechanisms of fracture were never un-
derstood, fracture control was successfully imple-
mented. This can be evidenced in the FAA
guidelines for certifying aircraft structural com-
ponents and sub-assemblies, NRC regulations for
nuclear reactor components (ASME Codes Sec-
tions 1T and XT), welding codes for ship structure,
etc. Much of the success depended on the transfer
of test data from specimens of the order of 10 cm
in lineal dimension to the design of full scale
structures that are several orders of magnitude
larger. Often, a prototype model intermediate in
size was needed to fill in the gap. In retrospect, the
experience and knowledge gained at that time
should be more precisely identified with macro-
fracture mechanics and structure-fracture me-
chanics so as to emphasize the scale aspect of the
problem.

The transfer of information from macrosize
specimens to full or median size structures relied
on “system homogeneity” that makes possible a
direct link between the local parameter and the
crack tip stress intensity factor, the critical value of
which corresponds to global instability. This led to
the concept of “fracture toughness” which in a
strict sense applies only to a homogeneous mate-
rial at the macroscopic scale. That is the specimen
size had to be sufficiently large in comparison with
the characteristic length of the material micro-
structure.

The fundamental nature of the foregoing re-
marks cannot be overemphasized when the con-
cept of fracture toughness endorsed of ASTM was
applied to composite materials that are no longer
homogeneous. The classical critical energy release
rate or stress intensity factor became dependent on
the fiber orientation, stacking sequence, and so on.
The interaction effect of load and geometry can no
longer be sorted out from the material parameter
that fracture toughness did for the homogencous
material. Being a tailor-made material for serving
a specific mission, it would be futile to standardize
composite material testing because this would de-
feat the purpose of its very own existence.

Applications of macrofracture mechanics to
examine the failure of functional materials [1,2]

used for electric devices have been problematic and
frustrating after recognizing that the structural
device is many times smaller than the standard
ASTM fracture test specimens. It makes little sense
to apply the data collected from a large structure
as an average to analyze the behavior of a portion
of its constituents. Preservation of the degree of
homogeneity between the structure and specimen
has been violated. To put it in short terms the data
transfer process cannot be reciprocated.

It is now more than 35 years since the first In-
ternational Conference of Fracture (ICF) was held
in Sendai, Japan. The objective then was for the
dislocationists and continuum mechanicists to in-
teract with the anticipation that the micro- and
macroapproach of fracture could join together.
The 10th anniversary of ICF held every four years
will soon take place in Hawaii, December 2001.
With the Pandora’s box of fracture mechanics
open, it is fair to say that the problem of fracture
has been found to be far more complex than it was
envisioned in 1965. High power resolution election
microscopes continue to supply detail features of
the material structure that have escaped the at-
tention of the theoreticians. The micro/macro gap
is overflowing with information; there appears the
need to refine the scale divisions. The range in
characteristic size should perhaps include a seg-
ment for mesoscopic events in between those for
the microscopic and macroscopic scales. Even
nanostructure materials are being considered as a
challenge for the 21th century. While the origin of
failure will probably never be found, it is still
helpful to learn “what is not”. For decades, dis-
locations were considered to be the source of
failure initiation. However, they are too large to
prevail at the nanoscale. Does this mean that
nanomaterial will never fail?

This work will take the opportunity not only to
point out the intricacies of the free surface creation
process being fundamental to fracture but also
cautions not to overlimit the application of con-
tinuum mechanics theories to specific scale size.
Keep in mind that continuum mechanics is free of
inherent characteristic length as long as continuity
is satisfied. What should be more carefully ob-
served is the use of asymptotic and full field solu-
tion when analyzing fracture sites. The exclusion
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of higher-order terms in a limiting process may
exclude certain detail features that were over-
looked previously and could be relevant to multi-
scale fracture problems. Physical understanding of
the fracture process should take precedence even
when analytical and experimental results seem to
agree.

2. Mechanisms of free surface creation

Failure by fracture rests on the notion that free
surface area is created when the prevailing driving
force exceeds that which holds the atoms together.
The threshold for permanent separation of the
atoms has been identified with the cohesive bond
strength. A specific surface energy is thus defined
to represent the energy required to create a unit
free surface area.

2.1. Equilibrium and non-equilibrium free surface

Hypothetically speaking, free surface may exist
only in a perfect vacuum where all disturbances
are absent. Equilibrium mechanics defines a free
surface by the traction free condition

T, = 6un; — 0, (1)

where ;" ; stand for the tractions on the surface with
the outward unit normal vector components ;.
The stresses are o;;.

In a non-equilibrium theory of thermome-
chanics [3,4], the free surface still corresponds to
the traction free condition but the surface may
undergo oscillation depending on the characteris-
tic length parameter dV/d4 which represents the
differential rate change of volume V' with surface
area A. The oscillatory character of the free sur-
face may be expressed as [3,4]

Tizajinj+(poﬁi—Fi)(%)n—>07 (2)
where u; are the displacement components, F; the
body forces and p, is the mass density. Dot de-
notes time differentiation and hence p,ii; stands for
the inertia which tends to increase with decreasing
scale size. The product p,ii;(dV /d4), is not negli-

gible. Rippling of a liquid surface is not an un-
common phenomenon.

The flow of air next to the surface of a solid
aluminum cylinder stretched at a strain rate of
1.27 x 1073 s7! has been studied in [5]. Next to the
air/solid interphase, both the thermal and me-
chanical responses are highly transient in charac-
ter. For an open thermodynamic system, there
prevails only bi-phase problems where the condi-
tions on the interphase are determined rather than
pre-assigned as it is necessary in boundary value
problems for closed thermodynamics systems. To
be kept in mind is that classical mechanics deals
exclusively with closed systems where the concept
of a “free surface” follows the mathematical con-
dition of Eq. (1) rather than what takes place in a
test. The deviation from reality could be of first-
order magnitude when the scale level of investi-
gation is reduced to micro- and nanoscale levels.

2.2. Breaking of atomic bond strength

Suppose that a fracture surface could be ideally
modeled by two adjacent planes of atoms sepa-
rated by a distance a, of the order of 10~% c¢cm as
shown in Fig. 1(a). The uniform local pulling
stresses ¢ are resisted by the bonding forces be-
tween the atoms with a threshold quantified by the
bond strength g.. The corresponding displacement
is x. beyond which the atoms would no longer
return to their original positions. Lacking a
knowledge of how ¢ would vary with x, a linear
relationship [6] in Fig. 1(b) is assumed. The work
done per unit area for breaking the atomic bonds
can be calculated as

2y, = /'C o(x)dx = loexe. (3)
0

If x./ao is defined as the cohesive strain, then a
linear stress—strain relation gives

with ¢, being a measure of the stiffness response.
Eliminating x. between Egs. (3) and (4), there re-
sults the cohesive bond stress
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Fig. 1. Adjacent planes of atoms under stress: (a) atomic planes; (b) bond stress versus distance.

o, = 2\/6—_6\/)7C . (5)
ao

This result differs from that in ordinary textbooks
by a factor of 2 owing to the difference of using a
linear stress—strain curve in Fig. 1(b) and a sine
curve, the assumption of which is also arbitrary. A
replacement of 4¢, by E, puts Eq. (5) in textbook
form as o, = \/Eyy./ao. Here, Young’s modulus is
Ey. The cohesive bond strength ¢, has been re-
ferred to as the ‘““ideal” strength of a solid. It is
approximately two orders of magnitude higher
than the ultimate strength ¢, measured from
specimens at the macroscopic scale.

