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Abstract

In the present paper, a rubber wedge compressed by a line load at its tip is asymptotically analyzed using a special
constitutive law proposed by Knowles and Sternberg (K-S elastic law) [J. Elasticity 3 (1973) 67]. The method of di-
viding sectors proposed by Gao [Theoret. Appl. Fract. Mech. 14 (1990) 219] is used. Domain near the wedge tip can be
divided into one expanding sector and two narrowing sectors. Asymptotic equations of the strain-stress field near the
wedge tip are derived and solved numerically. The deformation pattern near a wedge tip is completely revealed. A
special case, i.e. a half space compressed by a line load is solved while the wedge angle is 7. © 2001 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

It is well known that in the framework of linear
elastic theory, the typical problem of a wedge ac-
ted by a line force was solved by Michell (1902)
and a typical solution was given. According to the
linear solution (Michell, 1902), when the wedge tip
is approached, the stress and strain will tend to
infinity, i.e. the field possesses singularity and the
singular field contains a large deformation area.
For ordinary engineering materials one can only
consider the small deformation domain. Rubber
materials can sustain large strain, therefore the
stress—strain behavior of singular field must be
analyzed by nonlinear theory. There are two ob-
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stacles for solving the nonlinear singular field:
firstly, the inherently nonlinear geometry is diffi-
cult to describe; secondly, when the singular point
is approached, because of the tremendously large
strain, the ordinary constitutive relation may be-
come physically invalid. In 1973, Knowles and
Sternberg gave an elastic constitutive relation,
which contained three parameters. Their constit-
utive relation was used to analyze the singular field
near a plane strain crack tip (Knowles and Stern-
berg, 1973, 1974). In 1994, a rubber half space was
analyzed for tension case by Simmonds and Warne
(1994) based on the K-S elastic law. Problems of a
rubber wedge tensioned by a line load (Chen and
Gao, 2001a), a rubber cone tensioned by a con-
centrated force at its apex (Gao and Chen, 2000), a
rigid wedge contacting with a rubber notch (Chen
and Gao, 2001b) and a rubber wedge contacting
with a rigid notch (Chen and Li, 2000) were also
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solved with K-S elastic law. As for the compression
case of a rubber wedge or a rubber half space with
K-S elastic law, there are still no results published.
In 1990, Gao gave a constitutive relation for rubber-
like materials in which the stress tensor was de-
composed into a spherical part and a deviatoric
part. This constitutive relation kept reasonable
when strain tended to infinity, and it was used to
analyze the singular field of a plane strain crack
(Gao, 1990). For some typical problems such as a
rubber wedge (Gao and Gao, 1994a,b) tensioned or
compressed by a line load, a rubber cone (Gao and
Liu, 1995) tensioned by a concentrated force were
also solved using the constitutive relation proposed
by Gao (1990). In 1997, Gao gave another elastic
law, which reflects two other kinds of material re-
sponses, i.e. tension and compression by tension
stress and by compression stress (cf. Gao, 1997).
With this kind of elastic law, the problem of a
rubber wedge under tension by a line force was
solved by Chen et al. (2000). The problem of a cone
under tension by a concentrated force was solved by
Gao and Chen (2001). An important problem is
whether the mechanical behaviors of the large strain
field, revealed by Gao et al. are due to this particular
elastic law or not. Typical problems should be in-
vestigated to answer it. In the present paper, a
rubber wedge compressed by a line load at its tip is
analyzed using the K-S constitutive relation but
with the same method as that used in Gao and Gao
(1994b) and Gao (1998). Though only the elastic
law changed, the analysis must be totally redone.

Basic definitions and K-S elastic law for non-
linear theory are given in Section 2. In Section 3,
domain near a wedge tip is divided into one ex-
panding sector and two narrowing sectors and the
corresponding mapping functions for the two kinds
of sectors are given, respectively. Solutions to the
expanding sector are given in Section 4 and in
Section 5 the narrowing sector is solved. In Section
6 the continuity conditions between the expanding
sector and the narrowing sector are given.

