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Abstract—Rupture in the heterogeneous crust appears to be a catastrophe transition. Catastrophic

rupture sensitively depends on the details of heterogeneity and stress transfer on multiple scales. These are

difficult to identify and deal with. As a result, the threshold of earthquake-like rupture presents

uncertainty. This may be the root of the difficulty of earthquake prediction. Based on a coupled pattern

mapping model, we represent critical sensitivity and trans-scale fluctuations associated with catastrophic

rupture. Critical sensitivity means that a system may become significantly sensitive near catastrophe

transition. Trans-scale fluctuations mean that the level of stress fluctuations increases strongly and the

spatial scale of stress and damage fluctuations evolves from the mesoscopic heterogeneity scale to the

macroscopic scale as the catastrophe regime is approached. The underlying mechanism behind critical

sensitivity and trans-scale fluctuations is the coupling effect between heterogeneity and dynamical

nonlinearity. Such features may provide clues for prediction of catastrophic rupture, like material failure

and great earthquakes. Critical sensitivity may be the physical mechanism underlying a promising

earthquake forecasting method, the load-unload response ratio (LURR).

Key words: Critical sensitivity, trans-scale fluctuations, catastrophe transition, sample-specificity,

heterogeneous media.

1. Introduction

As the humanity enters the New Millennium, it inherits the great achievements in

the sciences and technology along with a traditional bandage, one of the greatest

societal concerns, the problem of earthquake prediction. This subject has attracted

considerable interest, and knowledge about earthquakes has significantly advanced

in the past century. Nevertheless the self-similarity of earthquakes (GUTENBERG

et al., 1944) and self-organized criticality (SOC) (BAK et al., 1987, 1988; BAK, 1994)

aroused heated discussion about the predictability of earthquakes. Are we really on

ground where the stresses are near failure everywhere and at all time? Most scientists
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agree on another viewpoint, that earthquake prediction remains a contemporary

difficulty given the current knowledge (KNOPOFF, 2000; WYSS et al., 1997). Clearly,

further study of the physics of preparation for catastrophic rupture is required.

A series of recent works suggest that earthquake might depend sensitively on the

details of heterogeneous structure and stress transfer in the earth’s crust. (DIODATI

et al., 1991; LOCKNER et al., 1991, 1992; GARCIMARTIN et al., 1997; WANG et al.,

1998; LU et al., 1998; HEIMPEL, 1997; STEIN, 1999; CURRAN et al., 1997). This is quite

similar to rupture in heterogeneous brittle media. Rupture appears to be a

catastrophe transition (BAI et al., 1994; WEI et al., 2000) and the threshold of

catastrophe shows uncertainty (XIA et al., 1997; XIA et al., 2000). It is insufficient to

represent the rupture of disordered heterogeneous media by only macroscopically

averaged properties (SAHIMI et al., 1993; MEAKIN, 1991; IBNABDELJALIL et al., 1997;

CURTIN, 1997).

A large earthquake may be considered as a local catastrophic rupture in the

earth’s crust. The main underlying mechanism behind the complex behaviors of

earthquakes and failure of disordered brittle materials might be attributed to the

coupling between disordered heterogeneity on multiple scales (BEN-ZION et al., 2000)

and dynamical nonlinearity during nonequilibrium evolution (BAI et al., 1994;

CURRAN et al., 1997; WEI et al., 2000). In order to identify clues for prediction of

earthquakes and material failure, a possible strategy is to explore general features of

catastrophic rupture in heterogeneous brittle media.

Coupling effects between disordered heterogeneity on the mesoscopic scale and

dynamical nonlinearity are so complex that direct experimental observations or

theoretical conclusions are quite difficult. Even for numerical simulations, some

reasonable simplification of physical concepts is a necessity. Recently, we have

examined a coupled pattern mapping model (XIA et al., 2000; WEI et al., 2000) similar

to the well-known fiber-bundle model (COLEMAN, 1958; DANIELS, 1945). However our

model takes the coupling effects between mesoscopic disordered heterogeneity and

dynamical nonlinearity due to stress redistribution into account. We found that such a

model can reproduce distinctive features of rupture in complex heterogeneous media.