For an order of magnitude comparison, con-
sider drawn silica glass [7] with Ey/g, = 7.35 and
Ey = 73.5 GPa. The atoms or molecules are about
3 x 107® cm distance apart. Using the measured
values of o, [7] instead of the ideal strength o,
Eq. (5) becomes 7y, = ao(o,/Ey)o,. This gives
7. = 392 Pa m. Free interchanges of e, with Ej
and o, with o, at the different scale levels are
common and will be discussed subsequently in
connection with scale shifting [8].

2.3. Surface tension of a liquid

A liquid can minimize its surface energy by
adopting a shape of minimum surface area as if

enclosed in a tensile skin. The process involves
bringing internal particles (or molecules) from the
interior to the surface. The increases in the number
of particles cause stretching of the skin. The re-
sulting constant tension is known as “surface
tension” 7y, in contrast to tensile force between
particles, Fig. 1(a). The creation of new free sur-
face by stretching is illustrated in Fig. 2.

The difference between the ideal and measured
strength of glass fibers has been attributed to the
presence of surface flaws [9] that were not con-
sidered in Eq. (5). A crack growth instability
model was proposed; it consists of a narrow ellipse
with surface area 4a - 1 with unity assumed as the
thickness. With a 10:1 aspect ratio of the ellipse,
the area of the upper and lower surface is assumed
to be evenly divided. For the mathematical model
to be consistent with the physical model [9], the
periphery of the narrow elliptical cavity was visu-
alized to expand confocally and collapse like a
soap bubble. Recall that the collapse condition for
a spherical bubble with radius R under uniform
pressure p is given by pR = 2y,, where y, is the
surface tension. The equivalent expression for a
narrow elliptical cavity in Fig. 3(a) has been de-
rived [6]:

pa/alp 4

K(k) T Vss B=1- (p/d),

(6)
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Fig. 2. Schematic of free surface creation: moving particles to surface.
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Fig. 3. Stretching behavior of narrow elliptical cavity: (a) narrow ellipse; (b) variations of p with a.

where p = b%a is the radius of curvature of a
blunted crack front and K (k) is the complete el-
liptical integral of the first kind with argument k.
Fig. 3(b) displays the variations of p given by Eq.
(6). The dominance of p*a = const. is clear. This is
reminiscent of the ¢’a = const. relation for the
Mode I stress intensity factor in linear elastic
fracture mechanics (LEFM). Although the decay
of the applied stress or pressure with defect (crack)
length has the same trend, the free surface creation
process differs in basic character: one is bond
breaking for the solid and the other is thin film
stretching for the liquid.

Consistent with the surface tension model of a
narrow ellipse, silica glass fibers were heated from
745 to 1110 °C [9] so that the glass would become
viscous and flow. A reported value of 437.5 Pa m
was identified with 7 ; it was extrapolated to 524.5
Pa m at 15 °C with the aim to explain the fracture

behavior of glass in the solid state. Whether the
extrapolation would indeed change the free surface
creation mechanism from surface tension to bond
breaking is doubtful. Moreover, the mechanisms
of free surface creation may depend on the net-
work structure of the glass that determines the
extent of viscous flow. Note the orderly network of
silica in the form of quartz in Fig. 4(a) as com-
pared with the disorderly form for glass in Fig.
4(b). The network formation would necessarily
impose constraints on the movements of the mol-
ecules and hence on the process of free surface
creation.

2.4. Amorphous material behavior
When glass is heated to a viscous state, it will

neither behave completely as a liquid nor as a
solid where the atoms or molecules would only
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Fig. 4. Network structure of silica (orderly and disorderly): (a) quartz crystal (orderly); (b) glass (disorderly).

move in translation. However, there cannot be a
complete distinction between these concepts. Vis-
cosity could alter the network such that the mol-
ecules could move in groups undergoing
translation as well as rotation. The classical defi-
nitions of surface tension and bond breaking re-
ferred to individual molecules may not hold. To
emphasize that molecules could move in clusters
such that free surface is created by translational
and rotational motions of these clusters from in-
side to the free surface is illustrated in Fig. 5. It is
necessary to examine the “mesoscopic” range. Not
individual molecules but groups of them are the
key players. The same holds for dislocations in
relation to formulating elastoplastic theories
where the essential features of plasticity are mes-
oscopical in character. The interest would be dis-
location groups rather than individual dislocations
[10].

Moreover, molecules near a surface are less
constrained than those inside. They are more likely

to be distorted by shear. Referring to Fig. 6(a),
antisymmetry of the stress tensor t;; # t; in the
boundary condition T; = t;n; defined in Eq. (2)
gives a moment, M = 1,, — 7,,. Consider only the
x- and y-components for illustration, the in-plane
shear stress components are:

. (dV
Txy = Oyy + Poly a )

" <dV> @
Tyx = Oy + Poltx a .

Rotary motion is thus enhanced near the surface,
particularly when the inertia terms in (7) are
appreciable. Remember that a normal macro-
strain rate may correspond to extremely high
rates at the microscale or atomic scale. It can be
as high as 10°-10'> s~'. This was pointed out in
[11,12] with reference to the application of the
atom embedded method (EAM). In this sense,
local inertia effects represented by the terms p,ii,

/—Free surface

o
( o0,
7\ 9
d 7 N 2 4
Cluster

Fig. 5. Motion of a cluster of molecules.
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Fig. 6. Rotational action in free surface layer: (a) surface layer; (b) vortex action.

and p,ii, could be large even though (dV/d4),,
j=x,y may be small. Vorticity may thus be
present, Fig. 6(b). Indeed, this was observed in
[13-15] at the scale level of inhomogeneities such
as inclusions, grains, etc. They occur in the
mesoscale region within which the action of
shear + rotation is significant. These observations
would normally be bypassed because attention in
the past have been focused primarily on the
macro- and microscales.

Recent advances in nanomaterials and nano-
liquids have also led to the speculation that atoms
may group as clusters (Fig. 5) in situations where
the bonding forces are highly non-uniform. This
may be created by chemical reactions and/or
powerful laser beams to stir up the atoms and
create differences in the bonding. Those with
stronger bonding would self-organize themselves
and form a crust trapping the ones with weaker
bonding inside. Individual units of nanometer size
could presumably be stabilized without merging
into one another. Note that one nanometer is one-
billionth of a meter. It is a linear distance spanning
approximately 10 atomic diameters.

3. Void or cavity creation mechanism

The creation of voids or cavities in solids is
caused by material microstructure inhomogeneity
and hydrostatic tension. The sites of nucleation
correspond to local regions where volume change
would dominate in relation to shape change. The
terminology “‘notch embrittlement” applies to the
situation illustrated in Fig. 7(a). Grains in a
polycrystal are highly inhomogeneous. The crack
front would seek out the stronger grains and rest
against them. The local hydrostatic tensile stress
field pulls the cluster of grains evenly on all sides,
dissipating relatively little energy in distortion.
Under increasing load, the local hydrostatic ten-
sion would break the weaker grains which are al-
ways situated at a finite distance away from the
crack front. For stretched thin metal foils, voids
have been observed to occur ahead of a main crack
as bright spots where light is projected to the back
of the foil, Fig. 7(b). Crack growth takes place due
to coalescence of these voids; it is a discrete rather
than a continuous process assumed in idealized
theoretical models. Such a behavior is more pro-
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Fig. 7. Mechanism of void creation: (a) grain inhomogeneity; (b) coalescence of voids.

nounced in the ductile metal although grain
cracking in ceramics prior to growth of the main
crack is common. As a rule, microcracking occurs
readily in brittle materials and can be quantified by
acoustic emission counts.