2. Basic definitions and K-S elastic law

A three-dimensional domain of material is
considered. Let x' (i = 1,2,3) denote the Lagran-

gian coordinates of a point. P and Q denote the
position vectors of a point before and after de-
formation, respectively. u is the displacement of
the point, then we have

Q=Piu (1)
Two sets of local triads are defined
oP 00
P =_—— = . 2
1 axi) Qt axi ( )

The displacement gradient tensor is
F=0Q,®P : 3)

in which ® is the dyadic symbol and the summa-
tion rule is implied, P is the conjugate of P;, i.e.

P.P =5, 4)
The right and left Cauchy—Green strain tensors are
D=F"-F=(Q, Q)P ® P, (5)
d=F-F' =(P-P)Q ® 0, (6)

where the superscript T indicates transposition. D,
d possess the same invariant, for example

I=D:E=d:E, (7)

where E denotes the unit tensor, and : denotes dual
multiplication. Besides, a commonly used invari-
ant is the volume inflation ratio J:

(Ql’ Q2> QS)

et QP T, ) ®)

where (k|,*,,*3;) denotes the mixed product of
X1, %), X3,

The elastic law can be introduced from the
strain energy per unit undeformed volume given in
Knowles and Sternberg (1973)

U= (Al +BJ+CLI?)" 9)

in which 4, B, C, n are the material constants.
Some detailed discussions on the material con-
stants were given in Knowles and Sternberg
(1973), and the restriction on the constants can be
written as

A>0, C>0, |B|<24, 1/2<n<o0.

(10)
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The Kirchhoff stress is

ou
G'—Za—D

= 2n(Al + BJ + CLJ )" [AE +1BJD™!
+CJ2(E—1D1)]. (11)

The corresponding Cauchy stress is

t=J'F.6-FT

=2nJ (Al + BJ + CLJ )" {Ad +1BJE
+CJ 7 (d — IE)} : (12)

Under consideration is the plane strain case, so
there is the following relation:

d—IE=-Jd" (13)

Substituting Eq. (13) into Eq. (12), we obtain

©=2nJ " (Al +BJ + ClJ)"" |4d + 1BJE
—cd!|. (14)

The equilibrium equation is expressed as follows:

.61:

Q —=0. (15)

3. Dividing of sectors

We consider the deformation pattern of a
wedge under compression. The cross-section of a
wedge before loading is shown in Fig. 1(a),
whereas Fig. 1(b) shows the same cross-section
after loading. For simplicity, only the symmetric
loading case is considered here. In order to de-
scribe the deformation, the wedge tip field is di-
vided into three sectors, one is called expanding
sector E, and another two are called narrowing
sectors N and N’. Before deformation N and N’
occupy almost the whole domain surrounding the
wedge tip, while £ is very narrow. But after de-

2

(@ (b)

Fig. 1. Plots of polar coordinate systems and the dividing
sectors in the present paper, £ and N (N') denote the expanding
sector and narrowing sectors before deformation, respectively.
O, denotes a half of the wedge angle. (R, @) is the polar co-
ordinate system before deformation; (r,6) is the polar coordi-
nate system after deformation.

formation E becomes very wide and occupies al-
most the whole domain surrounding the wedge tip,
while N and N’ shrivel to be two narrowing sectors
as shown in Figs. 1(a) and (b). The features of
deformation in domain N (or N’) and E are quite
different so that they must be described individu-
ally. Two sets of coordinate systems are intro-
duced. One set is (R,0) that denotes polar
coordinate before deformation and another set is
(r,0) that denotes polar coordinate after defor-
mation as shown in Figs. 1(a) and (b). ®, denotes
a half of the wedge angle. The mapping functions
for a point before deformation and after defor-
mation in expanding sector £ are

R=r=7(0),

O = r'm(0), (16)

0] <=

in which o,/ are the positive exponents to be de-
termined. f(0) and m(0) are the unknown func-
tions. The mapping functions in narrowing sector
N are

R =r"Pp(&),
O=g(6) c=rin—0), 0—n

in which 0 < & < 00, a, f§ are the positive expo-
nents to be determined. #(¢) and g(&) are the un-
known functions.

