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Abstract

We have recently proposed a generalized JKR model for non-slipping adhesive contact between two elastic spheres sub-
jected to a pair of pulling forces and a mismatch strain (Chen, S., Gao, H., 2006c. Non-slipping adhesive contact between
mismatched elastic spheres: a model of adhesion mediated deformation sensor. J. Mech. Phys. Solids 54, 1548–1567). Here
we extend this model to adhesion between two mismatched elastic cylinders. The attention is focused on how the mismatch
strain affects the contact area and the pull-off force. It is found that there exists a critical mismatch strain at which the
contact spontaneously dissociates. The analysis suggests possible mechanisms by which mechanical deformation can affect
binding between cells and molecules in biology.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The last few decades have witnessed significant progresses in the mechanics of adhesive contact between
elastic bodies (Johnson et al., 1971; Derjaguin et al., 1975; Roberts and Thomas, 1975; Muller et al., 1980;
Greenwood and Johnson, 1981; Barquins, 1988; Maugis, 1992; Carpick et al., 1996; Chaudhury et al.,
1996; Baney and Hui, 1997; Greenwood, 1997; Johnson and Greenwood, 1997; Barthel, 1998; Robbe-Valloire
and Barquins, 1998; Greenwood and Johnson, 1998; Kim et al., 1998; Shull, 2002; Morrow et al., 2003;
Schwarz, 2003). More recently, various contact mechanics theories have also been developed to understand
the basic principles behind hierarchical adhesion structures of gecko and insects (Autumn et al., 2002; Artz
et al., 2003; Persson, 2003; Gao and Yao, 2004; Glassmaker et al., 2004; Hui et al., 2004; Gao et al., 2005;
Huber et al., 2005; Spolenak et al., 2005; Yao and Gao, 2006). Most of the existing models on contact
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mechanics have focused on the normal tractions inside the contact region (Johnson, 1985). On the other hand,
recent studies on elastic bodies in non-slipping adhesive contact with a laterally stretched substrate (Chen and
Gao, 2006a,b) indicate that the substrate strain can have significant effect on the contact area. Further study
on the pull-off process of two elastic spheres in non-slipping adhesive contact under a pair of pulling forces
and a mismatch strain suggests that the mismatch strain can play a dominant role in adhesion (Chen and
Gao, 2006c). For example, as the mismatch strain is increased, the contact area is found to continuously
decrease until the contact suddenly breaks off at a critical strain. These studies suggest possible connections
to general observations in biology that cells and biomolecules can sense and react to mechanical signals in
the environment.

The present paper extends our previous analysis of non-slipping adhesive contact between mismatched elas-
tic spheres (Chen and Gao, 2006c) to the corresponding plane strain problem of contact between elastic cyl-
inders. In contrast to the classical JKR model, we assume that the contact area is perfectly bonded such that
both tangential and normal tractions are transmitted across the contact interface. This assumption has been
inspired by specific ligand–receptor binding in cell adhesion as well as specific sequence matching in adhesion
between biomolecules. If there is one to one bonding between specific molecules, shear deformation along the
contact interface would not be easily relaxed. The focus of the present study is on how the mismatch strain
influences the contact area and the pull-off force between two adhering cylinders.

2. Model

Fig. 1 shows two dissimilar elastic cylinders that are brought into adhesive contact and then subjected to the
combined action of a pair of pulling forces F and a mismatch strain e. The contact region is assumed to be
perfectly bonded except that the edge of contact is allowed to shift according to the changing balance between
elastic energy and surface energy in the system.
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Fig. 1. Schematic of two adhering elastic cylinders acted by a pair of forces F and a mismatch strain e; (E1,m1), (E2,m2) denote Young’s
moduli and Poisson’s ratio of the cylinders; a is the half-width of the contact region.
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A pair of Cartesian coordinates (x,y1), (x,y2) are placed at the center of the contact region of each cylinder,
with y1 and y2 pointing into each corresponding body. The Young’s moduli and Poisson ratios of the upper
and lower cylinders will be denoted as E1,m1 and E2,m2, respectively; R1 and R2 are the radius of each cylinder; a

is the half-width of the contact area; ryy(x) and rxy(x) are the normal and tangential tractions along the con-
tact surface of the upper cylinder inside the contact area. This contact model resembles an external interfacial
crack problem under plane strain deformation, in which the stress field near the crack tip is known to exhibit
an oscillatory singularity (Rice, 1965; Erdogan, 1965; Westmann, 1965).