3.1. Volume energy density

Consider a unit volume of material ahead of a
macrocrack that is many times larger than the
grain as shown in Fig. §(a). A core region of radius
ro 1s introduced as a scale length that separates the
regions of macroscopic homogeneity from those of
microscopic inhomogeneity. This is illustrated in
Fig. 8(a) with an enlarged view of the volume el-
ement in Fig. 8§(b) in two dimensions. The pa-
rameter ro also marks the cutoff distance for stress,
strain energy density, etc., that would tend to be-

Element

r, Core

(a)

yA

come unbounded as r tends to zero. Here, r is
limited to ry and is no smaller.

More specifically, let the energy stored in a
differential volume dV be written as [16-18]
dw S
v r’ ®)
in which S is known as the volume energy density
factor. It represents the area under the dw/dV
versus r curve, Fig. 9 and stands for the energy
release if the crack extends an amount » — . The
distance ry should be kept very small »y/r < 1 such
that the shaded areca ABCD in Fig. 9 is negligible
when compared with S. Otherwise, ABCD would
contribute to crack growth overshoot, an effect
that is not insignificant [19,20]. The critical value
(dw/dV), corresponds to the onset of stable or
unstable crack growth depending on the condi-
tions that

ry

o
(b)

X

Fig. 8. Schematic of near tip volume element: (a) core region; (b) near tip element.
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In fact, (dW/dV), is the area under the uniaxial
true stress and true strain curve:

(i—f)c — /0 o(e) de, (10)

where ¢ is the critical strain.
The ASTM valid plane strain toughness value
Kic is related to S, by the relation

(14+v)(1 = 2v)K{:
2TCE() '

Even though the 1/r decay for dWw/dV coin-
cides with the 1/y/r stress singularity solution
obtained from linear elasticity, Eq. (8) remains
valid for elastoplastic materials in general. In ad-
dition to the definition for S, Eq. (8) would give
finite energy upon integration around the crack
tip, since the differential element area depends on
r. The volume energy density has been referred to
as the absorbed specific energy in [21-23] and used
as a parameter for ranking the resistance of the
material to fracture. It was adopted in the Hun-
garian codes and used for fracture testing.

3.2. Inherent coupling of distortion and dilation

No difficulties would be met with when using
the volume energy density as a fracture criterion
[17]. Remember that the specific surface energy 7,
was unable to characterize the different viscous
states of glass as it flows and solidifies. The sta-
tionary values of dW/dV can automatically ac-
count for the proportion of distortion (ductile
behavior) and dilatation (brittle behavior). When
non-linearity is present, it is not possible to use
linear elasticity and divide d /dV into a part for
dilatation

dw 1 —2v
(7)), = o ror 12

and another for distortion

dw _1+v[( _
av ), ” 6k, "\

+ (0. — 0,)’ + 602 ). (13)

2 2
a,)" + (o, = 02)

Egs. (12) and (13) apply to plane strains, where
0. =v(0, +0,) and ¢,. = g, = 0. With reference
to the principal planes, o, =01, 0, =0, and
o, = 0. Plasticity being a non-linear theory,
however, assumed linearity as an a priori by using
Eq. (13) for the yield criterion (von Mises). The
neglect of Eq. (12) ahead of the crack front is not
justified because the hydrostatic tension is so high
that it leads to void creation, Fig. 7(b). Classical
plasticity theory tends to underestimate the state
of affairs local to the crack [24,25] by a large
margin.

Additional insights may be gained by observing
the differential change of volume dV which is rel-
atively small if dilatation dominates, Fig. 10(a)
and large if distortion dominates, Fig. 10(b). In
plasticity, dV = 0 appears to be invoked as a rule
rather than the exception. In general, the propor-
tion of distortion to dilatation should be deter-
mined analytically or measured experimentally. In
two dimensions, d/dV is a function of both r
and 0 and may be taken to determine the sites of
the relative minimum and maximum with the in-
terpretation that
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daw
Relati ini f —:
elative minimum of —--

Dilation > Distortion,

Relative maximum of d—W :
dv

Distortion > Dilation.

(14)

The conditions in Egs. (14) could be checked ex-
plicitly for the linear case where the elasticity so-
lution of a Mode I crack is readily available.

3.3. Sites of yielding and fracture

The Mode I crack behavior will be used for il-
lustration. By substitution of the crack tip stresses
[17]

ol cose [1 sine sinw} +
Ox = —F7=— = |1 = = — e
V2mr 2 2 2
K, 9{ .0 . 39}
0, =——=cos |l +sinzsin—| +--, 15
Y22 5 Sin (15)
K 0 .0 . 30
Tyy = —=—=COSz SN~ SIN—+ - -~

e 22 2

into dW/dV for plane strain, it is found that

aw_ K
dv — 16mur

[(3 —4v —cosO)(1 + cos 0)], (16)

with 2y = Ey/(1 + v) being the shear modulus of
elasticity. Instead of having both r and 0 as vari-
ables, consider » = ry as a constant and seek only
for the variations of dW/dV with 0. Taking
o(dw/dV)/o8 =0, two possible solutions are
found:

0o =0, coslO,=1-—2v. (17)

These results can be inserted into the second de-
rivatives of dW /dV with respect to 6 and show
that the first and second angles 0, and 0, are
summarized in Figs. 11(a) and (b).

Substituting Eqs. (15) into Eqgs. (12) and (13),
gives for 0y = 0 the results

r0<dW>v _ 2K (1=2v)(1 +v),

dv ). 3mE
dw ITE<20 (18)
—_— f— 1 J—

r"(dV>d 27TEo(l+v)(1 2v).

Egs. (18) shows that

daw dw
(d—V)V> (W)d for 00—0 (19)

The crack is thus predicted to grow along the di-
rection where dilatation is greater than distortion.
Similarly, the second solution cosf, =1 —2v in
Eq. (17) yields

r0<ip;>v = ?flEo (T+v)(1=v)(1=2v),

avy _ AL vy 2
rO(dV)d 67‘CE0(1 v (1 — v+ 4v),
where
dw dw B »
<dV)d> <dV)v for 0, = £cos™ (1 —2v).
(21)

Yield initiation is predicted to occur off to the sides
of the crack, the direction of which depends on the
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Fig. 11. Direction of yield and fracture initiation: (a) Mode I crack; (b) angular variation.

Poisson ratio. For an incompressible material
v=1/2, 0, =90°, i.e., the plastic enclaves would
be directed normal to the crack. Egs. (20) also
show that (dW/dV), and (dW/dV), differ by 4-5
times depending on v and never by an order of
magnitude. It is, therefore, not justified to neglect
(dw/dV), in comparison with (dW/dV),, an ar-
gument often adopted in plasticity to use the von
Mises’ yield criterion. To reiterate, the sites of
yielding can be located simply by computing for
(dW /dV),,..- For regions not so close to the crack
tip, the locations of (dW/dV),,, are found to be
near the sites where the von Mises or effective
stress is maximum.

Another piece of information follows directly
from Fig. 11(b) which shows the angular varia-
tions of dW/dV. The threshold plateaus for
yielding and fracture initiation correspond, re-
spectively, to the lines (dW/dV), and (dW/dV),,
where (dW/dV). > (dW/dV),. As the load is
raised, the curve dW/dV would elevate and meet
with the threshold lines at 0, for (dW/dV),,., and
0. = 0° for (dW/dV),,.,- The former would always
precede the latter. That is yielding will always first
occur off to the side of the main crack prior to
crack growth. At a given scale level, zones of
yielding tend to surround the prospective path of
crack where stiffness has been built up. This can be
observed from the formation of cup and cone after
necking of a cylindrical bar [26]. Shear lips formed

after dimpling of a finite thickness plate with a
through crack is another example [27].