Notably, the model displays the catastrophe transition (BAI et al., 1994; WEI

et al., 2000) and sample-specificity (XIA et al., 1997, 2000), namely macroscopic

uncertainty of observed rupture behavior. This is one of the roots for the difficulty in

rupture prediction. We report here that the catastrophe transition presents some

general features: critical sensitivity and trans-scale fluctuations. The critical sensi-

tivity implies that the system may become significantly sensitive near the catastrophe

transition. Trans-scale fluctuations refer to fluctuations which, at the catastrophe

threshold, may be enhanced strongly and accordingly, the spatial scales of stress and

damage fluctuations increase rapidly from the mesoscopic heterogeneity scale to the

macroscopic scale. These general features provide insight into the essence of the

catastrophe transition, and may provide clues for prediction of catastrophic ruptures,

such as great earthquakes.
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Section 2 briefly reviews the coupled pattern mapping model. Section 3 presents

the evolution of the model behaviour. Critical sensitivity and trans-scale fluctuations

are considered in sections 4 and 5, respectively. Section 6 contains a summary of the

results and discussion.

2. Brief Review of Model

The model (BAI et al., 1994; XIA et al., 1997, 2000; WEI et al., 2000) is a periodic

lattice consisting of N mesoscopic units. Mesoscopic heterogeneity is modelled by

assigning randomly an initial strength rci to each unit i with frcig given by

distribution function hðrcÞ.
Mesoscopically, the system is specified by the damage pattern X ¼ fxi; i ¼

1; 2; . . . ;Ng, the stress pattern R ¼ fri; i ¼ 1; 2; . . . ;Ng, and the initial strength

pattern Rc ¼ frci; i ¼ 1; 2; . . . ;Ng, where an intact or broken unit i is denoted by

xi ¼ 0 or 1, respectively. ri is the stress on unit i and rci is the initial strength of unit i.
Macroscopic parameters are the damage fraction,

p ¼ 1

N

XN
i¼0

xi ; ð2:1Þ

and the nominal stress,

r0 ¼
1

N

XN
i¼0

ri : ð2:2Þ

Samples with identical hðrcÞ are considered to be identical macroscopically, although

they are different from sample to sample mesoscopically due to disordered meso-

heterogeneity. In the following calculations, we choose hðrcÞ as a Weibull

distribution function with a mean of 1 and a modulus, mc ¼ 2.

The pattern dynamics is defined by iterations of mappings between the coupled

patterns X , R and Rc. The evolution of damage pattern X is determined by the stress

pattern R and the strength pattern Rc, according to a mesoscopic failure condition. It

is simply assumed that all units with ri � rci break simultaneously. The strength

pattern Rc varies with damage pattern X as rcið1� xiÞ. This means that a broken unit

loses strength, and no longer supports any stress. The stress pattern R is determined

from the damage pattern X according to a stress redistribution (SRD) rule, and it is

assumed to be independent of history. It is convenient to represent the SRD rule with

respect to a state with uniform stress (ri ¼ r0).

In order to examine the effects of stress fluctuations, we considered various SRD

rules as follows:

(1) Global mean field (GMF) model: The nominal stress r0 of broken units is shared

by all intact units uniformly.

Vol. 159, 2002 Critical Sensitivity and Trans-scale Fluctuations 2493



(2) Local mean stress concentration (LMSC) model: The nominal stress of a broken

cluster is uniformly transferred to its two neighboring intact regions of size d.
(3) Cluster mean field (CMF) model: The nominal stress of a broken cluster is

equally redistributed to its two neighboring intact clusters and the stress within

an intact cluster is uniform.

