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Abstract Casimir effect on the critical pull-in gap and
pull-in voltage of nanoelectromechanical switches is
studied. An approximate analytical expression of the
critical pull-in gap with Casimir force is presented by the
perturbation theory. The corresponding pull-in parame-
ters are computed numerically, from which one can notice
the nonlinear effect of Casimir force on the pull-in
parameters. The detachment length has been presented,
which increases with increasing thickness of the beam.

1
Introduction
The nanoelectromechanical systems (NEMS), as an exten-
sion of microelectromechanical systems (MEMS), have
turned into the hot research topic in recent years. In MEMS
and NEMS, with the geometric dimension decreasing, the
surface forces [1–6], replacing the body forces, take over
the dominant position, which become more important for
the nano-scales. In this paper, we just consider Casimir
force and electrostatic force. Casimir [7] predicted an
attractive force between objects. Kenneth et al. [8] have
extended these considerations to real-world materials.

NEM switches are fundament building blocks for the
design of NEMS applications. However, the pull-in phe-
nomenon, an inherent instability of MEM and NEM
switches, is one of annoying problems in design. By
applying a voltage difference between the two electrodes,
an electrostatic force is formed. At certain voltage the
switches lost its stability and the gap between the switches
rapidly decrease, until the two electrodes adhere. The
voltage and deformation of the switches at this state are
referred to as the pull-in voltage and the critical pull-in
gap respectively, or shortly as the pull-in parameters of
switches. Therefore, an analytical expression of the pull-in
parameters could guide the design.

An analytical expression of the pull-in parameters has
been given about the MEMS switches in [9]. A lumped two
degrees of freedom (L2DOF) pull-in model was presented
in [10]. The pull-in parameters for electrostatic torsion
actuators are the pull-in voltage and pull-in angle [11, 12].
The pull-in phenomenon is widely applied in many
micromachined devices that require bi-stability for their
operation [13, 14]. In the above references [9–14], the
Casimir and van der Waals effects are neglected. The
significant effect of van der Waals force has been shown on
the pull-in voltage of NEMS switches, but the effect on the
critical pull-in gap has been omitted [15].

The Casimir effect in MEMS was studied in [16] and
measured in [17]. In [18], a micromachined torsional
device is used to determine the Casimir effect in MEMS.
Casimir force has a profound influence on the oscillatory
behavior of nanostructures [19].

The maximum length that will not stick to the substrate,
also called detachment length is basic design parameter
[20, 21].

The objective of the present paper is to study the effect of
Casimir force on the pull-in parameters. An approximate
analytical expression of the critical pull-in gap is obtained
by the perturbation theory and the detachment lengths and
the minimum initial gap of the cantilever and fixed-fixed
beams are given, which are basic design parameters.

2
Theory
To simplify the analysis, the geometry shown in Fig. 1 is
simplified to a one-dimensional (1D) lumped model as
shown in Fig. 2. In the 1D lumped model, the NEMS
switch is approximated by a rigid beam suspended over a
ground plane using mechanical springs. Thus the only
degree of freedom of the system is the gap, r, between the
plate and the ground plane.

The equilibrium condition of the plate by Casimir,
electrostatic and elastostatic forces (F rð Þ ¼ FC þ Felecþ
Felas ¼ 0) yields (see appendix 2 for expressions of the
surface forces)

p2�hcwL

240r4
þ e0wLV2

2r2
� K g � rð Þ ¼ 0 : ð1Þ

The equilibrium is stable with oF rð Þ=or < 0. With voltage
increasing, the gap decreases with instability condition is
reached. Using the critical condition oF rð Þ=or ¼ 0, we get

� p2�hcwL

120r4
� e0wLV2

2r2
þ Kr

2
¼ 0 : ð2Þ
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Defining this solution by gPI and substituting it into Eqs.
(1) and (2) and then adding the equations, we obtain

� p2�hcwL

120g4
PI

� 2Kg þ 3KgPI ¼ 0 : ð3Þ

We should solve the above nonlinear equation to get gPI.
Using Eq. (1), the pull-in voltage VPI can be calculated

by

VPI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K g � gPIð Þ � p2�hcwL

240g4
PI

� �

2g2
PI

e0wL

s

; ð4Þ

If we neglect the contribution of Casimir force in the above
analysis, the critical pull-in gap and the pull-in voltage can
be solved by Eqs. (3) and (4) as

g0 ¼
2

3
g ð5Þ

and

V0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8Kg3
0

27e0wL

s

; ð6Þ

which are the same as the expressions derived in [9]. If we
just omit the effect of Casimir force on the critical pull-in
gap, that is, we replace gPI in (4) by g0. Then the pull-in
voltage is given by