3.4. Mutual dependence of volume and surface

The notation dW /dA was used in [28] to denote
the “work per unit area for fracture propagation”;
it is related to the Mode I plane strain stress in-
tensity factor as

~ [E, aw
M=Vt ar @)

where E, and v are, respectively, Young’s modulus
and the Poisson ratio. In Eq. (22), the differential
increase in crack surface d4 is straight ahead of the
original crack plane.

In general, dW/dA would be a vector quantity
that could have three components (dW/d4),
identified with the coordinate axes j = x, y,z. Since
a finite volume 7 must necessarily be an integral
part of the surface area 4 and vice versa, dV/d4 is
a non-zero quantity. It is also a vector having three
components j=x,y,z denoted by (dV/d4), It
follows that

aw dry\ dw .
<a>l <a>jﬁv J=X%),2, (23)

where dW /dV is a scalar. In the linear theory of
elasticity, (dV'/d4),; (j = x,y,z) are given by




382 G.C. Sih, B. Liu | Theoretical and Applied Fracture Mechanics 37 (2001) 371-395

dv _sx—|—8y+gz€
d4 /), e +e 0r00

dv _8x+sy+szg
d4 ). e +e 0

(24)

where /¢, is the characteristic length of the element.
It follows that

d_V— d_V2+d_Vz+d_Vz.£
da| \\da), "\da), "\da), ™

(25)
It follows that
dw| |dv|dw
‘a g (26)

Consider Mode 1 loading with K; = oy/7a,
where ¢ is the remote loading applied to a crack of
length 2a in a large elastic body. To illustrate the
size dependency of |[dW /dA| on an element ahead
of the crack, an estimate will be made for silica
glass fibers (~10~* cm diameter) that were studied
in [9]. Their mechanical properties are given in [7]
referring to Fig. 8(a) for 0 =0, i.e., an element
directly ahead of the macrocrack. Eq. (16) gives
the volume energy density

dw (14+v)(1=2v) ,/a
ar - 2E, ¢ (?) (27)

based on the asymptotic solution which is the ex-
act solution for a/r = 10. The remote stress o is
related to the local stress pulling on the element
with an ultimate strength o, for silica glass, i.e.,

1
o’ :Z<§)ai. (28)
The surface flaws are assumed to be 1073 c¢cm in
length and their sharpness is specified by
p/a=10"1

For silica glass, Ey/o, = 7.35,v=10.25, 6, = 10
GPa, Eq. (18) can be substituted into Eq. (27) to
give dW/dV =10.629 x 10’ Pa. The stresses in
Egs. (15) for plane strain and 6 = 0° are given by

O__a_a\/a s to 2a
x )/'_\/2—’:7 z \/; I (29)

Ty = Tz = T = 0.

The corresponding non-vanishing strains are

~(14+v)(1=2v) ay/a
=&y = E; N (30)

Substituting Eq. (30) into Egs. (24), it can be easily
deduced from Eq. (25) that |dV/dA| = 3¢,, where
4y is taken as 10~° m. These results can be substi-
tuted into Eq. (26) to yield [dW/dA|=
318.87 Pa m. It applies to the energy transmitted
into three orthogonal surface area of an element
ahead of a crack.

Note that dW/dA and dW/dV must be mutu-
ally interactive because surface and volume co-
exist as part of the same body. Under rising load,
material discontinuities grow gradually in size ac-
cording to the degree of homogeneity. For defi-
niteness sake, consider element sizes of 1074, 103,
and 1072 ¢m in lineal dimension. While energy is
transmitted across a surface (or interface), the
surface energy density would increase with time
such that small size discontinuity occurs earlier at
some critical value (dW/dV),.. Larger size discon-
tinuities would follow in time as load continues to
increase, Fig. 12(a). The variations of volume en-
ergy density dW/dV would follow an opposite
trend, i.e., the curves would increase with time,
slowly at first and then more rapidly, Fig. 12(b).
These time characteristics of imperfection size be-
havior have been analyzed by the non-equilibrium
thermomechanics theory [3,4].

3.5. Crystal size determination

The nucleation process of crystals depends on a
host of factors such as dislocations, pre-existing
heterogeneities, etc. In the ideal case of a spherical
nucleus of radius R, the Gibbs’ free energy AG for
the homogeneous nucleation is given by

AG = 4nR*AG; + #4nR*AG,. (31)

The critical radius Ry, can be found by taking
d(AG)/dr =0, i.e.,

Ry AG,

2 T AG,

(32)

It follows that the critical activation energy for
nucleation is AG, = (161/3)(AG;/AG?). In fact,
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Fig. 12. Size and time interaction of surface and volume energy density: (a) surface energy; (b) volume energy.

Eq. (32) can be derived directly from Eq. (23) or
Eq. (26) where dV/d4 is a scalar for the uniform
expansion of the spherical body. For V = 4nR?/3
and 4 = 4nR*, dV /d4 = R/2 and Eq. (32) is in fact
Eq. (26).

The quantities d¥/d4 must remain finite in the
crystal nucleation process; they determine the
mismatches from crystal to crystal at the interfaces
as well as the sizes of crystals.

4. Multiscale cracking behavior

Interaction of macrocrack with microcracks
involves materials that are damaged at different
scale levels. This class of problems [29-34] may
require two orders of magnitude sensitivity to
capture the detailed features of the macro- and
microcrack interaction if they were to be solved in
a single simulation. An alternative would be to
solve macro- and microcrack problems separately.
The results are then connected by using a scale-
independent criterion based on ‘“force” or “‘ener-
gy”’. Scale shifting factors can thus be derived to
transfer stress defined at one scale level to another,
say from macro- to micro- or mesoscale.

4.1. Scale of material structure and imperfection
Modeling multiscale features involves a de-

scription of the material structures and the corre-
sponding physical imperfections that possess

patterns and size scales of their own. While no
intention is made to develop the formalism and
convention for their classification, it is necessary to
distinguish the different features at the different
scales as a matter of convenience for reference.
What the naked eye could see serves as a logical
base of reference (macroscopic) from which the
scale in lineal dimension can spread out in as-
cending and descending order of size. For the lack
of a better choice, this work shall adopt the fol-
lowing convention on the centimeter length scale:

Macro:  107°-1072 cm,
Meso: 107°-107* cm, (33)
Macro:  107°-107° cm.

The mesoscale not referred to ordinarily is added
to refine divisions in lineal dimension between the
micro- and macroscale; it still covers two orders of
magnitude in cm and may require further refine-
ment.

Geometric features of material structure involve
atoms, arrangement of atoms in crystal lattice,
grain, grain cluster, etc. Imperfections are created
at each scale level according to the geometry and
energy state of the material structure. They may
include dislocations, voids, inclusions, micro-
cracks, etc. The picture Fig. 13(a) shows a BCC
crystal lattice (10~® cm). Imperfections at this scale
could appear as dislocations in a grain as slip line
or at coherent grain boundaries as edge disloca-
tions. Voids and inclusions (107°-~10~° cm) are
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Fig. 13. Detail features of material microstructure and associated imperfections: (a) lattice and dislocation (10~ c¢m); (b) voids and

inclusions (107°-107> cm); (c) grains (1073-1073 cm).

often found in the grain and at the grain bound-
aries, Fig. 13(b). Note that grains can also react as
a cluster (1075-1073 cm). This is shown in Fig.
13(c). Details of the atomic level (10-* ¢cm) would
entail electrons spinning about the nucleus
(10~'% cm) that contains the protons and neutrons.
Nanoscale technology has already merged into the
region of electron cloud. At this scale level, im-
perfections are no longer associated with geometry
but with inhomogeneities in the energy density
field of electrons. An interface [35,36] would be
associated with the barrier where the densities of
the electrons on both sides are different. It is not
surprising that the particle physicists have long
recognized the association of size with energy level,
i.e., the equivalence of a GeV to distance of
1074 cm.

