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Abstract

An n degree-of-freedom Hamiltonian system with r (1¡r¡n) independent 0rst integrals which are in involution is
called partially integrable Hamiltonian system. A partially integrable Hamiltonian system subject to light dampings and weak
stochastic excitations is called quasi-partially integrable Hamiltonian system. In the present paper, the procedures for studying
the 0rst-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems are proposed. First,
the stochastic averaging method for quasi-partially integrable Hamiltonian systems is brie4y reviewed. Then, based on the
averaged Itô equations, a backward Kolmogorov equation governing the conditional reliability function, a set of generalized
Pontryagin equations governing the conditional moments of 0rst-passage time and their boundary and initial conditions are
established. After that, the dynamical programming equations and their associated boundary and 0nal time conditions for the
control problems of maximization of reliability and of maximization of mean 0rst-passage time are formulated. The relationship
between the backward Kolmogorov equation and the dynamical programming equation for reliability maximization, and that
between the Pontryagin equation and the dynamical programming equation for maximization of mean 0rst-passage time are
discussed. Finally, an example is worked out to illustrate the proposed procedures and the e9ectiveness of feedback control
in reducing 0rst-passage failure.? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

First-passage failure (0rst excursion) is a major
failure model of mechanical=structural systems un-
der random excitation and it is among the most dif-
0cult problems in the theory of random vibration or
stochastic structural dynamics. At present, a mathe-
matical exact solution is possible only if the random
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phenomenon in question can be treated as a di9u-
sion process. Still, known solutions are limited to the
one-dimensional case [1,2].
The state space of a mechanical or structural sys-

tem model is generally two dimensional or higher
and the random excitation of the system is usu-
ally not Gaussian white noise. So, it is diIcult
to directly use the theory of di9usion process for
0rst-passage problem. A feasible way in this case
is 0rst to apply the stochastic averaging method
to reduce the system to averaged Itô equations. In
the last three decades, many researchers applied the
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classical stochastic averaging method to study the
0rst-passage problem of single-degree-of freedom
(SDOF) oscillators with linear or non-linear restor-
ing force [3–13]. Recently, Zhu et al. applied the
stochastic averaging method for quasi-non-integrable
and integralbe Hamiltonian systems [14,15] to study
the 0rst-passage problem of many-degree-of-freedom
(MDOF) quasi-non-integrable and quasi-integralbe
Hamiltonian systems [16,17].
In the mechanical and structural systems, feed-

back control has been mostly used to alleviate the
response and sometimes used to stabilize the systems.
The non-linear stochastic optimal control strategy
proposed recently by the present 0rst author and his
co-worker [18,19] can also be used to reduce the
0rst-passage failure [20,21] except response reduction
[22]. In the present paper, the 0rst-passage failure and
its feedback minimization of quasi-partially integrable
Hamiltonian systems are studied. First, the stochas-
tic averaging method for quasi-partially integralbe
Hamiltonian systems developed recently is brie4y
reviewed. Then, the backward Kolmogorov equation
governing the conditional reliability function and
the generalized Pontryagin equations governing the
conditional moments of 0rst-passage time and their
boundary and initial conditions are established from
the averaged Itô equations. After that, the dynamical
programming equations and their boundary and 0nal
time conditions for the control problems of maxi-
mization of reliability and of maximization of mean
0rst-passage time are formulated. The optimal con-
trol forces are determined. The relationship between
the dynamical programming equations and backward
Kolmogorov equation and Pontryagin equation for an
optimally controlled system are discussed. Finally, an
example is given to illustrate the proposed procedures
and the e9ect of control on the reliability and mean
0rst-passage time.

2. The stochastic averaging method

Consider an n degree-of-freedom (DOF) quasi-
Hamiltonian system governed by the following equa-
tions of motion:

Q̇i =
@H ′

@Pi
;

Ṗi =−@H ′

@Qi
− �cij

@H ′

@Pj
+ �1=2fikWk(t);

i; j = 1; 2; : : : ; n; k = 1; 2; : : : ; m; (1)

where Qi and Pi are generalized displacements and
momenta, respectively, H ′ =H ′(Q;P) is a twice dif-
ferentiable Hamiltonian, cij = cij(Q;P) are functions
representing coeIcients of quasi-linear dampings;
fik = fik(Q;P) are functions representing ampli-
tudes of stochastic excitations, � is a small positive
parameter, Wk(t) are Gaussian white noises in the
sense of Stratonovich with correlation functions
E[Wk(t)Wl(t + �)] = 2Dkl�(�).
Eq. (1) can be modelled as Stratonovich stochas-

tic di9erential equations and then converted to Itô
stochastic di9erential equations by adding Wong–
Zakai correction terms Dklfjl@fik =@Pj in the sec-
ond equation of Stratonovich equations. Splitting
the Wong–Zakai correction terms into conservative
part and dissipative part and then combining them
with −@H ′=@Qi and −�cij@H ′=@Pj, respectively, the
following Itô equations can be obtained [14,15]:

dQi =
@H
@Pi

dt;

dPi =−
(
@H
@Qi

+ �mij
@H
@Pj

)
dt + �1=2�ik dBk(t);

i; j = 1; 2; : : : ; n; k = 1; 2; : : : ; m; (2)

where H =H (Q;P) is a modi0ed Hamiltonian, mij =
mij(Q;P) are modi0ed coeIcients of dampings; Bk(t)
are independent unit Wiener processes, ��T = 2fDfT.

