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An approximate method for evaluating the shear band
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SUMMARY

A formula for the thickness of a shear band formed in saturated soils under a simple shear or a combined
stress state has been proposed. It is shown that the shear band thickness is dependent on the pore pressure
properties of the material and the dilatancy rate, but is independent of the details of the combined
stress state. This is in accordance with some separate experimental observations. Copyright # 2004 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Shear bands in saturated soils are narrow zones which have been observed during simple shear
or plane strain or triaxial compressive experiments (e.g. References [1–5]). From; these
experiments closed formulas and diagrams for the inclination angle of critical discontinuity
surfaces were derived. These experimental results characterize the behaviour of a loose, fine-
grained, water-saturated sand tested under globally undrained conditions. For the local
measurements of boundary forces and deformations, stereophotogrammetry, digitized optical
images [6], X-ray method and optical measurements [7,8] are used to track the progressive
localization of strain and the influences of factors. It was found that the normalized shear band
thickness decreases as grain-size increases and as density decreases and is dependent on the
specimen dilatancy angle. Lade and Qiong Wang [9] performed true triaxial tests on tall
prismatic specimens of dense Santa Monica Beach sand in a modified version of a cubical
triaxial apparatus to study the effect of shear banding on failure in the full range of the
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intermediate principal stress. Mooney et al. [10] investigated the development of localized strains
in soils. Borja and Lai [11] investigates the impact of strain localization in the form of strong
discontinuity, or displacement jump, on the limit strengths of retaining walls supporting an
elastoplastic backfill.

The theoretical investigations (e.g. References [12–15]) have been processed to analyse
the inception of localization as a bifurcation or non-uniqueness of the solution for homogeneous
deformation. In these analyses, the saturated soils [16–21] are taken as a two-phase
continuum and to investigate the instability under undrained deformation. Their investigations
focus on two major bifurcation phenomena i.e. shear-banding and liquefaction. The shear
band thickness was analysed based on the Cosserat constitutive relation [22]. de Borst [23]
viewed the kinematics of a shear band as a discontinuity in a solid. The so-called strong
and weak discontinuity models are discussed and their interrelation is shown. From the
analysis reported by Lu [24], the evolution of the shear band was only discussed in a simple
condition.

Shear localization along these bands is caused by the destabilizing influence of the
pore pressure increase (or effective stress decrease) on the plastic flow. Under normal
circumstances, saturated soils harden as the strain and strain rate increase and the
yield stress decreases with increasing pore pressure. Thus, it is possible for the pore
pressure softening effect to more than compensate for the hardening effects of the strain
and strain rate causing the strain to localize eventually in one or more bands of intense
shear.

The plastic work (which causes the pore pressure increase and soil dilatancy) and the
pore pressure diffusion properties are observed to be of fundamental importance to the
appearance and the geometry of shear bands. Indeed, the plastic work leads to shear
localization, while pore pressure diffusion leads to shear bands extending [25]. The
bands generally result from loadings that cause high local strains. Shear bands in
saturated soils are usually very narrow, of the order of less than 20 radii of the soil particles
(e.g. [6,13]).

Because of the complexity of the problem, a lot of researchers are investigating it by
using numerical modelling methods [26–28]. They investigate the incipience of shear band
with an incrementally non-linear constitutive equation. Necessary conditions for the
emergence of shear band are derived. In order to overcome the difficulty of grid-dependence
when softening takes place, many numerical methods and constitutive relations are presented
[29]. Nevertheless, there is no convenient and exact method to estimate the shear band thickness
in saturated soils.

On the above viewpoint, an approximate approach is presented to estimate the shear band
thickness in simple shear and multidimensional stress states in this paper.

2. FORMULATIONS

In this paper, our aim is to find a convenient way to evaluate the band thickness in saturated
soils. We first consider a simple shear (Figure 1(a)) to discuss the one-dimensional shear band
thickness, and then consider a plane strain problem (Figure 1(b)) to discuss the multi-
dimensional band thickness.
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3. THE CONSTITUTIVE RELATIONS

The skeleton of soils is taken as visco-plastic, so the constitutive relations may be expressed as
follows under shear loading [30]:

s
0

x ¼ f1ðg; ’gg; uÞ

s
0

y ¼ f2ðg; ’gg; uÞ

t ¼ f3ðg; ’gg; uÞ

8>><
>>: ð1Þ

in which s
0

x; s
0

y are effective stresses in x and y directions, respectively, t is the shear stress, g is
the shear strain, ’gg is the shear strain rate, u is the pore pressure and is equal to s� sey; s is the
total stress, it is a constant in simple shear, which means that, u is equivalence to s

0

y in this case.