The LMSC and CMF models display stress fluctuations, whereas the GMF

model is without stress fluctuations. The SRD rule represents the main dynamical

nonlinearity in the model.

The evolution of the system is controlled by external loading, i.e., the nominal

stress r0 increases from r0 ¼ 0 to a failure threshold (r0 ¼ r0f ). We will consider

quasi-static loading as a standard process: the nominal stress increment Dr0 is

computed each loading step as the minimum increment necessary to break at least

one unit.

3. Catastrophe Transition

We represent the evolution of a system by considering the time series of energy

release DE. The energy release DE is calculated as a summation of the initial stored

elastic energy of broken units in a mapping, or loading step Dr0. For simplicity, the

dimensionless elastic modulus is assumed to be 2 and is identical for all units, and the

stored elastic energy of a unit can be written as ri
2. Because the damage fraction p

increases monotonously, the time series of DE can be shown as a plot of DE versus p.
Figure 1 shows time series of energy release DE for various SRD models. A

distinct common feature is that the evolution presents a catastrophe transition at pc,
which corresponds to a threshold of nominal stress r0f . For a specified nominal stress

below the threshold (r0 < r0f ), the evolution remains in a globally stable (GS) mode

with mesoscopic damage accumulation. At the threshold (r0 ¼ r0f ) however, the

system falls into a condition of self-sustained catastrophic failure (CF), the main

rupture appears and the system evolves to entire failure ðp ¼ 1Þ eventually. Such an

evolution-induced mode transition demonstrates a general behavior of failure in

heterogeneous brittle media. This behavior is called evolution induced catastrophe

(EIC).

Generally speaking, rupture prediction is concerned particularly with the

catastrophe transition and main rupture. Unfortunately, it is found that the

threshold of catastrophe transition ðr0f Þ shows uncertainty. Thus, it is impossible to

predict catastrophic rupture in terms of a few macroscopic parameters such as the

damage fraction p, the nominal stress r0 and parameters defining the properties of

the strength distribution (e.g., modulus mc, when the Weibull distribution function is

applied). Figure 2 shows an ensemble distribution of catastrophe transition threshold

(r0f ) for samples which are identical macroscopically. For the GMF model without

stress fluctuations, all samples exhibit identical threshold r0f determined by strength
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Figure 1

The energy release DE versus damage fraction p for a mapping with N ¼ 10; 000. (a) GMF model, (b)

LMSC model with d ¼ 5, (c) CMF model.
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distribution function hðrcÞ. In this case rupture prediction is deterministic, based

only upon macroscopic parameters. However, for models with stress fluctuations,

LMSC and CMF, the threshold r0f shows diversity, i.e., the threshold is different

from sample to sample for macroscopical identical samples. Such a behavior is called

sample-specificity (XIA et al., 1997, 2000). Such diversity of macroscopic failure

strength has been reported by SAHIMI et al. (1993) and BAI et al. (1994). Sample-

specificity leads to macroscopic uncertainty, and rupture prediction becomes

impossible based upon macroscopic parameters alone.

In order to circumvent this obstacle to rupture prediction, a possible strategy is to

explore some universal features of the catastrophe transition in search of clues of use

in rupture prediction.

A well-known general feature of threshold systems is that the size-distribution of

events follows a power law. This has been observed in both material failure (DIODATI

et al., 1991; GARCIMARTIN et al., 1997; LU et al., 1998) and earthquakes (as

evidenced by the empirical Gutenberg-Richter relation) (GUTENBERG and RICHTER,

1944). Our model also displays power-law event size-distribution. Figure 3 gives the

statistics NðDEÞ of energy release DE calculated for each loading step. The log-log

plot follows a rather respectable straight line ranging about 1:5 � 2 decades. In this

model, the power-law size-distribution is mainly attributed to events prior to the

catastrophe transition. The exponent (b value) is not universal. A power law is

suggestive of a dynamical system near criticality, corresponding with the catastrophe

Figure 2

Ensemble distribution of the catastrophe transition threshold r0f for samples which are identical

macroscopically. 10,000 samples with N ¼ 8000 were examined. The solid line represents the GMF model.