When � = 0, Eq. (2) is reduced to a set of Hamil-
ton equations. A Hamiltonian system with Hamilto-
nian H can be non-integrable, partially integrable or
completely integrable. Here it is assumed that the
Hamiltonian system is partially integrable, i.e., the
Hamiltonian system has r(1¡r¡n) independent
0rst integrals which are in involution. Speci0cally,
the Hamiltonian is assumed of the form

H (q; p) =
r−1∑
�=1

H�(q1; p1) + Hr(q2; p2); (3)

where q1=[q1; q2; : : : ; qr−1]T, p1=[p1; p2; : : : ; pr−1]T,
q2 = [qr; qr+1; : : : ; qn]T, p2 = [pr; pr+1; : : : ; pn]T;
H� and Hr are the r independent 0rst integrals in
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involution. Eq. (3) implies that the partially inte-
grable Hamiltonian system consists of an integrable
part and a non-integrable part. For the integrable
part, action-angle variables can be introduced. Thus,
Eq. (3) can be re-written as

H (I; q2; p2) =
r−1∑
�=1

H�(I�) + Hr(q2; p2): (4)

The integrable part of a partially integrable Hamilto-
nian system can also be resonant and non-resonant,
just as for integrable Hamiltonian system [15].
Here only non-resonant case is considered. For
quasi-partially integrable Hamiltonian systems, the
averaged Itô equations in the non-resonant case are
of the form [23].

dI� = a�(I; Hr) dt + ��k(I; Hr) d OBk(t);

dHr = ar(I; Hr) dt + �rk(I; Hr) d OBk(t);

�= 1; 2; : : : ; r − 1; k = 1; 2; : : : ; m; (5)

where OBk(t) are independent unit Wiener processes.

a� = a�(I; Hr)

= �
〈
−m�′j

@H
@Pj

@I�
@P�′

+ Dklf�′kf�′′l
@2I�

@P�′@P�′′

〉
;

ar = ar(I; Hr)

= �
〈
−muj

@H
@Pj

@Hr

@Pu
+ Dklfukfvl

@2Hr

@Pu@Pv

〉
;

b� O� = b� O�(I; Hr) = [��T]� O�

= �
〈
2Dklf�′kf�′′l

@I�@I O�
@P�′@P�′′

〉
;

b�r = b�r(I; Hr) = [��T]�r

= �
〈
2Dklf�′kful

@I�@Hr

@P�′@Pu

〉
;

brr = brr(I; Hr) = [��T]rr

= �
〈
2Dklfukfvl

@Hr@Hr

@Pu@Pv

〉
;

〈·〉= 1
(2#)r−1T (Hr)V&1

∫
&

∫ 2#

&

[
·
/

@Hr

@pr

]

× dX dqr · · · dqn dpr+1 · · · dpn;

T (Hr) =
1
V&1

∫
&

[
1
/

@Hr

@pr

]

× dqr · · · dqndpr+1 · · · dpn;

V&1 =
∫
&1

dqr+1 · · · dqndpr+1 · · · dpn;

&= {(qr; : : : ; qn; pr+1; : : : ; pn)|Hr(qr; : : : ; qn; 0;

pr+1; : : : ; pn)6Hr};

&1 = {(qr+1; : : : ; qn; pr+1; : : : ; pn)|Hr(0; qr+1; : : : ; qn; 0;

pr+1; : : : ; pn)6Hr};

i; j = 1; 2; : : : ; n; �; O�; �′; �′′ = 1; 2; : : : ; r − 1;

k; l= 1; 2; : : : ; m; u; v= r; r + 1; : : : ; n; (6)

in which X= ['1; '2; : : : ; 'r−1]T.
In many case, H� are more easy to obtain than I�.

Since H� =H�(I�), the equations for I� in Eq. (4) can
be replaced by those for H�. The later can be obtained
from the former by using Itô di9erential rule. Denote
H=[H1; H2; : : : ; Hr]T. The averaged Itô equations for
H are of the form

dH( = a((H) dt + �(k(H) dBk(t);

(= 1; 2; : : : ; r; k = 1; 2; : : : ; m; (7)

where a( and �(k can be obtained similarly as
a�; ar; b�k and brk in Eq. (6).

3. The �rst passage failure

For many mechanical=structural systems, H� rep-
resent the energies of r − 1 degrees of freedom of
the integrable part while Hr the total energy of the
non-integrable part. The state of averaged system of
a quasi-partially integralbe system varies randomly in
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the r-dimensional domain de0ned by the direct prod-
uct of the H� intervals and Hr interval and safety do-
main O& is a bounded region with boundary ) within
the r-dimensional H� and Hr domain. Suppose that
the lower boundary of safety domain for each H� and
Hr is at zero (it is always possible to make so by using
coordinate transformation). Then boundary ) consists
of )0 (at least one of H� and Hr vanishes) and critical
boundary )c. The 0rst passage failure occurs when
H(t) crosses )c for the 0rst time, and it is character-
ized by the conditional reliability function, the con-
ditional probability density or conditional moments
of 0rst-passage time, where the word “conditional”
means under the given initial condition in safety
domain.
The conditional reliability function, denoted by

R(t; |H0), is de0ned as the probability of H(t) being
in safety domain O& within time interval (0; t] given
initial state H0 = H(0) being in O&, i.e.,

R(t|H0) = P{H(�)∈ O&; �∈ (0; t]|H0 ∈ O&}: (8)