3. General solution

Under a mismatch strain (e.g., due to change in pressure or temperature in the environment), the relative
tangential displacement and displacement gradient in the adhesion zone satisfy
�ux1 � �ux2 ¼ ex;
o�ux1

ox
� o�ux2

ox
¼ e; jxj 6 a: ð1Þ
The normal tractions in the contact area cause the surface of each body to be displaced parallel to the yi

(i = 1,2) axis (measured positive into each body) by an amount �uy1 and �uy2. According to the usual parabolic
assumption of local contact surfaces (Johnson, 1985),
�uy1 þ �uy2 ¼ d� x2

2R
;

o�uy1

ox
þ o�uy2

ox
¼ � x

R
; jxj 6 a; ð2Þ
where R is the combined radius defined by 1/R = 1/R1 + 1/R2 and d is the relative displacement at the center
of the contact region.

Using the plane strain elastic Green’s functions of half-spaces, the displacement gradients in Eqs. (1) and (2)
can be expressed in terms of normal and tangential tractions as
1

p

Z a

�a

rxyðsÞ
s� x

ds� bryyðxÞ ¼
E�e
2
;

1

p

Z a

�a

ryyðsÞ
s� x

dsþ brxyðxÞ ¼ �
E�x
2R

;

8>><
>>: jxj 6 a; ð3Þ
where

1

E�
¼ 1� m2

1

E1

þ 1� m2
2

E2

ð4Þ
is the combined Young’s modulus and
b ¼ E�

2

ð1� 2m1Þð1þ m1Þ
E1

� ð1� 2m2Þð1þ m2Þ
E2

� �
ð5Þ
is one of Dundurs’ elastic constants for biomaterial systems (Dundurs, 1969).
Eqs. (3) are coupled integral equations for the two unknown tractions ryy(x) and rxy(x). It is convenient to

rewrite Eqs. (3) in a matrix form (Chen and Gao, 2006a)
1

p

Z a

�a

A

s� x
f ðsÞdsþ Bf ðxÞ ¼ C; ð6Þ
where �2 3

f ðsÞ ¼

rxyðsÞ
ryyðsÞ

� �
; A ¼

1 0

0 1

� �
¼ I ; B ¼

0 �b

b 0

� �
; C ¼

E e
2
�E�x

2R

664 775: ð7Þ
Using Hilbert transform
F kðzÞ ¼
1

2pi

Z a

�a

fkðsÞ
s� z

ds; k ¼ 1; 2; ð8Þ
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where z = x + iy and i ¼
ffiffiffiffiffiffiffi
�1
p

, Eq. (6) can be decoupled into two inhomogeneous Hilbert equations to be
solved together with boundary conditions
Z a

�a
ryyðxÞdx ¼ �F

Z a

�a
rxyðxÞdx ¼ 0: ð9Þ
The solution procedure for this problem is similar to that discussed in Chen and Gao (2006a). Here we skip the
details and present only the final solution. The interfacial tractions in the contact region can be expressed in
the form
ryyðxÞ þ irxyðxÞ ¼ 2iIðxÞ þ E�b

2ð1� b2Þ
eþ xi

R

� �
� F ðaþ xÞ��rða� xÞ�r

p
; ð10Þ
where
IðxÞ ¼ �E�ðaþ xÞ��rða� xÞ�r

4pð1� b2Þ

Z a

�a
eþ ti

R

� �
ðaþ tÞ�rða� tÞr

t � x
dt

� �
ð11Þ
and r is the stress singularity, j is the so-called oscillatory index,
r ¼ 1