The dotted line represents the LMSC model and the dashed line represents the CMF model.
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transition in the model. The region surrounding the transition point may be

considered the critical region.

From the viewpoint of rupture prediction, however, a power-law size-distribution

might provide a negative conclusion (GELLER et al., 1997).

However, there is observational evidence, while indirect, of natural seismicity

suggesting the existence of general features prior to the catastrophe transition or

main rupture. To monitor these general features may provide clues for rupture

prediction. There have been a number of reports of accelerating seismic moment

release (AMR) (SAMMIS et al., 1999; JAUMÉ et al., 1999) and a change in the rate of

occurrence of moderate-sized earthquakes prior to large earthquakes in a variety of

tectonic settings. Yin and co-workers (YIN et al., 1994) have reported numerous

cases where a measure of the load-unload response ratio (LURR) has increased

markedly prior to a number of moderate to large earthquakes. Recently, it was found

that the optimal region size for AMR and for LURR is comparable, which may

suggest that AMR and LURR have a common physical mechanism (YIN et al.,

2002). These phenomena are considered to be evidence supporting Critical Point

Hypothesis (CPH) (BOWMAN et al., 1998; TIAMPO et al., 2000) of earthquakes, which

predicts the existence of a critical region with the progressive formation of long-range

stress field correlation, a condition required for large earthquakes. From our model,

we also found general features related to catastrophe transition or main rupture.

They are called critical sensitivity and trans-scale fluctuations, which will be

discussed in section 4 and section 5, separately. We will point out that there might be

an essential relationship between CPH and catastrophe transition. In fact, the time

Figure 3

Statistics of energy release NðDEÞ. 	 GMF model, N ¼ 10; 000 for 5000 samples, the slope is nearly �2:10,


 LMSC model, N ¼ 40; 000, d ¼ 5, for 2000 samples, the slope is �2:34 approximately, 5 CMF model,

N ¼ 100; 000, for 3000 samples, the slope is about �2:59.
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series of energy release shown in Figure 1 displays an acceleration prior to

catastrophe transition or main rupture. This might be similar to the AMR in

earthquakes.

4. Critical Sensitivity

We report here a novel discovery of a general feature of systems in the vicinity of

the catastrophe transition. This is called critical sensitivity, which means that the

sensitivity of a system may strongly be enhanced in various aspects as the system

approaches the catastrophe transition. In this section, we discuss two kinds of critical

sensitivity, i.e., sensitivity to external loading and sensitivity to stochastic micro-

damage.

There is evidence to suggest that the earth’s crust displays critical sensitivity prior

to large earthquakes. Seismologists agree that foreshocks are a symptom of some

preparatory process prior to the main rupture in some cases (WYSS et al., 1997; YIN

et al., 1994). Yin et al. proposed a promising method for earthquake forecasting

called the load-unload response ratio (LURR) (YIN et al., 1994, 1999; WANG et al.,

1998). LURR is defined as the ratio of activity of small-to-intermediate earthquakes

during a loading phase to the activity during an unloading phase, where the loading

and unloading result from earth tides. It is found that in most cases (more than

80%), LURR increases significantly before large earthquakes and fluctuates slightly

about unity in stable regions.

The LURR method may be explained as follows. A large earthquake can be

considered as a local catastrophic rupture in the earth’s crust, and the increase in

LURR prior to large earthquakes implies that a region of the crust has become

significantly sensitive to external loading perturbation prior to catastrophe. Thus, we

presume that the increase of LURR might be evidence for critical sensitivity prior to

large earthquakes.

In order to explore the features of critical sensitivity, we performed simulations

based on the coupled pattern mapping model.