It is the integral of the conditional transition prob-
ability density in O&, which is the transition proba-
bility density of the sample functions that remain in
O& in time interval (0; t]. For averaged system, the
conditional transition probability density satis0es the
backward Kolmogorov equation with drift and di9u-
sion coeIcients in Eqs. (7). Thus, the following back-
ward Kolmogorov equation for the conditional relia-
bility function can be derived

@R
@t

= a((H0)
@R
@H(0

+
1
2
b(+(H0)

@2R
@H(0@H+0

;

(; + = 1; 2; : : : ; r; (9)

where a((H0) = a((H)|H=H0 , b(+(H0) = �(k(H)�k+
(H)|H=H0 , a((H) and �(k(H) are de0ned by Eq. (7).
The boundary conditions are

R(t|)0) = 0nite; (10)

R(t|)c) = 0; (11)

which imply that )0 is a re4ecting boundary while )c

absorbing boundary. The initial condition is

R(0|H0) = 1; H0 ∈ O&; (12)

which implies that the system is initially in safety
domain.

The 0rst-passage time T is de0ned as the time when
the system reaches critical boundary )c for the 0rst
time given H0 being in O&. Noting that the condi-
tional probability of 0rst-passage failure F(t|H0) =
1−R(t|H0), the conditional probability density of the
0rst-passage time can be obtained from the conditional
reliability function as follows:

p(T |H0) =
−@R(t|H0)

@t

∣∣∣∣
t=T

: (13)

The conditional moments of 0rst-passage time are
de0ned as

-l(H0) =
∫ ∞

0
T lp(T |H0) dT: (14)

The equations governing the conditional moments of
0rst-passage time can be obtained from Eq. (9) in
terms of relations (13) and (14) as follows:

1
2
b(+(H0)

@2-l+1

@H(0@H+0
+ a((H0)

@-l+1

@H(0
=−(l+ 1)-l;

(; + = 1; 2; : : : ; r; l= 1; 2; : : : : (15)

It is easily seen fromEq. (14) that -0=1. The boundary
conditions associated with Eq. (15) are obtained from
Eqs. (10) and (11) in terms of Eqs. (13) and (14).
They are

-l+1()0) = 0nite; (16)

-l+1()c) = 0: (17)

Note that both boundary conditions (10) and (16) are
qualitative rather than quantitative. They can be made
to be quantitative by using Eqs. (9) and (15), respec-
tively, and the limiting behaviors of the drift and dif-
fusion coeIcients in Eqs. (9) and (15) at boundary
)0. It will be illustrated with the following example.

The conditional reliability function is obtained from
solving backward Kolmogorov equation (9) together
with boundary conditions (10) and (11) and initial
condition (12). The conditional probability density of
0rst-passage time is obtained from the conditional reli-
ability function by using Eq. (13). The conditional mo-
ments of 0rst-passage time are obtained either from the
conditional probability density of 0rst-passage time by
using de0nition (14) or directly from solving general-
ized Pontryagin equation (15) together with boundary
conditions (16) and (17), recursively.
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4. Minimization of �rst-passage failure by control

Now consider a controlled quasi-partially integrable
Hamiltonian system. The equations of motion of the
system are of the form

Q̇i =
@H ′

@Pi
;

Ṗi =−@H ′

@Qi
− �cij

@H ′

@Pj
+ �ui + �1=2fikWk(t);

Qi(0) = Qi0; Pi(0) = Pi0;

i; j = 1; 2; : : : ; n; k = 1; 2; : : : ; m; (18)

where ui = ui(Q;P) represent feedback control forces
and the other notations are the same as those in
Eq. (1). Applying the stochastic averaging method
for quasi-partially integrable systems described in the
last section of Eq. (18), the following averaged Itô
equations can be obtained:

dH( =
[
a((H) + �

〈
ui

@H(

@Pi

〉]
dt + �(k(H) dBk(t);

(= 1; 2; : : : ; r; k = 1; 2; : : : ; m; (19)

where a( and �(k are the same as those in Eq. (7) and
H=H(t; u) is the vector of 0rst integrals of controlled
system. For the control problem of maximization of
reliability, the value function is de0ned as

V (t1;H) = sup
u∈U

P{H(�; u)∈ O&; �∈ [t1; tf ]}; (20)

where u∈U represents control constraint; “sup” is
the abbreviation of word “supremum”. Comparison
between Eqs. (8) and (20) implies that V (t1;H) is
the reliability function of optimally controlled system
with t1 as initial time and under control constraint
u∈U . Based on the dynamical programming principle
[24], the following stochastic dynamical programming
equation for the value function can be derived from
the averaged system (19):

sup
u∈U

{
@
@t1

+
[
a((H) + �

〈
ui

@H(

@Pi

〉]
@

@H(

+
1
2
b(+(H)

@2

@H(@H+

}
V (t1;H) = 0;

06 t16 tf ; H∈ O&: (21)

The boundary conditions associated with Eq. (21) are

V (t1; )0) = 0nite; (22)

V (t1; )c) = 0 (23)

and the 0nal time condition is

V (tf ;H) = 1; H∈ O&: (24)

Eqs. (21)–(24) are the mathematical formulation for
the control problem of feedback maximization of re-
liability of quasi-partially integrable Hamiltonian sys-
tems. Both the optimal control law and the reliability
function of optimally controlled systems can be ob-
tained form solving these equations.
Similarly, the control problem of feedback maxi-

mization of mean 0rst-passage time for quasi-partially
integrable Hamiltonian systems can be formulated as
follows. Denote mean 0rst-passage time of controlled
system (19) by E[�(H; u)]. De0ne the value function
as