The mapping functions in narrowing sector N’
can be similarly given but omitted here, since only
the symmetric problem is considered in the present

paper.

(17)
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Actually, there is no strict boundary between
different sectors. Mapping functions (16) and (17)
should be convertible to each other at bound-
aries.

4. Expanding sector, E

4.1. Asymptotic equations

We define the following two sets of unit vectors:

en=ar=Pr o= o0 =2Po, (18)

0=2-9 o-12.19, (19)

Using Egs. (16), (18), (19) we obtain

P, =r°f[(1 = d)eg + Ir'meg)],

Py = rlf[i'eza —i-)rlfn’—;e@], ’ (20)

then

P =57 (F fmlep — fle

P’ = ré_l_lsEIJ{[—lilmi —|—@)(71 —J)eo] @

in which

s=fI(1=6)fm — 1f'm]. (22)

Using Egs. (3)-(6) and (18)—(21) we have

d=r"2s 2% @ e+ f2(1-0) e © €
—(1=0)ff"(e, @ g+ ey ® e,)], (23)

d' =r2[(1-0)fe @ e+ [Pe) @ ¢

+(1=0)ff'(e, ® eg + ey @ e,)] (24)
then
L= g =2 (25)

where T = (1 — 8)°f2 + ™.

Substituting Eqgs. (23)—(25) into Eq. (14) and
assuming d and d~' are the same order, we have
[ =20. (26)

Using the equilibrium condition of external and
internal loading, i.e. T ~ r~!, then

§=1/2n. (27)

Eq. (27) in conjunction with Eq. (16) implies that
n>1/2 in order that the displacements at the
wedge tip do not become infinite. This is consistent
with Eq. (10), which is arrived in Knowles and
Sternberg (1973).

The components of stress can be written as

Ty =2nsT" ' P As2f? — C(1 — 5)2f2}r71,

100 = 2nsT" P As 212 (1 = 0) 2 — Cf !, (28)
1,9 = —2ns(1 — )T ' P"ff'r ",

where

P=As2+C. (29)
For convenience, we define

T” = T,-jIFI (30)
then

T, = 2nsT" ' P" 1 as 2 — C(1 — 8)°f7,

Too = 2nsT" P ' As 22 (1 = 8 — ¢, (31)
T = —2ns(1 — 8)T" ' P"ff".

Substituting Eqs. (28)-(30) into equilibrium

equation (15), we have

— + Lo =0. (32)

Combining Egs. (31) and (32), we obtain the as-
ymptotic equations for the expanding sector
anf" +apm” +a;3 =0,

1 "
an f" 4 apm” +axy =0,

(33)

where

a = (1 = 8)[~Ims*Pf2f 4+ 2(n — 1)s’ T ' Pf1"
+ 2ndimf*f' + s*Pf],

apy = (1 = 83 f/(s*P — 2n4),

ars = (1= O)LfF2(1 = 8)fn’ — 1f'm] (9P — 2n)
+ (1 = 8)f'm — 1f'm](s*P — 2nA)
+2(n = 1)(1 = 8)’S’ T P27 +5°Pf"}
+s[Af2(1 = 8) — G527, (34)
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an = {2(n — DT f — [s* —24(n — 1)P~ ") fIm}
x [As 22 (1= 0)" = Cf”]

+241(1 = 8)’mf? — 2C5* f,
an = (1 —=38)f*s* —24(n — 1)P']

x [As7f7(1 = 8)° = Cf°] = 24(1 = 8)*f%,
ax = {f'ls* = 24(n = 1)P[(1 = &)fm' — 1f'm]