4.2. Scaling in mechanics

Classical continuum mechanics is said to have
left out the size effect when letting the element size
or dV/d4 to approach zero in the limit. The dif-
ference between letting a mathematical quantity to
approach zero and having it to be identically zero
may appear to be subtle. It has far-reaching im-

plications. This can be illustrated using the theory
of elasticity as an example. Recall that the classical
boundary traction conditions in Eq. (1) are ob-
tained from Eq. (2) by letting d¥/d4 to vanish in
the limit as the continuum element shrinks to zero.
It is clear that the increment change in volume AV
of an element in elasticity is the first strain in-
variant given by

AV =g +¢ +e., (34)

as discussed earlier in relation to Eq. (27) or Eq.
(26).

Clearly, AV /A4 (or dV/d4) is not zero even
though the limit AV /A4 — 0 was invoked in the
formulation of the theory. The implication is that
AV /A4 from the jth element to the nearest
(j + 1)th element should be confined within a limit

(ar),~ (50),,

This limit § should be as small as possible. Eq. (33)
implies a length scale limitation in continuum
mechanics theories, the implications of which as-
sociated with finite element numerical calculation
can be found in [37].

=< (35)
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4.3. State of affairs near crack tip

The free surface creation model in [9] was ap-
plied to analyze cracking of solids for more than
two decades before attempts were made to asso-
ciate it with the crack tip detail features. X-ray
photographic results of apparently brittle fracture
of low carbon steel [38] were reported to have
detected a thin layer of material at the surface that
contains significant plastic deformation. A quan-
tity y, referred to as “plastic work™ was introduced
and estimated to be of the order of 10° times
greater than y, surface tension measured in [9]. The
critical macrostress relation was modified as

2%,

2E,
p (7s +7p) =

—_—T
na ‘P

o= (36)
It was argued [38] that since y, > y, the original
expression of o [9] for plane stress could be mod-
ified simply by letting y, equal to y,. Such an in-
terpretation, however, could not be justified by
comparing physical quantities at different scale
levels. This was pointed out in [8] that a scale
shifting factor should be used when relating scale-
dependent quantities from one scale to another. A

factor in the term +/2a¢E,/mpe, was suggested
such that Eq. (34) should have been written as

o /2E() 2 ap E()
Omacro = a - ( P ) (eo ) V Ymicro- (37)

The middle term on the right-hand side of Eq. (37)
was referred to [8] as the ““scale shifting factor”. If
ap and e, are taken as microscopical parameters,
then y in Eq. (37) will follow such that y — y......
All quantities on the right of Eq. (34) without
subscripts refer to the macroscopic scale. More
precisely, Eq. (37) was derived from the relation

Ymicro

T [ Qo €y 3 4
Tmiero. _ T (G0) (€0} 03 100, 38
Ymacro 2 < p ) <E0) ( )

which can be applied between any two different
scale levels.

A descriptive account of the state of affairs near
a Mode I crack tip can be found in Fig. 14. Di-
rectly ahead of the crack, the macroelement AxAy
is in a state of hydrostatic tension when dilatation
would dominate. This can be shown from the re-

sults in Egs. (18) and (19). However, the smaller
distortion energy density (dW/dV), could con-
tribute to shear of a thin layer at a lower scale level
which could have been the layer referred to in [38].
By the same token the element off to the side of
macrocrack is under severe distortion as described
by Egs. (20) and (21). The dilatational energy
density (dW/dV), in Eq. (20) is smaller than
(dw/dV), but not negligible; it yields a dilata-
tional field at a lower scale level and could lead to
small cracks in a slanted zone, Fig. 14. Such lower
scale cracks normal to the load have been reported
by experiments. These smaller cracks have been
loosely referred to in the past as microcracks.
More exact measurements should be made to re-
cord their sizes in order to better understand the
mechanisms associated with their creation for a
particular material structure and strain rate.

4.4. Scaling range

One of the key issues in fracture mechanics has
been involved with establishing greater precision in
the analytical description of multiscale fracture/
failure problems. This would require a knowledge
of the range of characteristic lengths that could be
embedded in a single simulation. Is it realistic to
perform calculations covering both the macro-
scopic and microscopic effects or must it be done
separately and then seek for conditions to connect
the results? Keep in mind that almost all present-
day calculations are made by invoking equilibrium
mechanics assumptions. That is for a closed ther-
modynamic system where boundary conditions are
specified rather than treated as unknowns for an
open thermodynamic system [3,4]. It is still puz-
zling as to how the scale-discrete solutions could
be connected without knowing that some pertinent
information could have been smeared at the ter-
mination of one scale and the start of another. To
put it more bluntly, the connection of macroscopic
and microscopic results as stated may not even be
a valid choice. There is the problem of synchro-
nizing the size, time and temperature variables at
the same scale level [3,4] not to mention how in-
formation could be uniquely transferred from one
scale to another. In principle, a one-to-one corre-
spondence should be observed between the results
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Fig. 14. Zones of distortion and dilatation ahead of a macrocrack in tension.

for two adjoining scales, the range of which should
be established by rational means rather than in-
tuition. Generally speaking, a fixed set of micro-
scopic entities would yield a unique macroscopic
average. The converse may not hold. That is a
macroscopic average may correspond to several
smaller scale detailed features. Scale interactions
do not reciprocate. It is, therefore, useful to es-
tablish cross-scale criteria based on ‘“force” or
“energy”’ that are independent of scale. It would
be incorrect to equate microstress to macrostress
or microstrain to macrostrain for their definitions
are size dependent. Macrostress and microstress
refer to respective units of MPa and GPa; they
address defects that may have several orders of
magnitude difference.

The relation given in Eq. (38) for two different
scale levels may be established by using the force
criterion. It could not distinguish macrofracture
from microfracture or vice versa. Suppose that
incipient fracture is assumed to occur at a critical
force f. which can be written in terms of stresses as

Omicro * ALO 1= Omacro * AL - 1, (39)

where AL, and AL refer, respectively, to micro-
scopic and macroscopic element sizes with unity in
thickness for a two-dimensional model. The same
applies to the energy criterion

2Vmicro : ALO 1= 2“))macro AL - 1. (40)

The factor 2 is indicative of the creation of the
upper and lower crack segments. Eq. (40) gives
AL

- = — 10310
AL, ’

Vmicro

41
’ymacro ( )
which is an inverse length proportional relation for
scale shifting. Eqgs. (39) and (40) show that the
force and energy criterion are equivalent:

Omicro __ Vmicro

(42)

ﬂ
Omacro Vmacro

Making use of Eq. (5) for 4ey = E with o, and 7,
being microscopic and using the original equation
o6 = +/(2Ey/ma) -y, [9] with 7, and ¢ being mac-
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roscopic, there results Eq. (38). As mentioned
earlier, the form of Eq. (38) holds for any two scale
levels where the stress—strain relationships were
assumed to be linear. Correction for non-linearity
is not the essence of this discussion. What is more
relevant is to establish the order of magnitude of
Eq. (41) and the corresponding physical mecha-
nisms associated with the surface creation process,
SAY Vnano> Vmicro> Vmeso> and Ymacro* The gap between
Vmicro ANd V.00 as stated in Eq. (41) should per-
haps be shortened to that of y,,,..o and y..- Based
on the experimental observations in [13,14], it
might be worthwhile to examine whether indeed
the creation of mesocracks is intimately associated
with the action of shear + rotation.