V1(H) = sup
u∈U

E[�(H; u]; (25)

which means V1(H) is the mean 0rst-passage time of
optimally controlled system (19) under control con-
straint u∈U . The following dynamical programming
equation for value function (25) can be derived from
the dynamical programming principle [24]:

sup
u∈U

{[
a((H)+ �

〈
ui

@H(

@Pi

〉]
@

@H(
+

1
2
b(+(H)

@2

@H(@H+

}

V1(H) =−1; H∈ O&: (26)

The boundary conditions associated with this equation
are

V1()0) = 0nite; (27)

V1()c) = 0: (28)

Solving Eqs. (26)–(28) yields both the optimal con-
trol law and the mean 0rst-passage time of optimally
controlled system (19).
The optimal control law can be obtained from max-

imizing the left-hand side of Eq. (21) or (26) with
respect to u∈U . Suppose that the control constraints
are of the form

− bi6 ui6 bi; i = 1; 2; : : : ; n; (29)

where bi are positive constants. Then the terms
�〈ui(@H(=@Pi)〉(@V=@H() in Eqs. (21) and (26)
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will be maximum when |ui| = bi and each term
�ui(@H(=@Pi)(@V=@H() (summation over ( but no
summation with respect to i) is positive. Thus, the
optimal control forces can be written as

u∗i = bi sign
(
@H(

@Pi

@V
@H(

)
; i = 1; 2; : : : ; n: (30)

It can be shown (see Figs. 5, 6, 9 and 10) that the
reliability function and mean 0rst-passage time are
monotonously decreasing functions of H(. So the
value functions V and V1 should be a decreasing
function of H(, i.e., @V=@H( ¡ 0, @V1=@H( ¡ 0. Thus,
if H( contains only one P(, Eq. (30) can be reduced to

u∗i =−bi sign
(
@Hi

@Pi

)
; i = 1; 2; : : : ; n; (31)

Eq. (31) implies that the optimal control is a bang–
bang control. u∗i has a constant magnitude and changes
its direction at @Hi=@Pi = 0. By inserting Eq. (30)
or (31) into Eq. (19) for replacing ui and averaging
terms �u∗i (@H(=@Pi), the following completely aver-
aged Itô equations for optimally controlled system are
obtained:

dH( = Oa((H) dt + �(k(H) dBk(t);

H((0) = H(0;

(= 1; 2; : : : ; r; k = 1; 2; : : : ; m; (32)

where

Oa((H) = a( + �
〈
u∗i

@H(

@Pi

〉

=−�
〈
m�′j

@H
@Pj

@H(

@P�′
+ �Dklf�′kf�′′l

× @2H(

@P�′@P�′′
+ �u∗i

@H(

@Pi

〉

i; j = 1; 2; : : : ; n; k; l= 1; 2; : : : ; m: (33)

Then, substituting Oa((H) into Eqs. (21) and (26) to
replace a((H) + �ui@H(=@Pi, the 0nal dynamical pro-
gramming equations can be obtained. They are[

@
@t1

+ Oa((H)
@

@H(
+

1
2
b(+(H)

@2

@H(@H+

]
V (t1;H)

=0; 06 t16 tf ; H∈ O& (34)

for the control problem of reliability maximization,
and[
Oa((H)

@
@H(

+
1
2
b(+(H)

@2

@H(@H+

]
V1(H) =−1;

H∈ O& (35)

for the control problem of maximization of mean
0rst-passage time. The boundary conditions and
0nal condition for Eq. (34) are still Eqs. (22)–(24)
while the boundary conditions for Eq. (35) are still
Eqs. (27) and (28).

5. Relationship between dynamics programming
equations and backward Kolmogorov equation and
Pontryagin equation

Denote the reliability function of optimally con-
trolled system in time interval [0; t] by Ropt. i.e.,

Ropt(t|H0) = P{H(�; u∗)∈ O&; �∈ (0; t]|H0 ∈ O&}: (36)
Following the same procedure as that leading to Eqs.
(9)–(12), the following equation for Ropt can be
derived:

@Ropt

@t
= Oa((H0)

@Ropt

@H(0
+

1
2
b(+(H0)

@2Ropt

@H(0@H+0
(37)

with boundary conditions

Ropt(t|)0) = 0nite; (38)

Ropt(t|)c) = 0 (39)

and initial condition

Ropt(0|H0) = 1; H0 ∈ O&: (40)

Note that in Eq. (37), t is a forward time running from
0 to tf while in Eq. (34), t1 is a backward time running
from tf to 0. Introducing transformation

t = tf − t1: (41)

Then Eqs. (34) and (37) will be of the same form
and 0nal time condition (24) is of the same form of
initial condition (40). Note that boundary conditions
(22) and (23) are of the same form of boundary con-
ditions (38) and (39). From these and the de0nitions
of V (t1;H) and Ropt(t; |H0) in Eqs. (20) and (36),
respectively, it is seen that

V (0;H0) = Ropt(tf |H0): (42)
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Thus, we can obtain the reliability function of
optimally controlled system from solving backward
Kolmogorov equation (37) instead of dynamical pro-
gramming equation (34). Furthermore, the probability
density of 0rst-passage time of optimally controlled
system can be obtained from the following equation:

popt(T |H0) =− @Ropt(t|H0)
@t

∣∣∣∣
t=T

=
@V (t1;H)