+ 5% =24(n— DPfI(1 = 8)f'm — If'm]

+2(n = )T (1= 8)° 11"}

X [As72f2(1 = 8)* — Cf™] 4 24(1 — 8)°
X Asff" = 2111 = &) fm' — 1f'm]
=l =0)f'm —1f'm']} — (1= S)Psff".
(35)

4.2. Solutions to sector E

Since only the symmetric case is considered in
the present paper, at the bisector, i.e. the line of
0 = 0, the shear stress vanishes, that is

1,0(0) =0, ie. f'(0)=0. (36)

At the bisector 6 = 0, which is corresponding to
® =0 before deformation, from the second
equation of Eq. (16), we know that

m(0) = 0. (37)

Defining the initial values of functions f(6) and
m'(0) as

f(0) = fo,

where fy, m; are the parameters to be determined.

In order to connect the different sectors, when
0 — m, the natural boundary conditions are re-
quired

f(m) =0,

Eq. (33) under conditions (36)—(39) can be solved
numerically. From the numerical results, we find
surprisingly whatever the values of the existing
parameters are, when 0 — 7, the following results
are always true:

m'(0) = my, (38)

m(m) = 0. (39)

_ {%(m - 1)} Tovse (40)

If we let

5= {%(2;1_ 1)} -

for the domain 6 € [0, n) and substitute it into Eq.
(33), we find the two equations of (33) become the
same one, which means that

= [An-1]”

is the true solution to Eq. (33). The reduced
equation is

(1 - )f3 + (11— )(4n —4n%5 — 4n
+4né + 1 )ff/2+2n( n—1)ff"
+2n(1 = 8) 2 f" = (41)

Using Eq. (40), we rewrite Eq. (22) as follows:

1/2
' = (I_IW{ [%(Zn - 1)} + lff/m}- (42)

Eq. (42) shows that m'(0) = m, is no longer a free
parameter but related with the value of parameter
fo, that is

my _m [%(zn - 1)} " (43)

When 0 — n, from numerical calculation we find
that the following result is always true:

f ~ Cf(?'[ — 0),

Combining Egs. (22), (40) and (44), we get the
following relation:

m= Cy(n—0)". (44)

1/2
C2C, = (140) " (2n— 1)1/2<é> : (45)

The curves of 0 — f, 0 — m from numerical solu-
tion to Eqgs. (41) and (42) are shown in Fig. 2 for
A=2.0,B=3.0,C=2.0 and various values of n.
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Fig. 2. Curves of 0 — f (a) and 0 — m (b) with 4 = 2.0, B = 3.0, C = 2.0 and various values of n for the expanding sector.

5. Narrowing sector, N
5.1. Asymptotic equations

Using Egs. (17)-(19) we obtain
P. = H{[(1 4 P)h — alh)egr — alhg'eo}, (46)
Py =" —hey — hg'eo)]
then
P =r Pyl (—hgeg + Hep),
P’ = PPNy athg'er + [(1 + B)h — alheo},
(47)
where
v=—(1+pB)h’g. (48)
Combining Egs. (3)-(6) and (46)—(48) we have
d=rW2(hg? + h?)e, @ e, + ¥ 2Fy?
xAERg + [(1+ ph — oh e @ e
+ =g + H((1 + B)h — alh']}
X(e,®@e+eRe,), (49)
d7' = {[(1 + P)h — alh )] + 28R e, © e,
B 4 eV ey © eg + 2P {alh?e?
—H[(1+ Bh —alh|} e @ ep+e) @ e,)
(50)

then

Il — r72/)’v72(h2g/2 4 h/2), J = rzfo/ivfl' (51)

In view that the volume inflation ratio has no
singularity, we obtain
o=2p4. (52)