VPI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K g � g0ð Þ � p2�hcwL

240g4
0

� �

2g2
0

e0wL

s

: ð7Þ

We now use the perturbation theory to discuss how much
the effect of Casimir force on the critical pull-in gap
around g0. By perturbation theory, we could add a per-
turbation value d around g0, that is, we use the approxi-
mate critical value

gPI ¼ g0 þ d ð8Þ
to replace the accurate critical value.

Substituting Eq. (8) into Eq. (3), and using the first-
order approximation, i.e., neglecting the higher-order
terms of d, we get the linearized function about the per-
turbation value d:

K þ 27p2�hcwL

320g5

� �

d ¼ 9p2�hcwL

640g4
: ð9Þ

Fig. 1. Schematic of cantilever switch:
a cantilever switch, and b fixed-fixed
switch

Fig. 2. One-dimensional lumped models for pull-in parameters
estimation. The deflection of the plate is given by u, and
r ¼ g � u

Fig. 3. Variation of the critical pull-in gap with length for the
given initial gap: a Cantilever switches. b Fixed-fixed switches
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Solving d from Eq. (9), we have the approximate
analytical expression of the critical pull-in gap as fol-
lowing

gPI ¼ g0 þ d : ð10Þ

3
Results and discussion
Some numerical results are presented in this section. A
rectangle beam is considered. Only the points with positive
value for the square of the pull-in voltage are shown in
Figs. 4 and 6.

3.1
Comparison of the critical pull-in gap and the pull-in
voltage
We now consider cantilever and fixed-fixed switches with
varying length and gap with the given thickness,
t ¼ 10 nm, compared the critical pull-in parameters
obtained in this paper with those results in [9].

We first consider the variation of the critical pull-in gap
and the pull-in voltage for the cantilever and fixed-fixed
switches with length when the initial gap is 10 nm. From
Fig. 3, the critical pull-in gap with Casimir force is
identical to that without Casimir force when the beam is
shorter. At the same time, from Fig. 4 the pull-in voltages
with Casimir force computed by (4) and (7) are also
identical to that without Casimir force computed by (6).
With the length increasing, the effect of Casimir force on
both the critical pull-in gap and the pull-in voltage
becomes much clearer. However, the difference of the pull-
in voltage computed by (4) and (7) is not clear. This im-
plies that we can substitute (7) for (4) as the pull-in voltage
with Casimir force for engineering designs. From Fig. 4,
the square of the pull-in voltage computed by (4) or (7) is
not positive when the length is larger than a critical value,
the detachment length, which will be determined later. If
the length is larger than the detachment length, the switch
can collapse onto the ground plane even without an ap-
plied voltage.

Fig. 4. Variation of the pull-in voltage with length for the given
initial gap: a Cantilever switches. b Fixed-fixed switches Fig. 5. Variation of the critical pull-in gap with gap for the given

length: a Cantilever switches. b Fixed-fixed switches
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Figures. 5 and 6 show the variation of the critical pull-
in gap and the pull-in voltage as a function of the initial
gap for cantilever and fixed-fixed switches with the given
length, L ¼ 100 nm, respectively. From Figs. 5 and 6, the
effect of Casimir on the pull-in parameters is still clear
when the initial gap is less than some value, and the pull-
in voltage computed by (4) is still identical to that
computed by (7). When the initial gap is less than a
critical value, the minimum gap, the pull-in phenomenon
will occur. From Figs. 3–6, we notice that the effect of
Casimir force on the fixed-fixed switch is less than the
effect on the cantilever switch for the same geometry
parameters.

3.2
Comparison of the pull-in gap with different thickness
In this section, we just consider the cantilever beam. With
different thickness, we compute variation of the pull-in
gap with length and initial gap shown in Figs. 7 and 8,

respectively. From Fig. 7, we notice that the effect of
Casimir force on the pull-in gap with the growth of
thickness is more and more inconspicuous for the same
length. That is, the detachment length increases with the
increasing of the thickness of the beam. On the contrary,
the minimum initial gap is decreasing with the increasing
of the thickness from Fig. 8.