@t1

∣∣∣∣
t1=0;H=H0

: (43)

Similarly, the conditional mean of the 0rst-passage
time of optimally controlled system, i.e.,

-1;opt(H0) =
∫ ∞

0
Tpopt(T |H0) dT (44)

is governed by the following Pontryagin equation:

1
2
brs(H0)

@2-1;opt
@Hr0@Hs0

+ Oar(H0)
@-1;opt
@Hr0

=−1 (45)

together with boundary conditions

-1;opt()0) = 0nite; (46)

-1;opt()c) = 0: (47)

Obviously, dynamical programming equation (35) and
boundary conditions (27) and (28) are of the same
form of Eqs. (45)–(47). Thus, we have

-1;opt(H0) = V1(H)|H=H0 : (48)

Therefore, we can 0rst solve dynamical program-
ming equation (34) together with boundary condi-
tions (22), (23) and 0nal condition (24) to obtain
V (t1;H) and then obtain the conditional reliabil-
ity function and conditional probability density of
0rst-passage time of optimally controlled quasi-
partially integrable Hamiltonian system by using
Eqs. (42) and (43), respectively. Or, we can directly
solve backward Kolmogorov equation (37) together
with boundary conditions (38), (39) and initial con-
dition (40) to obtain the conditional reliability func-
tion of optimally controlled quasi-partially integrable
Hamiltonian system and then obtain the conditional
probability density of the 0rst passage time by us-
ing Eq. (43). Note that the only di9erence between
the backward Kolmogorov equations (9) and (37) of
uncontrolled and optimally controlled systems lies in
drift coeIcients a( and Oa(.

Similarly, to obtain the conditional mean of
0rst-passage time of optimally controlled quasi-
partially integrable Hamiltonian system, we can solve
Pontryagin equation (45) together with boundary
conditions (46) and (47), or 0rst solve dynamical
programming equation (35) together with boundary
conditions (27), (28) and then use Eq. (48). The only
di9erence between the Pontryagin equations (15)
and (45) of uncontrolled and optimally controlled
quasi-partially integrable Hamiltonian systems lies
also in drift coeIcients a( and Oa(.

Example. Consider the following 3-DOF quasi-
Hamiltonian system:

SX 1 + Ẋ 1((10 + (11Ẋ
2
1 + (12Ẋ

2
2 + (13Ẋ

2
3) + !2

1X1

=W1(t) + X1W4(t) + u1;

SX 2 + Ẋ 2((20 + (21Ẋ
2
1 + (22Ẋ

2
2 + (23Ẋ

2
3) +

@U
@X2

=W2(t) + X2W5(t) + u2;

SX 3 + Ẋ 3((30 + (31Ẋ
2
1 + (32Ẋ

2
2 + (33Ẋ

2
3) +

@U
@X3

=W3(t) + X3W6(t) + u3; (49)

where

U (X2; X3) =
1
2
(!2

2X
2
2 + !2

3X
2
3 )

+
b
4
(!2

2X
2
2 + !2

3X
2
3 )

2; (50)

(ij and b¿ 0 are constants; Wk(t) are independent
Gaussian white noises with intensities 2Dk . The
Wong–Zakai correction terms vanish for this example.
The Hamiltonian associated with system (49) is thus

H = H1 + H2; (51)

where

H1 = (Ẋ
2
1 + !2

1X
2
1 )=2;

H2 = 1
2 (Ẋ

2
2 + Ẋ

2
3) + U (X2; X3); (52)

The Hamiltonian system with Hamiltonian (51) is of
the form of Eq. (3) or (4) and it is partially integrable.
So; system (49) is a quasi-partially integrable Hamil-
tonian system if (ij; Dk and ui are of the order of �.
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The averaged Itô equations are of the form of
Eq. (19), i.e.,

dH1 =
[
a1(H1; H2) +

〈
ui

@H1

@Pi

〉]
dt + �1k dBk(t);

dH2 =
[
a2(H1; H2) +

〈
ui

@H2

@Pi

〉]
dt + �2k dBk(t);

i = 1; 2 : : : ; 3; k = 1; 2; : : : ; 6; (53)

where the drift and di9usion coeIcients ar and
�rk (r=1; 2) can be obtained by using formula similar
to Eq. (6). They are

a1 =−(10H1 − 3
2
(11H 2

1 − ((12 + (13)

×
(
H2 − 1

4
R2 − b

12
R4

)
H1 + D1 +

D4

!2
1
H1;

a2 =−((20 + (21H1 + (30 + (31H1)

×
(
H2 − 1

4
R2 − b

12
R4

)

− 1
8
(3(22 + (23 + (32 + 3(33)

×
[
4H 2

2 − 8H2R2
(
1
4
+

b
12

R2
)

+R4
(
1
3
+

b2

20
R4 +

b
4
R2

)]

+D2 + D3 +
D5R2

4!2
2

+
D6R2

4!2
3
;

b11 = �1k�1k = 2D1H1 +
D4

!2
1
H 2

1 ;

b22 = �2k�2k = 2(D2 + D3)
(
H2 − 1

4
R2 − b

12
R4

)

+
1
2

(
D5

!2
2
+

D6

!2
3

)(
H2 − 1

3
R2 − b

8
R4

)
R2;

b12 = �1k�2k = 0;

b21 = �2k�1k = 0; (54)

where

R= sqrt
(√

1 + 4bH2 − 1
b

)
: (55)

01

H2

H1

 

c

03 02

Γ

Γ Γ

Γ

Ω

Fig. 1. Safety domain of system (49).