4. ONE-DIMENSIONAL PERTURBATION ANALYSIS

Lu [30] has used linear perturbation analysis to examine the growth of infinitesimal
inhomogeneities in homogeneous simple shear. These analyses include strain hardening, pore
pressure softening, etc. Following Lu’s analysis, the controlling equations are as follows:
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in which t is the shear stress, n is porosity, rs is the density of grains, g is the shear strain, K is the
obstruction coefficient whose dimension is ½L2� and K ¼ m=k1; where k1 is the physical
permeability and m is the viscosity, C is the coefficient denoting dilatancy, u is the pore pressure,
Er is the compressible coefficient of the grains, t is the time and y is the co-ordinate.
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Figure 1. (a) The sketch of simple shear; and (b) the sketch of plane strain state.
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5. INSTABILITY CONDITIONS

In the above equations, the y-axis is taken to be normal to the shear band length. Considering
disturbances of the form

g ¼ g8 þ g
0
expðatþ ikyÞ

p ¼ p8 þ p
0
expðatþ ikyÞ

t ¼ t8 þ t
0
expðatþ ikyÞ

8>><
>>: ð3Þ

in which a and k are, respectively, the frequency and the wave number. g8; p8; t8 is a solution to
the system of Equation (2), and jg

0
j5jg8j; jp

0
j5jp8j; jt

0
j5jt8j:

By the third Equation of (1), we can obtain

tn ¼ dt0 ¼
@f

@e

� �
0

deþ
@f

@’ee

� �
0

d’ee� �
@f

@p

� �
0

dp

¼ R0gn þH0agn �Q0p
n

ð4Þ

in which R0 is strain hardening coefficient,Q0 is strain rate hardening coefficient, H0 is pore
pressure softening coefficient.

Substituting Equation (3) in Equation (2) and considering Equation (4), a homogeneous
system of equations about g

0
; p

0
may be obtained. The determinant of coefficients must be

equal to zero if the equation have a non-trivial solution, which leads to the following spectral
equation [30].

ð1� nÞrsa
3 þ

ð1� nÞrsEr

Kn
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a2 þ A1aþ
ErR0

Kn
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in which A1 ¼ ðErH0=KnÞb
4 þ Ernb

2 þ R0b
2 � ErCQ0b

2:
Now the following variables are adopted:

a ¼
K

rs
%aa; b2 ¼

K2

rsR0

%bb2; A ¼
R0

Er
; B ¼

H0K

rsEr
; C1 ¼ CQ0 ð6Þ

Substituting the above variables in Equation (5), the dimensionless spectral equation may be
obtained:

nð1� nÞA%aa3 þ bð1� nþ nBÞ %bb2 þ An3c %aa2 þ bðn2 þ nA� nCÞ %bb2 þ AB %bb4c %aaþ %bb4 ¼ 0 ð7Þ

It is easy to find that in the case of long wavelength ð %bb ! 0Þ and short wavelength ð %bb ! 1Þ;
Equation (7) has negative roots, which means that, the deformation is always stable. But the
negative term n2 þ nA� nC which may lead to instability must occur at spectral wave numbers.
Therefore, it is interested to seek the wave number %bbm for which the corresponding %aam > 0 is a
maximum. Thus %bbm and %aam must satisfy the next equation

d%aa=d %bb2 ¼ 0 ð8Þ

which leads to

%bb2m ¼ �
ð1þ nþ nBÞ%aa2m þ ½n2 þ nðA� CÞ�%aam

2ðAB%aam þ 1Þ
ð9Þ
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Substituting the above equation in Equation (7), the equation for determining %aam may be
obtained as follows:

4An½ð1� nÞ%aam þ n2�ðAB%aam þ 1Þ ¼ fð1þ nþ nBÞ%aam þ ½n2 þ nðA� CÞ�g2 ð10Þ

It is obvious that if the following condition is satisfied, the above equation have solutions in
the range %aam > 0:

A� 2
ffiffiffiffiffiffi
An

p
þ n

C
5

A

C
51 ð11Þ

which is

R0

ErCQ0
51 ð12Þ

It is shown that the instability occurs when the strain hardening effect overcomes the pore
pressure softening effect.

6. THE THICKNESS OF SHEAR BAND UNDER SIMPLE SHEAR

As shear bands eventually take on a characteristic thickness with increasing time, from the
controlling equations as t ! 1 an estimation of the thickness d may be obtained as follows
[31,32]:
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An estimate of the term 1=Kn @2u=@y2 is
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in which u
*
; um are the pore pressure within the shear band and surrounding the shear band

respectively. Now because u
*
4um; it is possible to write the following simplified equation for

the shear band half thickness:

d ¼
u
*

C1 ’gg*Kn

 !0:5
ð15Þ

At high pore pressure or low effective stress, the material viscosity may be important. Then,
assuming ’gg

*
¼ t

*
=Z and therefore the equation above becomes

d ¼
Zu

*

C1Kntn

� �0:5
ð16Þ

From this equation, it may be concluded that the shear band thickness in saturated soils
should be a material whose characteristics are dependent on the physical and mechanical
properties of the material.
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7. MULTIDIMENSIONAL SHEAR BAND THICKNESS

Except in special cases, such as simple shear, shear bands in saturated soils are not formed in
one dimension. An obvious example of shear band in more complex stress states is plane strain
compression which can be regarded as a pure shear with a superimposed hydrostatic pressure.
There is direct experimental evidence that a superimposed hydrostatic pressure does not effect
the formation of shear band, but only the late stages which involve the formation of microcracks
within the bands (e.g. Reference [7]). Thus, it may well be that hydrostatic pressure does not
influence the shear band thicknesss formed.

