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Fig, 5 Net energy changes of the fourth backward mode due to a sta- 
tionary spring ( k '  = 1 ,8)  a n d  a viscous damper (c' = c / p ~  = 0.75) at 
[ 2 '  = 1 .72  

the conservative forces, such as the inertial and elastic forces, 
are always 90 degrees out of phase with the velocity u.,(0, t). 

When the rotating speed f~ equals the wave speed S, the 
backward-wave mode shape appears as a stationary wave (i.e., 
u , (O,  t) = u t(0, t) = 0) when observed from stationary coordi- 
nates. It can then be noted from Eq. (2) that divergence instabil- 
ity cannot occur because the interactive force/ ' i (0,  t) becomes 
zero when f~ = S, so that E , ( t )  = 0, i.e., there is zero energy 
input into the system. The instabilities that occur in the present 
problem are either flutter or terminal instabilities. 

4 Flutter and Terminal Instabilities 
Flutter instability is a type of dynamic instability character- 

ized by oscillations with increasing amplitude. The flutter insta- 
bility due to a stationary stiffness (or mass) always occurs in 
conjunction with the coupling of two modes in a given speed 
region, as shown in Fig. 3(a) .  It can be easily proven that the 
phase difference between the lateral interactive force ( - k u  (0, 
t)) and the average slope ff.si(0, t) for a single mode is always 
90 deg in an uncoupled region. In the flutter region, the coupled 
modes have identical frequencies and mode shapes. In this case 
the phase difference between Fki and ff.si(0, t) varies from 90 
deg to 0 deg, as shown in Fig. 3(b).  

Within the flutter region, the total circumferential force gener- 
ated by a constraint having both mass and stiffness characteris- 
tics is given by 

Fc = Fok + Ft,, = m(co~ - cv~)u(O, t)ff,.(O, t) (5) 

where COo 2 = k / m .  cv~ is a frequency in the flutter region. The 
flutter instability can therefore be minimized by setting w02 = 
~ ,  where ~ is an average frequency over the flutter region. 
Figure 4 illustrates four flutter instability regions before and 
after such a modification is made. The flutter regions reduce or 
even disappear due to a significant reduction of the resultant 
circumferential force. 

Terminal instability refers to a special flutter instability which 
occurs at all speeds above a particular rotating speed. A typical 
example of terminal instability is that caused by a stationary 
viscous damper. For a constraint consisting only of a stationary 
damper, the resultant energy change in the system can be ex- 
pressed from Eq. (3) as 

f0 AE = Fa[u.,(0, t)  + r~2ffs(O, t ) ]d t  

fo = [r[2Fdff.x.(O, t) -- cu](O, t ) l d t  (6) 

where Fd = --cu,(O, t) .  It is noted from Eq. (6) that the energy 
into the system equals the difference between the input energy 

required to overcome the resistant torque induced by the damper 
and the energy dissipated by the same damper. It can be shown 
that instability occurs only when the backward-wave mode is 
excited by the stationary damping force at supercritical speeds. 
In this case the lateral damping force is always in phase with 
its velocity, measured in the string-fixed coordinates, which is 
independent of the rotating speed. 

Figure 5 shows the net energy changes for the fourth back- 
ward-wave mode caused individually by a spring and by a 
viscous damper that provide approximately equal transverse 
forces to the string. It can been seen from this figure that the 
net energy into the system through the damper is relatively small 
compared to that of the spring because the damper dissipates a 
portion of the input energy. 

5 Conclusions 
The stability characteristics of a constrained rotating string 

are determined by the ability of the system to divert driving 
energy into vibrational energy. When the interactive force be- 
tween a stationary constraint and a rotating string is in phase 
with the absolute velocity for nonconservative forces, or in 
phase with the average slope if,(0, t) for conservative forces, 
driving energy will be switched into vibration energy which 
leads to unstable behavior. This behavior has been mathemati- 
cally characterized in this note. The strength of the instability 
in a given flutter region can be minimized by choosing the 
natural frequency of the constraint to coincide with a frequency 
in the instability region. 
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Circular Arc Rigid Line Problem 
With Loading On-Line  

Y. Z. Chen i 

1 Introduction 
The significance of the rigid line problem was pointed by 

Dundurs and Markenscoff (1989). The singular integral equa- 
tion approach was suggested to solve the curve rigid line prob- 
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Fig, 1 A curve rigid line problem in an infinite plate 

lem (Chen and Hasebe, 1992). However, the formulation was 
only used to the case that the rigid line was in a floating state• 
This means no forces are applied on the rigid line. In the mean- 
time, for the rigid straight line with loading on-line, the problem 
was proposed and solved by Dundurs and Markenscoff (1989). 