It is seen from Eqs. (52) and (50) that H( ((=1; 2)
vary from 0 to ∞. So, the state of averaged system
(53) varies randomly in the 0rst quadrant of plane
(H1; H2). Suppose that the limit state of system is H=
H1 + H2 = Hc, i.e.,

)c: H1 + H2 = Hc; H1; H2¿ 0: (56)

The safety domain O& of the system is the inside of a
right triangle with boundaries )c de0ned by Eq. (56)
and )0 de0ned by

)0 = )01 + )02 + )03;

)01: H1 = 0; 0¡H2 ¡Hc;

)02: H2 = 0; 0¡H1 ¡Hc;

)03: H1 = H2 = 0 (57)

(see Fig. 1).
Following Eq. (9), the conditional reliability func-

tion R(t|H10; H20) of system (49) without control is
governed by the following backward Kolmogorov
equation:
@R
@t

= a1
@R
@H10

+ a2
@R
@H20

+
1
2
b11

@2R
@H 2

10

+
1
2
b22

@2R
@H 2

20
; (58)

where ar , brr are de0ned by Eqs. (54) with H1, H2

replaced by H10 and H20, respectively. The initial
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condition is Eq. (12) with H0 = [H10; H20]T. One
boundary condition is Eq. (11) with )c de0ned by
Eq. (56). The other qualitative boundary condition
(10) at )0 de0ned by Eq. (57) can be transformed
into a quantitative one by using Eq. (58) and con-
sidering the limit behaviors of the drift and di9usion
coeIcients in Eq. (54) at boundary )0. It is

@R
@t

= D1
@R
@H10

+ a′2
@R
@H20

+ b22
@2R
@H 2

20
(59)

for boundary )01;

@R
@t

= a′1
@R
@H10

+ (D2 + D3)
@R
@H20

+ b11
@2R
@H 2

10
(60)

for boundary )02;

@R
@t

= D1
@R
@H10

+ (D2 + D3)
@R
@H20

(61)

for boundary )03.
In Eqs. (59)–(60)

a′1 =−(10H1 − 3
2
(11H 2

1 + D1 +
D4

!2
1
H1;

a′2 =−((20 + (30)
(
H2 − 1

4
R2 − b

12
R4

)

− 1
8
(3(22 + (23 + (32 + 3(33)

×
[
4H 2

2 − 8H2R2
(
1
4
+

b
12

R2
)

+R4
(
1
3
+

b2

20
R4 +

b
4
R2

)]

+D2 + D3 +
D5R2

4!2
2

+
D6R2

4!2
3
: (62)

Eq. (58) is a two-dimensional parabolic partial dif-
ferential equation and can be solved numerically to-
gether with the boundary and initial conditions by us-
ing Peaceman–Rachford scheme of 0nite di9erence
method to yield the conditional reliability function of
system (49) without control. The conditional proba-
bility density of the 0rst-passage time of system (49)
without control is then obtained from the conditional
reliability function by using Eq. (13).
Similarly, the generalized Pontryagin equations

for the conditional moments -l+1(H10; H20) of 0rst

passage time of system (49) without control can be de-
rived from the averaged Itô equation (53) as follows:

1
2
b11

@2-l+1

@H 2
10

+
1
2
b22

@2-l+1

@H 2
20

+ a1
@-l+1

@H10
+ a2

@-l+1

@H20

= − (l+ 1)-l; l= 1; 2; : : : ; (63)

where ar , brr are de0ned by Eq. (54) with Hr replaced
by Hr0. One boundary condition is Eq. (17) with )c

de0ned by Eq. (56). The other qualitative boundary
condition, Eq. (16) with )0 de0ned by Eq. (57), can
be transformed into quantitative one by using Eq. (63)
and considering the limiting behaviors of the drift
and di9usion coeIcients in Eq. (54) at boundary )0.
It is

1
2
b22

@2-l+1

@H 2
20

+ D1
@-l+1

@H10
+ a′2

@-l+1

@H20

= − (l+ 1)-l (64)

for boundary )01;

1
2
b11

@2-l+1

@H 2
10

+ a′1
@-l+1

@H10
+ (D2 + D3)

@-l+1

@H20

= − (l+ 1)-l (65)

for boundary )02;

D1
@-l+1

@H10
+ (D2 + D3)

@-l+1

@H20
=−(l+ 1)-l (66)

for boundary )03.
a′1 and a′2 in Eqs. (64) and (65) are de0ned by Eq.