4.5. Stable and non-stable growth

The current trend of miniaturization has called
for greater details of the material structure. Re-
duction in size appears to be traded by an increase
in speed [39,40]. Temperature also interacts and
tends to decrease. These effects can be predicted in
a consistent fashion using the non-equilibrium
thermomechanics theory developed in [3,4].
Atomic simulations could not resolve the funda-
mental problem of scale interaction because the
solution depends on the boundary conditions at
the atomic scale level. They are in fact unknowns
and should not be assumed intuitively or other-
wise.

In view of the lack of consistency for specifying
the spacial/time/temperature interactive effects,
interpretation of test results would be premature
until the physical parameters are shown to remain
valid within the scale range they are defined. Ma-
croscopical definitions rely on material homoge-
neity; they cannot be applied to explain local
events that are dictated by microscopic detail fea-
tures. Mixing scale sensitive quantities introduces
arbitrariness and uncertainties into the outcome.

Recent works [41-43] on cracks that undergo
subsonic-to-intersonic transition should be scruti-
nized in view of the foregoing comments. To reit-
erate, ‘“‘transition” represents a break-down or
range limitation of a mathematical formulation.
The piecemeal treatments of subsonic, transonic
and supersonic problems simply mean that these

phenomena have to be analyzed in segments. No
such distinctions need to be made in the ther-
momechanics theory [3,4]. To claim that a crack
has propagated beyond the Rayleigh wave speed
as a contraction in continuum mechanics [43]
would be unjustified should the explanation lie
simply in a violation of the definition of Rayleigh
wave speed. It is a continuum mechanics parame-
ter that applies strictly to a homogeneous situa-
tion.

On physical grounds, the speed of a crack
propagating in a self-similar manner could in-
crease or decrease depending on the resistance
offered by the material ahead. Suppose that the
crack tip radius of curvature and the material
weakens in time, then the crack speed would in-
crease monotonically for the same driving force or
available energy. There is no reason why the speed
of a crack with a smaller opening would not exceed
that with a wider opening.

Interaction of macro- and microcracks is also
common in brittle composites and ceramics.
Damage may not always be localized to the im-
mediate vicinity of a dominant crack front. Test
results for ferroelectric ceramics [44] have shown
that the cyclic load data deviated from the corre-
lation for the growth of a single dominant crack
when microcracking increased. An additional pa-
rameter was thus needed [33,34] to measure the
extent of microcracking in relation to the critical
ligament that would trigger the onset of macro-
crack instability. The model would thus account
for cracking at both the macro- and micro- or
mesoscale levels.

Microcracking dissipates energy that would
have otherwise been present to advance the mac-
rocrack. Let damage by microcracking be reflected
on the average by the length r¢ while r. is the lig-
ament that triggers the onset of rapid macrocrack
growth. The ratio

re

)u:_

, <7 43

- re <1 (43)
measures the extent of stable microcrack growth as
compared to .. The volume energy density crite-
rion [16-18] distinguishes stable slow crack growth
from unstable fast crack propagation. The former
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condition corresponds to dW /dV reaching a crit-
ical value

dw Se S,
_ = 5 =
v ). n Te

In Eq. (44), S; and r; are parameters that reflect
damage by stable microcracking. Unstable mac-
rofracture is assumed to occur when S;/ry — S./r..
For the group of PZT ferroelectric ceramics sub-
jected to mechanical stress ¢ and electric field E,
the energy density factor S is given by [34]

(unstable fracture). (44)

S = B1K} + 2B 14K Ky + BuK}, (45)
in which
K, = o\/na, Kp=E\/na. (46)

The constants By, Byy; and By, are complicated
functions related to the elastic, piezoelectric and
dielectric constants of the PZT ferroelectric ce-
ramics. Egs. (46) can be inserted into Eq. (45) to
give

S = K{[Bi1 + 2Buup + Bup®], (47)

where p = E/o is a load parameter.

The threshold conditions in Egs. (44) can be
established experimentally by referring to me-
chanical loads only such that

Sf :B“Gf\/Tl',a7 SC :B“Klzc. (48)

Making use of Egs. (43), (44), (47) and (48), an
expression for failure stress is obtained:

Kic A

In Eq. (49), the function F(p) stands for
F(p) = 1+ 2(Bia/Bu)p + (Baa/Bui)p’. (50)

For /=1, crack initiation corresponds to the
onset of rapid fracture, i.e., when o becomes the
critical stress to trigger macroscopic instability.
Hence, the stress to initiate microcracking as given
by Eq. (49) will also precede that to drive the
macrocrack.

The energy release rate concept accounts only
for the onset of free surface creation; it does not
address stable from unstable crack growth. It is

even less remotely concerned with brittle and
ductile fracture [38]. Unsuccessful attempts made
to explain the enhancement and retardation of
crack growth due to electric field reversal [31,32]
are indicative of the limitation of the energy re-
lease rate concept.

5. Implication of asymptotic and full field solutions

Analytical modeling of physical events is not
always a unique process. Agreement between the-
ory and experiment is necessary but may not be
sufficient for validating a given approach, partic-
ularly when the predictions from different methods
are all within experimental errors. Compensating
discrepancies could also arise from analyses and/or
experimental measurements. It is, therefore, pru-
dent not to overlook any potential pitfalls even
when the results might appear to be unfamiliar at
first sight.

A resurgence of interest has recently been cen-
tered on crack bifurcation for a stationary [49] and
moving [46] crack where the investigations involve
events at the micro-, meso- or macroscopic scale.
Whether continuum mechanics theories could still
be applied at these size scales deserves attention.

5.1. Application of continuum mechanics

Continuum mechanics theories are not con-
cerned with size effects and hence they are not
pinned down to any particularly size scale. The
general notion that elasticity is limited to macro-
scopic behavior is simply because the prevailing
elastic constants are determined according to the
ASTM standards and describe the bulk properties
of specimens of the order of 10 cm in lineal di-
mension. There are no a priori reasons why elas-
ticity could not be applied to the atomic scale if the
electron structure of the material is accounted for
determining the physical constants. This indeed is
the traditional practice in crystal physics. Recent
studies [29-34] dealing with the application of pi-
ezoelasticity to model multiscale damage of PZT
ceramics have encountered many physical events
that are not well understood. Some of the areas
identified for discussion are:
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o Interaction of the tetragonal perovskite struc-
ture of PZT ceramics with the direction of ap-
plied electric field relative to poling and its
effect on crack growth [29-34].

e Distance and orientation dependence of crack
initiation sites in piezoelectric materials associ-
ated with multiscale damage.

o Exclusion of multiscale behavior in analyses due
to invoking of the limiting process inherent in
the assumed fracture criterion.

¢ Insufficient understanding of approximation as-
sociated with the asymptotic solution for a
crack-like discontinuity in contrast to the full
field solution.

The foregoing areas of concern are interconnected

even though they could be addressed individually.

Within the framework of piezoelasticity, the en-

ergy density fracture criterion will be used for

discussion since it has already been introduced [17]

in this work.

5.2. Asymptotic approximation

As the crack tip is approached or is in the limit
as r — 0 in Eq. (8), only the singular term in the
volume energy density function d/dV remains.
The coefficient S becomes independent of r; it
varies with the angle 6 only which is measured
from a line extending from the crack front. The
quotient S/r in Eq. (8) is referred to as the as-
ymptotic crack tip solution. No reference is made
to a particular location ahead of the crack except
that it applies to the immediate vicinity of the
crack tip.