The sensitivity of energy release to external loading can be measured by

S ¼ DE0

Dr0
0

�
DE
Dr0

; ð4:1Þ

where DE0 (DE) is the energy release induced by increment Dr0
0 (Dr0), and

Dr0
0 ¼ Dr0 þ arc ; ð4:2Þ

where �rrc is the average strength of units (the mean of the distribution function hðrcÞ)
and a is a small parameter ða � 10�2 ! 10�3Þ. According to the definition of the

sensitivity, S >> 1 indicates high sensitivity, and S � 1 implies an insensitive state.
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The sensitivity of energy release to external loading is shown in Figure 4. Figure

4(a) shows the time series of S for a sample. At the initial stage, S maintains a low

value (of order 1) but S increases significantly near the catastrophe transition point

p=pc ¼ 1. Figures 4(b), (c) and (d) show the time series of S for 200 samples identical

macroscopically based on SRD models of GMF, LMSC and CMF, respectively. We

can see that, although normalized variable p=pc is adopted, the time series of S are

different from sample to sample, which is evidence for sample-specificity. However,

in all cases there is a common trend that S increases significantly near the catastrophe

transition. This is the hallmark of critical sensitivity.

Figure 5 shows ensemble statistics of maximum S and the statistics of pM=pc,
where pM is the damage fraction at which S takes the maximum value Smax. It is

found that, for most samples, the sensitivity S arrives at its maximum when

0:7 � p=pc � 1, and Smax is usually one order of magnitude higher than the initial

value S � 1. These results imply that critical sensitivity is a significant precursor of

the catastrophe transition.

Now we examine the sensitivity of energy release to stochastic microdamage. We

consider a model where deterministic dynamics given by the coupled patten mapping

and the stochastic microdamage coexist (XIA et al., 1996). The stochastic micro-

damage is modelled by the break of Dn units chosen randomly at the beginning of a

loading step. The sensitivity of energy release to the stochastic microdamage can be

measured by the ratio of energy release with a stochastic microdamage to that

without the stochastic damage:

S� ¼ DE�=Dn
DE

; ð4:3Þ

where DE and DE� are energy releases under the identical external loading

condition but without and with stochastic microdamage of size Dn, respectively.
Figure 6 shows S� for one sample and for 200 samples identical macroscopically. It

is obvious that, like the behavior of S, S� also displays the sample-specificity and

critical sensitivity.

It is interesting to note that the critical sensitivity of energy release to stochastic

microdamage is a sensitivity linking different scales: from mesoscopic events to

macroscopic behavior. Such a sensitivity implies that a minor change on the

mesoscopic level can be strongly amplified during nonlinear evolution and leads to

significant macroscopic effect as the system approaches the catastrophe transition. In

section 3, we represent sample-specificity, i.e., samples which are identical macro-

scopically but different from sample to sample mesoscopically due to disordered

meso-heterogeneity display diverse behavior of catastrophe transition. Sample-

specificity is also a feature linking different scales: the macroscopic behavior is

sensitively dependent on the details of mesoscopic structure. There is a common

underlying physical mechanism behind sample-specificity and sensitivity of energy
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Figure 4

Time series of S, the critical sensitivity to external load pertubations (N ¼ 10; 000, a ¼ 0:001). (a) for a

single sample, CMF model, (b) for 200 samples, GMF model, (c) for 200 samples, LMSC model with

d ¼ 5, (d) for 200 samples, CMF model.
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release to stochastic microdamage. Such critical sensitivity is termed as trans-scale

sensitivity.