(62). Eq. (63) is a 2-dimensional elliptical partial dif-
ferential equation and can be solved numerically to-
gether with boundary conditions by using 0ve-point
scheme of 0nite di9erence method to yield the con-
ditional moments of 0rst-passage time of system (49)
without control.
Now consider the control problem of maximiza-

tion of reliability of system (49). The dynamical pro-
gramming equation is of the form of Eq. (21) with
H=[H1; H2]T and with drift and di9usion coeIcients,
ar and brr , de0ned by Eq. (54). If the control forces
are subject to the constraints of the form of Eq. (29),
then the optimal control forces are of the form of Eq.
(31). The 0nal dynamical programming equation is of
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the form of Eq. (34), i.e.,[
@
@t1

+ Oa1
@

@H1
+ Oa2

@
@H2

+
1
2
b11

@2

@H 2
1

+
1
2
b22

@2

@H 2
2

]
V (t1; H1; H2) = 0; (67)

where 06 t16 tf , Oa1 and Oa2 are obtained by using
Eq. (33) as follows:

Oa1 = a1 − 2b1
#

√
2H1;

Oa′2 = a2 +
(b2 + b3)

#R2

[
1
b

√
R4 − 2

b
R2 −

(
R2 +

1
b

)2

×
(
#
2
− sin−1 1

(1 + bR2)

)]√
b
2
; (68)

while a1, a2 b11, and b22 are de0ned by Eq. (54).
One boundary condition is of the form of Eq. (23)

with )c de0ned by Eq. (56). The other qualitative
boundary condition (22) with )0 de0ned by Eq. (57)
can be transformed into quantitative one by using
Eq. (67) and the limiting behaviors of drift and di9u-
sion coeIcients Oar , brr at boundary )0. It is{

@
@t1

+ D1
@

@H1
+ Oa′2

@
@H2

+ b22
@2

@H 2
2

}

V (t1; H1; H2) = 0 (69)

for boundary )01;{
@
@t1

+ Oa′1
@

@H1
+ (D2 + D3)

@
@H2

+ b11
@2

@H 2
1

}

×V (t1; H1; H2) = 0 (70)

for boundary )02;{
@
@t1

+ D1
@

@H1
+ (D2 + D3)

@
@H2

}

V (t1; H1; H2) = 0 (71)

for boundary )03.
In Eqs. (69) and (70).

Oa′1 = a′1 −
2b1
#

√
2H1:

Oa′2 = a′2 +
(b2 + b3)

#R2

[
1
b

√
R4 − 2

b
R2 −

(
R2 +

1
b

)2

×
(
#
2
− sin−1 1

(1 + bR2)

)]√
b
2
; (72)

while a′1 and a′2 are de0ned by Eq. (62).
As indicated in the last section, dynamical pro-

gramming equation (67) with boundary conditions
(23), (69)–(71) and 0nal condition (24) is equivalent
to the following backward Kolmogorov equation for
Ropt(t;H0)
@Ropt

@t
= Oa1

@Ropt

@H10
+ Oa2

@Ropt

@H20
+

1
2
b11

@2Ropt

@H 2
10

+
1
2
b22

@2Ropt

@H 2
20

(73)

with initial condition (40), boundary condition (39)
with )c de0ned by Eq. (56) and boundary conditions
@Ropt

@t
= D1

@Ropt

@H10
+ Oa′2

@Ropt

@H20
+

1
2
b22

@2Ropt

@H 2
20

(74)

for boundary )01;
@Ropt

@t
= Oa′1

@Ropt

@H10
+ (D2 + D3)

@Ropt

@H20

+
1
2
b11

@2Ropt

@H 2
10

(75)

for boundary )02;
@Ropt

@t
= D1

@Ropt

@H10
+ (D2 + D3)

@Ropt

@H20
(76)

for boundary )03.
Since the backward Kolmogorov Eq. (73) and its

initial and boundary conditions for optimally con-
trolled system (49) are of the same form of the
backward Kolmogorov equation (58) and its initial
and boundary conditions for system (49) without
control except drift coeIcients, it is more conve-
nient to obtain the conditional reliability function
Ropt(t|H10; H20) of optimally controlled system (49)
from solving backward Kolmogorov equation (73)
together with its initial and boundary conditions.
For the control problem of maximization of mean

0rst-passage time of system (49), we can formulate
the dynamical programming equation and its equiv-
alent Pontryagin equation similarly. The dynamical
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programming equation is{
Oa1

@
@H1

+ Oa2
@

@H2
+

1
2
b11

@2

@H 2
1
+

1
2
b22

@2

@H 2
2

}

×V1(H1; H2) =−1 (77)

with boundary condition (28), where )c is de0ned by
Eq. (56), and boundary conditions{
D1

@
@H1

+ Oa′2
@

@H2
+

1
2
b22

@2

@H 2
2

}

×V1(H1; H2) =−1 (78)

for boundary )01;{
Oa′1

@
@H1

+ (D2 + D3)
@

@H2
+

1
2
b11

@2

@H 2
1

}

×V1(H1; H2) =−1 (79)

for boundary )02;{
D1

@
@H1

+ (D2 + D3)
@

@H2

}
V1(H1; H2) =−1 (80)

for boundary )03.
The equivalent Pontryagin equation is

1
2
b11

@2-1;opt
@H 2

10
+

1
2
b22

@2-1;opt
@H 2

20

+ Oa1
@-1;opt
@H10

+ Oa2
@-1;opt
@H20

=−1 (81)

with boundary condition (47), where )c is de0ned by
Eq. (56), and boundary conditions

1
2
b22

@2-1;opt
@H 2

20
+ D1

@-1;opt
@H10

+ Oa′2
@-1;opt
@H20

=−1 (82)

for boundary )01;

1
2
b11

@2-1;opt
@H 2

10
+ Oa′1

@-1;opt
@H10

+ (D2 + D3)
@-1;opt
@H20

=− 1 (83)

for boundary )02;

D1
@-1;opt
@H10

+ (D2 + D3)
@-1;opt
@H20

=−1 (84)

for boundary )03. It is also more convenient to obtain
the mean 0rst-passage time of optimally controlled
system (49) from solving the Pontryagin equation (81)
with its boundary conditions.
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)
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A

Fig. 2. Reliability function of system (49): (A) uncontrolled; (B)
optimally controlled with b1 = 0:01, b2 = 0:02, and b3 = 0:03; and
(C) optimally controlled with b1 = 0:02, b2 = 0:04, and b3 = 0:06.
(—) Analytical result; (•;�;4) from digital simulation.
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Fig. 3. Probability density of 0rst-passage time of system (49): (A)
uncontrolled; (B) optimally controlled with b1=0:01, b2=0:02, and
b3=0:03; and (C) optimally controlled with b1=0:02, b2=0:04, and
b3=0:06. (—) Analytical result; (•;�;4) from digital simulation.