To be specific, reference shall be made to the
problem presented in [33,34] that deals with a finite
crack of length 2a in a piezoelectric material (PZT-
4) that is infinite in extent (plane strain). A uni-
form electric field £ and uniaxial tensile stress ¢
are applied at infinity. Poling is directed in the
positive y-direction while the crack plane coincides
with the x-axis. The corresponding energy density
factor S is given by Eq. (47) in which p stands for
the ratio of the applied electric field £ and the
applied stress o, i.e., p = E/o. The quantities By,
By4 and By, are complicated constants for the PZT-
4 material. Details can be found in [33,34].

The procedure to obtain the direction of crack
initiation involves finding the stationary values of
S with respect to 0, where r is fixed in the as-
ymptotic field solution. Many minima of S could
be found. However, it is the maximum of S,,;, that
would first reach critical values. Mathematically, it
can be stated as SI* — S.. For illustration, it
suffices to single out three typical cases, where
p=E/o is allowed to vary while the other pa-
rameters are fixed.

e Case I (S/r-asymp). Stationary values or Sy, do

not exist for p = —0.03 and -t < 0 < 7.

e Case 11 (S/r-asymp). For p = —0.05, no S, val-
ues are found for 6 = 0° but they do exist for

0 = +6, corresponding to the angles of bifurca-

tion.

e Case 111 (S/r-asymp). For positive p, Sy, values
exist for 0 = 0°.

The above findings are summarized graphically
in Fig. 15. They show that the existence of Sy,
depends on whether p is positive or negative. There
is a narrow range of negative p values within which
Smin do not exist. This peculiar behavior occurs
only in piezoelasticity and not in elasticity crack
problems, at least at size scale level that is being
analyzed. There is no apparent reason why Mode I
crack initiation for 6 =0° is not predicted for
negative values of p in the range where 0.03 and
0.05 prevail. Crack bifurcation 6 = +6,, however,
is predicted in Case II for p = —0.05 but not for
p = —0.03. Such a behavior is also unexpected for
a stationary crack as bifurcation is generally
identified with the crack approaching its terminal
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Fig. 15. Discontinuity in normalized energy density curve.
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velocity [50]. When p becomes positive, say 0.02
and larger, S,,;, would always exist for § = 0°, Fig.
15. That is crack initiation along the x-axis is
predicted.

Even though continuum mechanics theories can
be applied to any scale, the use of asymptotic field
solution could not guarantee the inclusion of de-
tails in a region local to the crack tip. This is
reminiscent of the unexpected “wiggling” of crack
path emanating from a notch [51] that would not
have been predicted if the full field solution of
dw /dV were not used. The asymptotic solution
would have missed out all of the crucial details.

5.3. Full field solution

Since the energy density criterion as stated in
[17] applied to all continuum mechanics solutions
whether in asymptotic or complete form, the cri-
terion can be applied to analyze dWW /dV computed
numerically. The three cases presented earlier for
S/r-asymp will be used to obtain dW /dV-full for
comparison. The additional consideration would
involve r/a which did not enter into the discussion
for S being independent of r.

o Case 1 (dw/dV-full). For p=-0.03 and
r/a > 1073, stationary values (dW/dV), . are
found to exist for 6 = 0°.

e Case 11 (dw/dV-ful). When p= —0.05,
(dw/dv),,, exists for 0 =0° and 0 = £0, de-
pending on the relative distance »/a. More pre-
cisely, crack bifurcation =+60, is predicted for
r/a < 1072 and crack extending straight ahead
0 = 0° is predicted for r/a > 1072,

min

Inner core
region ~10"%*cm

Stationary crack

 —

o Case T (dw/dV-full). For
(dw/dv),,, exists only for 6 = 0°.
In contact to the S, predictions, predictions
based on the full field solutions of (dW/dV),... are
all physically plausible. For multiscale problems,
(dw/dVv) .. depends on the relative distance »/a.
Straight ahead (or Mode I) crack extension is
predicted for p = —0.03 only if #/a > 1073, i.e., not
at the immediate vicinity of the crack tip. This is
consistent with Case I (S/r-asymp) where Sy, was
not predicted. It is conceivable that very close to
the crack tip, say at the atomic or molecular scale,
distortion would dominate due to the lack of
material stiffness or dilatation and hence the
emission of dislocations in the form of bifurcation
is known to prevail. Even more revealing are the
predictions of Case II (dW/dV-full) for p = —0.05
where bifurcation (0 = +6,) was predicted to be
very close to the crack tip while straight ahead
cracking (0 = 0°) was predicted at a distance away
from the crack tip where dilatation becomes more
dominant. Such a multiscale behavior is shown
schematically in Fig. 16. Note that the bifurcation
region r < 1072a could represent dislocation
emissions. For a ~ 1 ¢cm, presumably 10* or more
dislocations could be piled into a local region on a
plane. Straight ahead macrocracking would be
predicted outside of this microscopic region. The
dual scale behavior has apparently been exhibited
in a single simulation by application of the full
field solution. According to this example for pi-
ezoelasticity, the multiscaling fracture was found
to be most pronounced in the range where Sy, did
not appear at the scale level under consideration.

positive  p,

Emission of

dislocations ~10%cm

Macroelement

F ouns

Molecular
dynamics region

Macrocracking

Fig. 16. Multiscaling behavior ahead of stationary crack for PZT-4 and p = —0.05.
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As p becomes positive, only the straight ahead
cracking behavior is predicted by both the as-
ymptotic and full field solution. They correspond
to Case III (S/r-asymp) and Case III (dW/dV-
full).

The implication is that there might exist a
transition region in which the bifurcation angles
+0, would disappear as r/a is increased and only
one branch would prevail. According to the
dW /dV-criterion, distortion could decrease with
increasing r/a in this scale range. Once sufficient
dilatation is built up, a single branch could dissi-
pate the energy. What is being altered during this
process is the rate of energy dissipation which is
higher for dilatation. The distortional/dilatational/
distortional . . . flip-flop mechanism of energy dis-
sipation tends to follow the ascending (or de-
scending) size scale. It has been elaborated in [15]
and earlier works. These aspects of multiscale
damage can now be illustrated quantitatively by
using the example for the PZT-4 ceramic. More on
this will follow. Hence, asymptotic and full field
solutions do not always yield the same predictions
even though the same fracture criterion were used.
In the case of piezoelasticity, the result depends on
the ratio of £/¢ and the direction of the applied
electric field relative to poling. That is the micro-
structure of the piezoelectric material had an effect
on the ways with which damage occurred ahead of
a crack.

To reiterate, bifurcation could occur for a sta-
tionary crack provided that it takes place very

\ Converge to A

Overestimated area

dw/dV (full)

S/r (asymp)

Energy density function dW/dV

Normalized distance r/a

—
[
~

Overestimated area

0

(b)
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close to the crack tip where dislocations could be
emitted as shown in Fig. 16. The precise mecha-
nism of material damage due to slip or microsur-
face separation remains to be examined. Atomistic
and micromechanics models [47,48] do assume
that the emitted dislocations are confined within
the molecular dynamics region; they are assumed
not to cross the micro-macrobarrier I', Fig. 16.
This artificial adjustment has been [47,48] made as
an a priori in the analyses, not predicted. The ar-
gument is that within I', the behavior is linearly
elastic. What is surprising is that the energy den-
sity criterion is able to predict this dual scale fea-
ture of micro-macrofracture that would be
normally pre-programmed into the atomistic/mi-
cromechanics model. It does appear that the mo-
lecular dynamics region in Fig. 16 should be better
understood in relation to the transition details
across the boundary I'. The preliminary studies in
[49] show that this dual scale behavior is sensitive
to changes in the electromechanical loading and
distances to the crack tip.