For multidimensional bands, the controlling equations becomes the same as in the literature
[30].
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in which ’ggxy; ’ggxz; and ’ggyz are the shear strain rates in x–y; x–z; and y–z planes, respectively.
It has been found that the late stage of shear band formation is pore pressure diffusion

dominated unlike the inertia dominated initial stages [33]. Once the band is formed, the overall
deformation will reduce to a plane strain stress state. These assumptions lead to the following
two-dimensional momentum equations:
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1

Kn

@2u

@x2
þ

@2u

@y2

� �
þ

1

Er

@u

@t
ð18Þ

Now, the effect of a variation in pore pressure in relation to one shear band is investigated. If
one shear band is considered, and thickness 5l; l is the characteristic length of the sample, the
controlling equation becomes

Cð’ggxy þ ’ggxzÞ ¼ �
Dp
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þ
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in which
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y

d
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u
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in which tk is the characteristic time, Du is the pore pressure increase. Over the time tk the pore
pressure variation Du occurs, hence
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and therefore
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Now the controlling equation reduces to the following case:
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This assumption requires that the time at which the normal strains parallel and perpendicular
to the band are developed must be greater than the diffusion time across the band thickness.
This is obviously satisfied for shearing in saturated soils under undrained conditions. Thus,
the conclusion is that the thickness of shear band formed under a combined stress state is
mainly dominated by the one-dimensional equation for simple shear after considering the
dilatancy rate resulting from the combined stress state. Alternatively, the thickness of shear
band can be considered to be primarily dependent upon the strain rate and pore pressure
properties and to a lesser extent on the constitutive relation. The generalized formulae may be
written as

d �
ErDu*

Cð’ggxy þ ’ggxzÞKn

� �0:5
ð24Þ

8. THE COMPARISON WITH THE EXPERIMENTAL DATA

The apparent independence of shear band thickness is supported by some experiments. The data
adopted are given a simple description here:

Alshibli and Sture [6] used digital imaging analysis to study localized deformations in
granular materials tested under plane strain condition. The shear band thickness are from 3.19
to 3.29mm. The material used in their experiments was a fine-grained sand (F-75 Silica sand).
The mean particle size is equal to 0.22mm, The specific gravity of the particles is 2.65. The
porosity is about 0.5. The confining pressures are 15 and 100 kPa. They processed their
experiments using plane strain compression. The strain rate is assumed to be 4� 10�4 s: Er ¼
105 Pa; the obstruction coefficient is equal to K ¼ 1011 kg=m3 s; the porosity is about 0.6. The
pore pressure increase is about 105 Pa:

Oda and Kazama [7] carried plane strain experiments. It is shown that the shear band
thickness is about 7–8 times the mean particle size. The material they adopted is Toyoura sand.
Toyoura sand is a uniform dune sand with a mean particle size 0.206mm. The shear strain rate
is about 0.0012% while the minor stress s3 was kept as a constant value. Er ¼ 104 Pa; the
obstruction coefficient is equal to K ¼ 1012 kg=m3 s: The porosity is about 0.6, The pore
pressure increase is about 105 Pa:

In the Nemat-Nasser’s [34] triaxial torsion apparatus experiments, two types of sand, Silica
No. 60 and Monterey No. 0, are used to examine the particle-size effect on shear localization.
The mean particle diameters of Monterey No. 0 and Silica No. 60 are 0.48 and 0.22mm,
respectively. The shear band thickness is 7.0 and 2.5mm, respectively. The samples are
consolidated under 294 and 196 kN/m2 effective pressures. The shear strain rate is 0.0017 and
0.83%. The porosity is about 0.35 and 0.46. It is shown that the band thickness is about 10–15
times as large as the mean particle diameter. The pore pressure increase is about 105 Pa: The
parameter Er is equal to 106 and 107 Pa for Monterey No. 0 and Silica No. 60, respectively, K is
equal to about 1011 kg=m3 s:

The comparison between our results and the above experimental data are given in Table I.
The parameter C is estimated by the fact that each term in the second equation of (2) should be
in the same order. C is adopted to equal 106–107 Pa in the computing. It is shown that they are
close to each other.
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9. CONCLUSION

A formula for the thickness of a shear band formed in saturated soils under simple shear and
combined stress state has been proposed.

In the controlling equations, the dilatancy, the pore pressure dissipation, the inertial and the
obstruction between the grains and water are considered. The stresses are considered as the
function of strain, strain rate and pore pressure.

Perturbation method is used to seek for the instability conditions. It is shown that the
instability occurs when the strain hardening effect overcomes the pore pressure softening effect.
A finite thick shear band may develop after instability. Based on the fact that the shear band
formation is in a late stage and so the initial may be neglected, the approximated formulas of
bandwidth are obtained. It is shown that the shear band thickness is dependent on the pore
pressure properties of the material and the dilatancy rate, but is independent of the details of the
combined stress state. This is in accordance with some separate experimental observations.
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