Some numerical results for the reliability functions,
probability density and mean of 0rst-passage time of
uncontrolled and optimally controlled system (49)
are shown in Figs. 2–10. In the calculation, system
parameters are set up as follows:

(10 = (20 = (30 =−0:08; (11 = (22 = (33 = 0:04;

(12 = (13 = 0:01; (21 = (31 = 0:02;

(23 = (32 = 0:04;

!1 = 1:414; !2 = 1; !3 = 1:732; b= 1;
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Fig. 4. Mean 0rst-passage time of system (49): (A) uncontrolled;
(B) optimally controlled with b1 = 0:01, b2 = 0:02, and b3 = 0:03;
and (C) optimally controlled with b1=0:02, b2=0:04, and b3=0:06.
(—) Analytical result; (•;�;4) from digital simulation.

2D1=0:01; 2D2=0:02; 2D3=0:03; 2D4=0:1; 2D5=
0:2; 2D6 = 0:3. )c is Hc =H1 +H2 = 0:5. The initial
condition of the system is at )03, i.e., H10 =H20 = 0.
Note that )03 is a re4ecting boundary. So it can be
taken as initial condition.
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Fig. 5. Reliability as function of H10 and H20 of uncontrolled system (49).

In Figs. 2–4, solid line represents the analytical re-
sults by using proposed procedures while symbols •,
� and 4 those from digital simulation. It is seen from
Figs. 2–4 that the two results are in excellent agree-
ment. It is also seen from these 0gures that both the
reliability and mean 0rst-passage time can indeed be
raised by feedback control. This last conclusion can
also be drawn from comparisons of Figs. 5 and 6, 7
and 8, and 9 and 10. Besides, one more conclusion can
be drawn from comparisons of Figs. 5 and 6, and 9 and
10 that both reliability function and mean 0rst-passage
time of uncontrolled and optimally controlled system
(49) are monotonously decreasing function of initial
energiesH10 andH20. This justi0es the derivation from
Eq. (30) to (31).
It is noted that the proposed procedures are appli-

cable to any shape of safety domain O&. For example,
suppose that only H1 is critical while H2 is of no con-
cern. In this case, the safety domain O& is shown in
Fig. 11. The boundary of safety domain consists of )c

and )0, where

)c: H1 = Hc; 06H2 ¡∞ (85)
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Fig. 6. Reliability as function of H10 and H20 of optimally controlled system (49) with b1 = 0:02, b2 = 0:04, and b3 = 0:06.
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Fig. 7. Probability density of 0rst-passage time as function of H20 and T of uncontrolled system (49).

and

)0 = )01 + )02 + )03;

)01: H1 = 0; 0¡H2 ¡∞;

)02: H2 = 0; 0¡H1 ¡Hc;

)03: H1 = H2 = 0: (86)

All the equations from (53) to (84) hold and can be
solved similarly.
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Fig. 8. Probability density of 0rst-passage time as function of H20 and T of optimally controlled system (49) with b1 = 0:02, b2 = 0:04,
and b3 = 0:06.
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Fig. 9. Mean 0rst-passage time as function of H10 and H20 of uncontrolled system (49).

6. Conclusions

In the present paper, the procedures for studying
the 0rst-passage failure and its feedback minimiza-
tion of quasi-partially integrable Hamiltonian systems

have been proposed based on the stochastic averag-
ing method for quasi-partially integrable Hamiltonian
systems. For uncontrolled systems, the approximate
statistics of the 0rst-passage failure are obtained from
solving the backward Kolmogorov equation for the
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Fig. 10. Mean 0rst-passage time as function of H10 and H20 of optimally controlled system (49) with b1 = 0:02, b2 = 0:04, and b3 = 0:06.
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Fig. 11. Safety domain of system (49) when only H1 is critical
while H2 is of no concern.

conditional reliability function and=or the generalized
Pontryagin equations for the conditional moments
of 0rst-passage time of averaged Itô equations. For
controlled systems, the optimally control law is ob-
tained from solving the dynamical programming
equations for maximization of reliability and=or for
maximization of mean 0rst-passage time of averaged

Itô equations, while the approximate statistics of
the 0rst-passage failure of optimally controlled sys-
tems are obtained from solving the 0nal dynamical
programming equations of completely averaged Itô
equations or from solving their equivalent backward
Kolmogorov equation and Pontryagin equation. An
example has been given to illustrate the application
of the procedures. From the numerical results for the
example, the following conclusions can be made:

1. The proposed procedures may yield quite accurate
result;

2. The 0rst-passage failure can be reduced signi0-
cantly by feedback control;

3. The reliability and mean 0rst-passage time of
uncontrolled and controlled systems are monoto-
nously decreasing function of initial 0rst integrals.
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