Using the equilibrium condition of external and
internal loading, i.e. T ~ ', then

B=1/2n. (53)

Then the components of stress in narrowing sector
can be written as

Ty = 2nAu"v  (Av 2+ C)
99 = —2nCu"v(Av 2 4+ C)" ',
79 = 2nvu" (A2 + )" {—alh’g? + H[(1 + B)h
— alh |}t (54)
where
u=h*+ng* (55)

In order to simplify Eq. (54), we introduce the
following coordinate transformation:

2 3
o %2 o 4 o *6
— 1+=
i r( +29 +89 +489 + )7
E=r0", 0 =n-0. (56)

The series in Eq. (56) are calculated according to
the orthogonal condition of &, 5 coordinates. The
coordinate lines of (1, £) are shown in Fig. 3. Us-
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n

Fig. 3. Plot of (n, ) coordinate system introduced in the nar-
rowing sectors. Vectors 7 and ¢ are orthogonal.

ing Eq. (56) and only taking the dominant terms,
we obtain

0,~ 32 = e~ si'e (57)
0. =L —ytuire +e) (58)
then

Q' =0, =e —alne, (59)
Q =00 = —n T (wln"e + e). (60)
We define that

0,=¢, Q.=n"% (61)
then the relations of unit vectors can be written as

— L0 —
e, =e, —oalne:; e = —

e: —aln’e. (62)

Combining Egs. (62) and (54), the components of
stress in the (1, £) coordinate system are expressed
as

Ty = 2nAu™v " (Av 2 4+ C)" ! N,
Tee = —2nCu"v(Av 2+ C)" 'y,

Ty = —2nvu"” "av2+0)"(1 + ﬁ)hh'n‘““. (63)

Let Tee = 551771 Typ = ;1;77’]71 Ten = @1’,’714»&’ then
Ty = 2ndu’y 71(Av72 + C)" :

Tee = —2nCu"v(Av=> + C)"

Tey = —2nvu"~ (Av_2 +0)" (l + Bk (64)

Considering the singularity of the stress compo-
nents, the equilibrium equations in (1, ¢) coordi-
nate system can be simplified as

oT::
o 0
oT,
(1 )Ty~ T2c) + 5.~ 2081, (65)
From the first equation of Eq. (65), we know that
T:: = constant. (66)

Assuming the constant to be D*, then combining
the second equation of Eq. (64), we have

W'v(Av?+C)" =D, (67)
where
—D*
- 2nC’ (68)

Substituting Eq. (64) into Eq. (65), we obtain the
finally asymptotic equations of narrowing sector
N

anh" + ang” + a3 =0,

0211’1” + azzg// =+ ay; = 0 (69)
in which
ain = — (1+ Bu " (Av=2 + O)h(1 — 2u"h?),

=21+ PRHACL + B)u'v?

—u Ay 4+ O)gl,

a3 =(1+a)(Av?*+C)—(1+p)

x [=2u™?(4v* + C)W*H*g”

+44(1 + v u' WP h?g

+u N AV + COVh?) — 2ndpv 2, (70)

ap

ay = 2nvh' (Av=* + C),
2 = 2nvh*g (Av 2 + C) — (1 + B)h*u(4
+2(n — DAuwv (1 + p)?,
ay3 = 2nv(Av=2 + C)hi'g? — 2(1 4 Bu(4v=> 4 C)
x hi'g +4(n — DAl + Buv2hi'g.  (71)

V2 +C)

5.2. Solution to sector N

From Egs. (66) and (67), we know that at 6 = =«
(or £ = 0) there exists the following equation:

1::(0) = —2nCDn”", (72)
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where D can be considered as a parameter that is
related to the amplitude of the load. In order to
give the other boundary conditions for Eq. (69),
attention must be paid to the different deformation
features that in the expanding sector E, R > r;
while in the narrowing sector N, R < r. Further-
more, the continuum condition must be met on the
boundary between the narrowing and expanding
sectors. While ¢ — oo, we have the following
condition:

h(c0) = oo. (73)