3.3
Detachment parameters
It is interesting to note that the detachment length of the
cantilever and fixed-fixed beam can be obtained by
equating zero the pull-in voltage in Eq. (7). That is, the
detachment length of the cantilever that will not adhere
with the substrate due to Casimir force is

Lmax ¼
4

3
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10Et3g

3p2�hc

4

r

; ð11Þ

Fig. 6. Variation of the pull-in voltage with gap for the given
length: a Cantilever switches. b Fixed-fixed switches

Fig. 7. Variation of the critical pull-in gap with length with
different thickness

Fig. 8. Variation of the critical pull-in gap with initial gap with
different thickness
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and the detachment length of the fixed-fixed beam is

L0max ¼
4

3
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

80Et3g

p2�hc

4

r

: ð12Þ

From Fig. 9, we could see the variation of the maximum
length with gap of the cantilever and fixed-fixed switches,
respectively.

As an alternative case, if the length is known, we can
calculate the minimum gap. The equations of the cantile-
ver and fixed-fixed beam are

gmin ¼
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2�hcL4

80Et3

5

r

; ð13Þ

and

g0min ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81p2�hcL4

20Et3

5

r

; ð14Þ

respectively. From Fig. 10, we could see the variation of
the minimum gap with length of the cantilever and fixed-
fixed switches, respectively.

4
Conclusion
An approximate analytical expression of the critical pull-in
gap considered Casimir force is given by the perturbation
theory in this paper. Numerical results with cantilever
and fixed-fixed switches show: The critical pull-in gap and
the pull-in voltage with Casimir force is much more dif-
ferent from that without Casimir force as the geometry
parameters are greater or less than some value. When the
length is greater than the detachment length or the initial
gap is less than the minimum gap, the beams will adhere to
the substrate without any applied voltage. However, we
can still substitute the critical pull-in gap, g0 (without
Casimir force), for the critical pull-in gap, gPI (with Casi-
mir force), to compute the pull-in voltage with Casimir
force. This would be much more convenient for engi-
neering designs.

The detachment lengths of the cantilever and fixed-fixed
beam have been determined by equating zero the pull-in
voltage, which are fundamental design parameters for
NEM switches. The detachment length is increasing or the
minimum initial gap is decreasing with the growth of the
cantilever beam’s thickness from Figs. 7 and 8.

Appendix 1

Appendix 2
The Casimir force between parallel plates of infinite con-
ductivity separated be a distance r is given by [7]

FC

wL
¼ � dU

dr
¼ p2�hc

240r4
;

where w and L are the width and length of beam, respec-
tively, �h ¼ 1:055� 10�34 Js is the Planck’s constant di-
vided by 2p, c ¼ 2:998� 108 m/s is the speed of light.

Fig. 9. Variation of the detachment length with initial gap for the
cantilever and fixed-fixed switches

Fig. 10. Variation of the minimum gap with length for the can-
tilever and fixed-fixed switches

Table 1. Parameters in the present paper

Symbol Physical meaning Dimension

c Speed of light LT�1

E Effective modulus of beam ML�1 T�2

g Initial gap between movable
and ground plates

L

�h Planck’s constant divided by 2p ML2 T�1

I Moment of the inertia of
cross-section

L4

K Effective spring constant of beam MT�2

L Length of beam L
r Gap between movable and

ground plates
L

t Thickness of beam L
w Width of beam L
V Voltage applied ML2 T�2 Q�1

e0 Vacuum permittivity M�1 L�3 T2 Q2
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For the parallel plate configuration shown in Fig. 2, the
electrostatic force (not accounting for fringing fields) is
given by [9]

Felec ¼
e0wLV2

2r2
;

where V is the applied voltage, e0¼ 8:854�10�12 C2 N�1 m�2

is the permittivity of vacuum within the gap.
The elastostatic force, Felas, is modeled by a spring.

The effective spring constant, K, is derived from the
small-deflection mechanical solution for the maximum
displacement, gmax, of the structure with a uniform dis-
tributed load. Considering an 1D lumped beam model,
the spring constant is K ¼ 8EI=L3 for a cantilever beam
and K ¼ 384EI=L3 for a fixed-fixed beam, where
E ¼ 1:2 TPa is the Young’s modulus, and I is the
moment of inertia.
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