In this note, the circular rigid line problem with loading on- 
line is studied and solved. It was found that, for the aforemen- 
tioned particular case, an explicit form for the kernels in the 
singular integral equation can be obtained. The form of the 
investigated function in the equation ( h ( t )  in the following 
analysis) can be assumed from a direct inspection. Finally, the 
solution in a closed form is obtainable. 

2 Formulat ion  of  the Problem in a General  Case 
The following analysis depends on the complex variable 

function method in plane elasticity (Muskelishvili, 1953). In 
this method the stresses (crx, Oy, a x y ) ,  the displacements (u, v), 
and the resultant force function (X, Y) are expressed in terms 
of two complex potentials qS(z), qO(z) such that 

~rx + cry = 4 Re ~ ' ( z )  

ay - ~ + 2i~rxy = 2[~-~b"(z) + ~0'(z)] (1) 

f =  - Y  + iX = qS(z) + zch'(z) + O(z)  (2) 

2 G ( u  + iv) = ~ b ( z )  - zqb'(z) - ~O(z) (3) 

where G is the shear modulus of elasticity, K = (3 - u) / (1 + 
u) is the plane stress problem, and u is the Poisson's ratio. 

In the problem we assume that ( 1 ) the stresses and the rota- 
tion (Ov/Ox - Ou/Oy) vanish at infinity and (2) the forces F~, 
Fy and the moment m are applied at the point ( x ,  y,.) (Fig. 1 ). 
In the actual analysis, the second condition is satisfied in the 
sense that the distributing forces applied on the rigid line are 
statically equivalent to the aforementioned forces F~, F r and 
the moment m in Fig. 1. 

The appropriate complex potential for the curve rigid line 
problem has been obtained previously by Chen and Hasebe 
(1992), which is as follows: 

~b(z) : - ~ Log (z - t ) h ( t ) d t  

~0(z) = ~ Log (z - t ) h ( t ) d 7  - 2--~ t - z 

where h ( t ) ,  t E L takes the complex value in general. Physi- 
cally, the function h ( t )  represents the body force density. Pre- 
viously, we obtain the following relation (Chen and Hasebe, 
1992): 

B R I k P  N U l  k S  

[N(t)  + iT( t )]  + - [N(t)  + i T ( t ) ] -  

= [Nb(t)  + iTb(t)] = i(K + 1)h(t) ,  t E L (5) 

where [N0(t) + iTb( t ) ] ( t  E L)  denotes the distributing forces 
applied along the curve rigid line. 

The relevant singular integral equation takes the form (Chen 
and Hasebe, 1992) 

~ f z  h ( t ) d t + - - K - f L K ' ( t ' t ° ) h ( t ) d t  
• t - to 27r 

1 
f K2(t ,  t o ) h ( t ) d T  = 2Gy i  (to E L)  (6) 

27r JL 

where y denotes the rotation of the rigid line and 

=__( ,°,1 d Log 
Ki (t ,  to) dto to - Z-/ 

d ( t o - t )  
K2(t,  to) = - ~o  \ ~  -----~-/ ' (7) 

Since the distributing forces [Nb(t) + iT~,(t)] are statically 
equivalent to the forces Fx, Fy and the moment m, thus we have 

(K + 1) J~ h ( t ) d t  = Fx + iFy (8) 

(K + l )  Im f L T h ( t ) d t = m  + x , . F y -  y,.Fx. (9) 

The stress singularity coefficient at the tips A and B in Fig. 
1 can be evaluated by (Chen and Hasebe, 1992) 

(KiR - iK2R)A = (271") 1/2 Lira ~/It - al h ( t )  
/--~a 

(K i t  - iK2R)~ = - ( 2 7 r ) m  Lim ( I t  - b l h ( t ) .  (10) 
t~b  

3 Solution for the Circular Rigid Line Case 
In the circular arc rigid line case (Fig. 2), a solution in closed 

form is obtainable. In this case, we have 

= t jo  = R z, dT= - R 2 d t / t  2 (t ,  to E L) .  (11) 

Here, L denotes the circular arc configuration (Fig. 2). Substi- 
tuting (11) into (7),  Eq. (6) becomes 