Considering the feature before and after defor-
mation, we know that the line of £ — oo in nar-
rowing sector is corresponding to that of ® =0
before deformation, so we have

g(c0) = 0. (74)
The wedge tip under the compression of a line load

will form a locally closed notch and the contact
boundary is assumed to be frictionless, i.e. at 6 =«

(or £=0),7(0) =0, so the corresponding
boundary condition is
1 (0) = 0. (75)

The line of ¢ =0 is corresponding to that of
® = O, before deformation, thus we know

2(0) = 6. (76)
On the other hand, we define that
h(0) = hy, £'(0) =g. (77)

Using the second equation of Eq. (63), we can
write Eq. (72) as

—(1+ ﬁ)h(z)('H])gﬁ)')'*l[A(l + B)—2h64g26>2 + C]n—l -D

—~~

78)

For a set of given parameters of @y, n, 4, B, C,
we can adjust the values of 4, and g’(0) to meet Eq.
(74). The corresponding external load can be ob-
tained through D, which denotes the amplitude of
the load. While the values of %, and g'(0) are
known, from Eq. (78), we can obtain the value D.
On the other hand, the value of D can also be
firstly given, Ay and g'(0) are not independent
through Eq. (78), we adjust one of them to meet
Eq. (74).

Numerical solution to Eq. (69) shows that when
& — oo

i(oe) = | o —»1)]1/2 (19)

and the following special forms of /(&) and g(¢&)
satisfy all the boundary conditions and equilib-
rium equations at £ — oo:

h(E) = Cué, g(&) = Ceé ™" (80)

It can be easily proved and details are omitted
here.

From Eq. (48) and Egs. (79) and (80), it follows
that:

2 14 2 1/2
Ge=0+p'(5) @-1", (81)
A —1/4n W (1-n)/2n
=Z=02n=1 (1—=n)/2n DL/

G [c( & )} ¢ n—1 :
C (n—3)/2n

Cg:A("‘H)/” (2 1) (zn)("*l)/"(l_’_ﬁ)le—l/n'
n—

(82)

Evidently, C, and C, are not influenced by 0.
Numerical results for the narrowing sector are
given in the present paper. During the process of
numerical calculation, the value of ¢ tends to be
oo. In order to adjust initial values precisely, we
introduce a transformation that is y = arctg¢, then

d = cos’ d & = cos? ¢ 2t d

A A A
(83)

The boundary conditions become

h|y:n/2 = 00, g|y:n/2 = 0 (84)

Other boundary conditions keep unchanged. In
the calculation, we take 2(0) = 1,4 = 2.0, B = 3.0,
C=2.0, n=2.5 and adjust the value of g’(0) to
meet the second equation of Eq. (84) for various
0. The curves of y — A(y), y — g(y) are shown in
Fig. 4. Table 1 shows the values of @, and the
corresponding values of g'(0). Fig. 5 shows the
curves of y — h(y), 7 — g(y) for another set of pa-
rameters: h(0)=1, 4=2.0, B=3.0, C=2.0,
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200+ . 2.5-
n=2.5 J n=2.5
----- ©=2n/3 j .. -----@=27/3
160 e @=RI2 1 2.0 /2
——— @=n/3 : —— @=n/3
120 ' 1.5-
IS , o \\\
80+ ! 1.0 .
40 : 0.5
0 Y T S B s s l” 1 0.0 T T T T T T |."'\|
00 02 04 06 08 10 12 1.6 00 02 04 06 08 10 12 14 16

(@ ¥ (b) ¥
Fig. 4. Curves of y—4 (a) and y—g (b) with 2(0) =1, 4 =2.0, B = 3.0, C = 2.0, n = 2.5 and various values of ©, for the narrowing

sector.
Table 1 y -1/2
(h(0) =1, 4 =2.0, C = 2.0, n =2.5) y— {_(2,1 _ 1)} (85)
O, /3 n/2 2n/3 ¢
2(0) —6.243 ~1.671 ~0.6685 o ]
then the equilibrium equations become

" u'v(Av2 4+ C)" =0,
(1+a)(Av 2+ C) — (1 + B){—u 2 (Av2 + C)hH
+u AV O +u (AvE + C)hh'Y

©y = n/3. Table 2 shows the values of n and the
corresponding values of g’(0).