The coupled pattern mapping model can be thought of driven nonlinear

threshold systems, comprised of multitudes interacting, mesoscopic units subjected to

a driving force. As the system approaches the catastrophe transition, increasingly

more units are close to their threshold. It will be considerably easier to trigger larger

cascade by perturbation at that time. This is the origin of critical sensitivity. Thus,

critical sensitivity might be a general feature in widely used driven nonlinear

threshold models. It is especially interesting to examine whether CPH also displays

critical sensitivity.

a)

b)

Figure 5

Ensemble statistics of (a) Smax and (b) pM=pc, for the CMF model with N ¼ 4000 and a ¼ 0:001 (1000

samples).
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Figure 6

Time series of S�, the critical sensitivity to stochastic microdamage (N ¼ 10; 000;Dn ¼ 1), (a) for a single

sample, GMF model, (b) for 200 samples, GMF model, (c) for 200 samples, CMF model.
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5. Trans-scale Fluctuations

It is well known that fluctuations play a vital role in catastrophic rupture of

heterogeneous brittle media. The rupture behavior of a system may not be completely

representable by only its average macroscopic properties (XIA et al., 1997, 2000;

IBNABDELJALIL et al., 1997; WEI et al., 2000; SAHIMI et al., 1993). However, the

general features of fluctuations related to catastrophe is still an open question. We

report here a class of fluctuations related to catastrophe. At catastrophe threshold

(r0 ¼ r0f ) the stress fluctuations in system are enhanced significantly and the spatial

scale of stress and damage fluctuations increases rapidly from the mesoscopic

heterogeneity scale to the macroscopic scale; such fluctuations are called trans-scale

fluctuations.

Stress fluctuations can be measured as the relative deviation of stress dr=�rr,
where

dr ¼ 1

Nð1� pÞ
XN
i¼0

ðri � �rrÞ2ð1� xiÞ
" #1=2

ð5:1Þ

is standard deviation of stress supported by intact units, and

�rr ¼ r0

1� p
ð5:2Þ

is mean stress on intact units. Figure 7 shows dr=r versus p, corresponding to the

time-series of the relative deviation of stress fluctuations. It is also found that time

series of dr=�rr shows sample-specificity, i.e., the time-series are different from sample

to sample for samples which are identical macroscopically. However, the time-series

display a general trend that dr=�rr increases rapidly beyond the transition point pc
(keeping r0 ¼ r0f ) but prior to the main rupture. Ensemble statistics illustrate that,

at the catastrophe threshold dr=�rr increases by about two orders of magnitude. This

can be seen from the statistical distribution of maximum dr=�rr during GS regime and

the catastrophe regime (shown in Fig. 8).

In order to reveal the characteristics of the stress pattern, we take a coarse-

grained average of the stress pattern and examine its fluctuations. The approach is as

follows: The system is divided into m cells with size C, then C ¼ N=m. Denote hrij to
be the average stress over intact units in the j-th cell, and hrij ¼ 0 if all units in the

j-th cell are broken. Define the local damage fraction of the j-th cell as

Pj ¼
1

C

X
i2j

xi ; ð5:3Þ

where the summation is over all units in the j-th cell. The relative deviation of coarse-

grained average stress can be calculated using

Vol. 159, 2002 Critical Sensitivity and Trans-scale Fluctuations 2503



dhri
�rr

¼ 1

�rr

X
j

Hð1� PjÞðhrij � �rrÞ2
�X

j

Hð1� PjÞ
" #1=2

; ð5:4Þ

where �rr is mean stress supported by intact units (given in Equation 5.2), and

a)

b)

Figure 7

Relative deviation of stress fluctuations dr=�rr versus damage fraction p (N ¼ 4096). The solid line is

averaged over 200 samples while the triangle represents a single sample. (a) CMF model and (b) LMSC

model with d ¼ 5.
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HðyÞ ¼ 0; for y ¼ 0
1; for y > 0

�
: ð5:5Þ

The relative deviation of fluctuations in the coarse-grained average stress is shown in

Figure 9(a). A distinct feature is that, for the GS regime, dhri=�rr decreases

significantly with increasing coarse-grained scale C and dhri=�rr � 0 for the

macroscopic scale C. Qualitatively, stress pattern is macroscopically homogeneous

in GS regime. At catastrophe threshold, macroscopic inhomogeneity of the stress

pattern increases significantly.