5.4. Discrepancy estimate

Discrepancies between the asymptotic and full
field solution have been estimated [49]. They are
not insignificant and depend on the external and
internal field variables, some of which have al-
ready been mentioned. Two types of situations
could arise. The asymptotic and full solution
curves could intersect or be in parallel. The former

Maximum
over-estimate

10 to 107 102
Normalized distance r/a

Fig. 17. Discrepancy between asymptotic and full field solution: (a) intersecting curves; (b) non-monotonic behavior.
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and latter represent an overestimate and underes-
timate of the asymptotic solution, respectively.
The former case illustrated in Figs. 17(a) and (b)
will be examined. Displayed in Fig. 17(a) are the
curves that tend to meet at 4 as r/a — 0. Away
from the crack tip, they would intersect at B. The
overestimate is represented by the shaded area
which can be computed as a function of »/a. This
gives a non-monotonic curve that possesses a
maximum at »/a ~ 102 for the present problem.
The point A4 is located at r/a~ 10~* and 1073,
Fig. 17(b); it can vary from problem to problem.
At r/a =~ 1072, the asymptotic solution deviates
the most from the full field solution.

While the foregoing conclusions tend to support
the use of the full field solution numerically, sim-
plicity of the asymptotic solution should not be
overlooked. It can provide physical insights that
otherwise could be hidden in the numerical data. A
case in point is the form of Eq. (47) that has led to
a quantitative assessment of the enhancement and
impediment of crack growth in piezoceramics
when the electric field direction is reversed relative
to the poling direction [33,34].

6. Non-linearity of dual scaling

When plastic enclaves appear next to the sides
of a macrocrack, it is common knowledge that the

Molecular
dynamics region

Inner core

—
£

Micro-plastic
enclave

Micro-dilatation

(AWIdV)

Micro-distortion
(AW/AV) o

overall response would be non-linear. By the same
token, linearity in the molecular dynamics region
[47,48] was assumed even though dislocations are
known to be the source of plasticity. There is really
no ambiguity if non-linearity is interpreted to be
the cause of inhomogeneity arising from damage
at two different scales. Clearly, a material in a state
of uniform plasticity would respond linearly.

A more complete though speculative descrip-
tion of non-linearity associated with dislocations,
plasticity and cracking can be found in Fig. 18. In
the absence of a single microplastic enclave pre-
dicted by the dW/dV criterion, response in the
molecular dynamics region would be linear. As the
macroplastic (or mesoplastic) enclaves become
vanishingly small, the region becomes completely
elastic and the macrocrack (or mesocrack) would
behave in a linear fashion. The direction(s) of
dw/dV minimum or (dW/dV),,, corresponds to
dilatational damage at the scale level of observa-
tion while the direction(s) of (dW/dV),,, to dis-
tortional damage. At the same time scale, the
mechanism of distortion would precede that of
dilatation. This has been emphasized in [17,18] and
the references therein. Keep in mind that size and
time scales are interwoven; they would shift in
synchronization. The single plastic enclave be-
havior in the molecular dynamics region would
not have been detected if it were not for applica-
tion of the energy density criterion to examine

Macro-(or Meso-)distortion
(dW/dV)ax

Macro-(or Meso-)distortion
(dWIdV) i,

Macro-(or Meso-)
plastic enclaves

Fig. 18. Mechanisms of microdamage non-linearity and macrodamage (or mesodamage) non-linearity.
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cracking in PZT ceramics [49]. To reiterate, how-
ever, the speculative model in Fig. 18 is proposed
to stimulate additional investigation.

7. Concluding remarks

Scaling is well known in aerodynamics where
dimensionless groups have been established to
transfer parameters measured during wind tunnel
tests for the models to study the behavior of larger
size structures. The same idea is invoked in struc-
tural mechanics of solids. Small specimen test data
are collected, standardized and used in the design
of full scale structures. Standardization is neces-
sary for the sake of accumulating experience in
practice. The objective of a theoretical analysis is
not to predict or to replace tests rather it should be
done to design an intelligent experiment. The in-
tention is to correlate the data of two independent
experiments: one being simpler and the other being
more complex with the aim that tests could be
simplified and the number of tests could be mini-
mized. One of the main aims of fracture mechanics
is to relate the uniaxial tensile test data to bodies
containing one or more cracks. The challenge is to
predict the fracture behavior of a cracked plate
using uniaxial tensile data alone. Such a challenge
was met in [45], where Kjc was determined ana-
lytically using a modified version of the theory of
plasticity.

The process of scaling, however, cannot be re-
ciprocated. That is to say the macroscopic average
shed little or no light on the detail features of
microscopic constituents. At present, the abun-
dance of test data and analytical results are not
being coordinated. There is the need to establish
the formalism for a common set of terminologies
such that the definition of physical quantities
would not be violated when the scale levels of
observation in size and time have exceeded certain
limits. Special caution should be exercised when
scale-sensitive quantities are exchanged from one
scale to another.

Insufficient understanding of how to overcome
some of the undesirable features of macrofracture
behavior of brittle composites and structural ce-
ramics has necessitated more detailed information

of material structures at the atomic and micro-
scopic levels. Graphical display of results obtained
from atomistic calculations [46] suggests the pres-
ence of localized phonon-like modes near a mov-
ing crack tip, just prior to dislocation emission and
crack branching events. Although these ap-
proaches provide additional motivation for re-
search, equal amount of efforts should be placed
on their contribution to improving the macro-
scopic properties of the material. Embedding a
Molecular Dynamic computational model around
the crack tip [47] and applying micromechanics to
the surrounding region are an attempt to construct
a two-scale model in a single simulation. Uncer-
tainties at the boundary of the two regions, how-
ever, make the outcome somewhat artificial. It
appears to be overly optimistic to bridge the gap
between the atomic and microscopic scale and
even more so for linking of the atomic and mac-
roscopic views. The fundamental problem of how
to specify the non-equilibrium boundary condi-
tions at the atomic and microscopic scales requires
attention.

Lacking in particular is a knowledge of the
initial states of the material microstructure in
terms of stress/strain or energy stored in the grain
due to crystal nucleation and formation. The ini-
tial stresses and energies trapped in the material
microstructure would no doubt have a first-order
effect on the creation of dislocations, microvoids,
grain boundary imperfections, etc. The neglect of
these initial conditions would leave any predictions
in doubt, especially when the length scale of device
is reduced to microns. Fundamentally speaking,
this calls for a knowledge of the non-equilibrium
behavior of crystals. Overflow of energy from one
crystal to another deficient in energy cannot be
addressed using equilibrium continuum mechanics
theories because they choose to assume the con-
ditions across a surface or interface by letting
AV /AA — 0. This is the equivalent of assuming
Ry/2 to approach zero in Eq. (32). Equilibrium
continuum mechanics considers only crystal size in
the limit that approaches zero. Stated more pre-
cisely:

Classical continuum mechanics is not intended to
address conditions across any surface or interface;
it specifies them as boundary conditions.
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Computer simulation of atomic models could not
supply the information if their solutions depend on
specifying the conditions on the boundary. Strictly
speaking, there prevail only bi-phase problems
where the conditions across an interface are de-
rived as unknowns rather than specified as
knowns. Fracture mechanics can make no head-
way unless these issues are brought to light. There
are too many unknowns in the chain of events,
presently scaled as nano, micro, meso and macro.
“Mesofracture mechanics™ is the necessary first
step of a long journey!
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