~ fLh(t)dt+ ~-~- fL l 
7r t - to 27r to 

+ I f  l h ( t ) d t  = 2 G y i  (to c L) .  (12) 
27r JL t 

To solve the equation, we introduce the following function: 

Y R ~ b ~ / / / ~  B L 

Fig. 2 A circular arc rigid line problem in an infinite plate 
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X ( z )  = x/(z - a ) ( z  - b ) ,  

(taking the branch Lim X ( z ) / z  = 1) (13) 
z+~ 

where a = R e x p ( - i 0 ) ,  b = R exp(i0) .  In addition, we define 

X ( t )  = X + ( t )  ( t E L ) .  (14) 

From the assumed definition, it follows that 

X ( t )  = X + ( t )  = - X - ( t ) ,  X ( t )  = R X ( t ) / t  (t E L).  (15) 

In the meantime, it is easy to 
(Chen, 1994): 

fL - - L -  d----~- - O, 
X ( t )  t - to 

f L R dt _ 7ri 
t X ( t )  t - to to 

quadrature the following integrals 

f L t dt _ 7ri 

Rxi t )  t -  to R 

(to e L) (16) 

- -  = -Tri(cos 0), ~ X @ t ) -  7ri, fL tdt e Tt) 

f .  Rdt fL R2 dt _ 7ri(cos 0). (17) 
tX(t-----) - 7ri, 7 X ( t )  

The solution will be investigated in two groups. 
( 1 ) In the first group we let F ,  :¢: 0, Fy = 0, m = 0. In this 

case, it is suitable to assume 

h( t )  = i c~ + c2-~ + c3 X ( t )  (18) 

Substituting 18) into (12),  (8) ,  (9) ,  and using (16),  (17),  
we obtain the following solution: 

2K - 1 - cos20 Fx 
C! = 

2~c-  1 + cos0  2rr(K + 1) 

1 + cos 0 Fx 
C 2 

2 K -  1 + cos 02rr(K + 1) ' 

Fx 
c 3 -  , 3' = 0. (19) 

2rc(t~ + 1) 

In addition, substituting (18) into (10),  the stress singularity 
coefficients at the tips A and B are obtainable 

(K~R - iK2R)A = t [Cl + C2 exp(-- i0)  

+ c3 exp(i0)]  exp( iO/2)  (20) 

(KIR)B = (KIR)a, (K2R)e = --(K2R)A (21) 

(2) In the second group, we assume F v e: 0, m ~ 0, Fx = 0,. 
In this case, it is suitable to assume 

( t ~ )  1 (22) 
h( t )  = dj + d 2 ~  + d3 X ( t )  

Substituting (22) into (12),  (8) ,  (9) ,  and using (16),  (17),  
we obtain the following solution: 

dl 27r(K + 1) 1 - cos 0 R (1 - cos O)Fy , 

d2 m 
1 ( 2m ) 

27r(K + 1) 1 - cos 0 R ' 

d3 -- Fy  
27r(K + 1) 

1 
y - - -  (dl + (21< + 1)d2 + d3 cos 0). (23) 

4GR 

In addition, substituting (22) into (10) ,  the stress singularity 
coefficients at the tips A and B are obtainable: 

(KiR -- iK2R)A = ~ [dl + d2 e x p ( - i 0 )  

+ d3 exp(i0)]  exp( iO/2)  (24) 

(KiR),, = --(KiR)a, (K2R)~ = (K2R)A. (25) 
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Analysis of a Rotating Pendulum 
With a Mass Free to Move Radially 

B. A. S c h m i d t  t and  D. G. M c D o w e l l  1 

Analysis o f  a pendulum pivoted on a rotating shaft. The mass 
o f  the pendulum is f ree  to move radially. The shaft is nearly 
horizontal. 

Introduction 
Pendulums with imposed oscillations have been studied by 

many researchers. Stephenson (1908) presented the inverted 
pendulum. Lowenstern (1932) analyzed the inverted spherical 
pendulum and compound pendulums with excitation. Miles 
(1962) investigated stability of the downward vertical position 
of a spherical pendulum with horizontal excitation. Sethna and 
Hemp (1964) analyzed a gyroscopic spherical pendulum with 
an imposed vertical oscillation. Phelps and Hunter (1965) pre- 
sented an analytical solution for the linearized inverted pendu- 
lum with harmonic excitation at an unrestricted frequency. 
Mitchell (1972) investigated the inverted pendulum with almost 
periodic excitation and with stochastic excitation. Howe (1974) 
described a theory of stabilization of the inverted position by 
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