2
þ ij; j ¼ 1

2p
ln

1þ b
1� b

: ð12Þ
The associated stress intensity factor can be calculated as
K ¼ �
ffiffiffiffiffiffi
2p
p

lim
x!a
ða� xÞr ryyðxÞ þ irxyðxÞ

	 

¼ �iE�ð2aÞ��rffiffiffiffiffiffi

2p
p
ð1� b2Þ

Z a

�a

ðeþ it
RÞðaþ tÞ�rða� tÞr

a� t
dt þ

ffiffiffi
2
p

F ð2aÞ��rffiffiffi
p
p ; ð13Þ
which when substituted into Griffith’s condition
G ¼ 1

cosh2pj

jKj2

2E�
¼ Dc; ð14Þ
leads to the following relationship between the equilibrium contact half-width a, the mismatch strain e and the
external pulling force F,
ie

2ðb2 � 1Þ
a
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¼ 2cosh2ðpjÞ pDc
E�R

; ð15Þ
where Dc denotes the work of adhesion.

4. Non-oscillatory solution

It has been shown that Dundurs’ parameter b only plays a minor role in non-slipping adhesive contact
(Chen and Gao, 2006a,b,c) and may be neglected for practical purposes. In the case of b = 0, the tangential
and normal tractions inside the contact region are reduced to simpler forms,
rxyðxÞ ¼
E�ex

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p ; ð16Þ

ryyðxÞ ¼
�E�

2R
x2 � a2=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p � F

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p ; ð17Þ
with stress intensity factors
KI ¼
E�

ffiffiffi
p
p

a3=2

4R
þ Fffiffiffiffiffiffi

pa
p ; ð18Þ

KII ¼ �
E�e

ffiffiffiffiffiffi
pa
p

2
: ð19Þ
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The mode I solution of Eq. (18) is consistent with that given in Chaudhury et al. (1996) and the mode II
solution of Eq. (19) is consistent with a similar solution for external crack given in Tada et al. (2000). Inserting
Eqs. (18) and (19) into the corresponding Griffith condition in the non-oscillatory case,
G ¼ ðK
2
I þ K2

IIÞ
2E�

¼ Dc; ð20Þ
leads to the following equation
a3 þ 4R2e2aþ 8RFa
pE�

� 32DcR2

pE�
þ 16R2F 2

p2E�
2
a
¼ 0; ð21Þ
for determining the contact half-width a as a function of the mismatch strain e and the pulling force F.
In the case of e = 0, it can be shown that the non-oscillatory solution is identical to the 2D JKR solution of

Chaudhury et al. (1996), i.e., ae=0 = aJKR. In this case, the relationship between the contact size and the pulling
force can be expressed as
F ¼ �pE�a2
JKR

4R
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pE�aJKRDc

p
: ð22Þ
Eq. (21) can be normalized as
â3 þ 4k2e2â� 1þ 64m2 1

â
� 1

� �
� 16m 1� âð Þ ¼ 0; ð23Þ
where
â ¼ a
aJKR

; k ¼ R
aJKR

; m ¼ FR
2pE�a2

JKR

: ð24Þ
5. Discussion

5.1. The e = 0 case

In the case of e = 0, the stress intensity factor is
K ¼ E�ð2aÞ��rffiffiffiffiffiffi
2p
p
ð1� b2ÞR

Z a

�a

tðaþ tÞ�rða� tÞr

a� t
dt þ

ffiffiffi
2
p
ð2aÞ��rFffiffiffi

p
p : ð25Þ
Inserting this into the Griffith condition (14) yields
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2

¼ 2cosh2ðpjÞ Dc
E�R

; ð26Þ
where a0 denotes the contact size for the case e = 0. This equation can be normalized as
1
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where
~a ¼ a0

aJKR

; k ¼ R
aJKR

: ð28Þ
Numerical evaluation of (27) indicates that the ratio a0/aJKR is close to 1. Fig. 2 plots a0/aJKR for a fixed value
of k and three values of F/(E*R). It can be seen that the non-oscillatory solution, which for the case e = 0 cor-
responds to the JKR model, serves as a good approximate solution to the non-slipping adhesion problem.
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5.2. Effect of mismatch strain