The fluctuations of coarse-grained damage fraction fPj; j ¼ 1; 2; . . . ;mg can be

calculated by

dP ¼ 1

m

Xm
j¼1

ðPj � pÞ2
" #1=2

; ð5:6Þ

where Pj and p are defined in Equations (5.3) and (2.1), respectively. dP is shown in

Figure 9(b).

In reality, between the catastrophe transition and main rupture, there is a time-

interval, which may vary for different real systems. Trans-scale fluctuations occur

during this interval and can be considered a significant indication of the catastrophe

transition and an immediate precursor to main rupture. This may provide clues for

prediction of the main rupture. The trans-scale fluctuations identified in the

numerical simulations were compared to the statistics of damage events according to

Figure 8

Ensemble distribution function (10,000 samples) of maximum values of dr=�rr for GS regime and

catastrophic rupture regime (N ¼ 20; 000, CMF model), The two distribution functions are well-separated,

indicating that stress fluctuations increase significantly in the catastrophe regime.
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acoustic emission signals detected during the rupture process (LOCKNER et al., 1991,

1992; GARCIMARTIN et al., 1997).

Trans-scale fluctuations of stress imply that the correlation length of stress

increases progressively from small scale to large scale at the catastrophe threshold.

Long-range correlation of high stress is the condition required for main rupture to

occur. This is very similar to the progressive formation of long-range stress field

correlation predicted by Critical Point Hypothesis (CPH).

(a)

(b)

Figure 9

Trans-scale fluctuations: (a) the fluctuations of coarse-grained average stress hdri=�rr and (b) the

fluctuations of coarse-grained average damage dhpi versus damage fraction p (CMF models, N ¼ 65; 536).

The line type indicates the coarse-grained cell size C: the solid line represnts C ¼ 1, the dotted line

represents C ¼ 64, and the dashed line represents C ¼ 4096:
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6. Summary and Discussions

Rupture in heterogeneous brittle media was examined based on a model called a

coupled pattern mapping model. The rupture presents dynamical complexity,

especially the catastrophe transition and sample-specificity. This complexity is

responsible for the difficulty of rupture prediction. However, we have found clues for

rupture prediciton from general features of catastrophic rupture: critical sensitivity

and trans-scale fluctuations. These may be viewed as precursors of catastrophe

transition and main rupture.

The underlying mechanism of the catastrophe transition, sample-specificity,

critical sensitivity and trans-scale fluctuations, should be attributed to the coupling

between heterogeneity and dynamical nonlinearity, which leads to a cascade of

damage. The cascade is determined by coupling, competition and balance between

strength heterogeneity and stress redistribution (SRD). In the globally stable (GS)

regime, a cascade induced by SRD is limited to finite size by surrounding stronger

units. Beyond catastrophe transition however, the cascade can no longer be

inhibited and will continue without limit, i.e., the system evolves to an entirely

failed state. Critical sensitivity implies that, near the catastrophe transition, the

size of the cascade can be enhanced significantly by minor external stress

perturbations. This is because, near catastrophe, more and more units support

stresses close to their strength, and thus, a small disturbance may induce

significant extra failure of events. In the catastrophe regime, the cascade evolves

from the mesoscopic scale to the macroscopic scale, resulting in trans-scale

fluctuations.

The coupling between heterogeneity and dynamical nonlinearity leads to trans-

scale sensitivity resulting in sample-specificity. This makes the problem far more

complex. Consequently, to explore the general features of the catastrophe transition

is a problem of great importance. Although critical sensitivity and trans-scale

fluctuations are features of a simple conceptual model, we are quite sure that they

present general features of a class of real systems, including perhaps the earth’s crust.

Our work suggests that there is an essential relationship between the catastrophe

transition and the CPH. They display similar general features and might be

attributed to a common underlying physical mechanism. A further work to compare

the major features of the two theories would be very interesting.
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