5.3. Special case —2ndpv2 =0. (86)
A special case is that a half space is compressed From the first equation of Eq. (86), we know that
by a line force while @y = /2. In this case, from
numerical calculation we find that u =0. (87)
200 !
« 1.04
0,=n/3 y !
160 + n=2.0 :: 4
————— n=2.5 __";‘ 087"
1 n=30 !
120 : 06l
= ! o
80+ 0.4
40+ 0.2
T = T T T T 1 0.0 T ||1| T T 1
00 02 04 06 08 10 12 14 16 00 02 04 06 08 10 12 14 16

(a) ¥ (b) y

Fig. 5. Curves of y-h (a) and y-g (b) with #(0) =1, 4 =2.0, B =3.0, C = 2.0, Oy = n/3 and various values of n for the narrowing

sector.
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Table 2

(h(0)=1,4=2.0,B=3.0, C=2.0, Oy =1/3)
n 2.0 2.5 3.0
£(0) —4.4827 —6.2430 —8.2844

That is u is a constant and we assume the constant
to be ¢, i.e. u = ¢t. Substituting Egs. (85) and (87)
into the second equation of Eq. (86), we get a re-
duced equation

hh" + W =t. (88)

The solution to Eq. (88) under the boundary
conditions of Egs. (73)—(76) is

h=hy(1 + K*&)'? (89)
then
[4(2n —1)/C])"? 7
where
Y
K = 2_ho (91)

6. Matching of sectors N and E

Since f, m and h, g represent the same quanti-
ties, they must be consistent with each other on the
boundary of § — n and & — oo. Now we consider
the continuity condition. According to Eqgs. (16)
and (44) we have

R=Cpr'"(n—0),

O=Cu'(n—0)" on 60— (92)
From Egs. (17) and (80) we have

R=Cy' F(n—0),

O =Cyp*(n—0)" on &— occ. (93)
Comparing Eq. (92) with Eq. (93), the continuity
conditions require that

Cr=GC, Cu=0C, (94)
p=90, a=I. (95)

Eqgs. (26), (52) and (95) are consistent. Egs. (45),
(81) and (82) give the expression of Cr, C,, C,,
C,. fo and D are not independent so there is only
one parameter that indicates the amplitude of the
field.

7. Concluding remarks

e The asymptotic solutions in the present paper
disclose the behaviors of the stress and strain
field near the singular point, which is the wedge
tip point compressed by a line load.

e For rubber like materials, a wedge tip or a notch
corner under the compression of a line load will
form a locally closed notch.

e The deformation field contains a singular point
and the stresses possess the order of »~!. The de-
formation field can be divided into one expand-
ing sector and two narrowing sectors and the
solutions for these sectors are matched com-
pletely.

e Specially, from the analysis we can know the
feature of the field of a half rubber-like space
compressed by a line load.

e While the angle of the wedge tip is larger than 7,
the solution in the present paper is also adopted,
that is the solution is also adapted to the prob-
lem of a rubber notch compressed by a line load.

e Typical solution to this kind of typical problem
is obtained and it is different from the classical
solution to the linear elastic wedge compressed
by a line at its tip.

o Comparing the results of this paper with those
obtained by Gao and Gao (1994b) and Gao
(1998), we find that the basic deformation pat-
tern and the stress singularity do not depend
on the concrete form of an individual elastic
law.
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