In the presence of a mismatch strain, the coupling between shear and normal tractions in the contact area
becomes important. In this case, the contact half-width a is related to the mismatch strain e and the external
force F according to Eq. (15) which can be normalized as
ikeâ
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; ð29Þ
where
â ¼ a=a0 � a=aJKR; k ¼ R=a0 ffi R=aJKR: ð30Þ

Numerical evaluation of the above equation indicates that Dundurs’ parameter b only plays a minor role

and can be neglected so that the non-oscillatory Eq. (23) can be used as a reasonable approximation. An
example of comparison between the fully couple solution and the non-oscillatory solution is shown in
Fig. 3 for b = 0, 0.25 and �0.25.

The non-oscillatory solution expressed in Eqs. (23) and (24) indicates that, for a given non-dimensional
parameter FR=ð2pE�a2

JKRÞ, the normalized contact half-width a/aJKR depends on the mismatch strain e only
through the parameter combination ke. Fig. 4 plots the relation between a/aJKR and ke for several values
of the pulling force.

Assuming b = 0, the generalized JKR model for adhesive contact boils down to the following relation
F ¼ �pE�a2

4R
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pE�Dca� p2E�

2
e2a2

4

s
: ð31Þ
Fig. 5 shows the calculated relation between the normalized contact half-width a/R and the normalized exter-
nal force F/Dc for different mismatch strains and a fixed non-dimensional parameter E*R/Dc. The mismatch
strain is seen to exert significant influence on the pull-off process.

For different values of E*R/Dc, Fig. 6 shows the behavior of the normalized pull-off force F/Dc as a function
of the mismatch strain e; similarly, Fig. 7 shows the behavior of the normalized critical contact half-width at
pull-off. The pull-off force is seen to decrease with increasing mismatch strain. For a given mismatch strain, the
normalized pull-off force increases with the non-dimensional parameter E*R/Dc. On the other hand, for a
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given pulling force, there always exists a critical mismatch strain e at which two adhering cylinders will spon-
taneously break apart. Fig. 7 shows that the normalized critical contact half-width a/R at pull-off is also influ-
enced by the mismatch strain: the critical contact width decreases with increasing mismatch strain. For a given
mismatch strain, the critical contact width decreases with increasing E*R/Dc.

5.3. Adhesion mediated deformation sensor

The present analysis suggests that, under plane strain conditions, two adhering elastic bodies under a pair
of pulling forces have an increasing chance to break up in the presence of a mismatch strain. Thermal forces
tend to break apart any adhering objects and are therefore analogous to pulling forces considered in the pres-
ent model. Mismatch strains can be generated by changes in environment pressure or temperature or PH val-
ues. These results are similar to our previous analysis with respect to two adhering spheres (Chen and Gao,
2006c).

For a given mismatch strain with no applied pulling force, the adhesion energy can be estimated as
DU ¼ DU surface � DU elastic; ð32Þ

where DUsurface is the change in surface energies and DUelastic is the change in elastic energy as the contact is
formed. These quantities can be calculated as
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DU surface ¼ 2aeqDc; ð33Þ

DU elastic ¼ 2
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da; ð34Þ
where
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is the strain energy release rate when F = 0, e 5 0 and aeq is the corresponding equilibrium contact half-width
that can be obtained from Eq. (23) as,
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The corresponding stress intensity factors can be expressed from Eqs. (18) and (19) as
KI ¼
E�
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p
p
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E�e
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Therefore,
DU elastic ¼
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 !
pE�a2
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; ð39Þ
and the total adhesion energy is
DU ¼ 2aeqDc�
a2

eq

8R2
þ e2

 !
pE�a2

eq

8
: ð40Þ
This result shows explicitly how a mismatch strain decreases that adhesion energy between two adhering
bodies. When the adhesion energy is reduced to the order of kBT, adhesion should become unstable against
thermal fluctuations.
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