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A Probabilistic Model for Fatigue Crack Propagation Analysis
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Abstract — A simple probabilistic model for predicting crack growth behavior under random loading is pre-
sented. In the model, the parameters ¢ and m in the Paris-Erdogan Equation are taken as random variables,
and their stochastic characteristic values are obtained through fatigue crack propagation tests on an offshore
structural steel under constant amplitude loading. Furthermore, by using the Monte Carlo simulation tech-
nique, the fatigue crack propagation life to reach a given crack length is predicted. The tests are conducted to
verify the applicability of the theoretical prediction of the fatigue crack propagation.
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1. Introduction

The failure of engineering structures is well known to be toe fatigue of tic components due to
cyclic stress and the analysis of fatigue crack propagation is onc of the most 1mponant tasks in the
design and life prediction of fatigue-critical stwvctures. The Paris-Erdogza iaw(Paris and Erdogan,
1963) has been applied to the propagation of fatijue cracks in the following from:

L3 _ c(AK)" (1)

in which da/dN is the crack growth, AK the stress intensity factor range, and both ¢ and m the test
constants defined by material parameters, environmental temperatures and loading frequencies as well
(Duan, 1999a; 1999b) . The traditional analytical method in engineering fracture mechanics usually
assumes that crack size, stress level, material properties and crack growth rate, etc. are all deter-
ministic values which will lead to conservative results. However, many test results and ficld data of
crack propagation ( Virkler et al ., 1979) presented a consideriable variability even in well-controlled
laboratory conditions. This has been addressed by randomizing the material parameters in the Paris-
Erdogen law ( Kozin and Bogdanoff,1983; Yang et al., 1983;Lin and Yang,1983; Ghonem and
Dore,1987; Ding et al., 1999). For example Virkler et al . (1979) chose ¢ from an appropriate
distribution in such a way that each increment of crack growth was uncorrelated with the next. At the
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other extreme, Yang et al . (1983) considered the case in which the values of ¢ for each successive
cycle are highly correlated. Between these extremes, Lin and Yang (1983) modeled the fatigue as a
diffuse Markov process whose critical parameters are determined from an experimental data base un-
der constant amplitude loading conditions. A major problem for such analysis is the difficulty of ob-
taining sufficient data, and fatigue experiments are usually time consuming with the test data inevita-
bly showing certain degrees of deviation even in a well controlled laboratory . To overcome these dif-
ficulties, numerical simulation of fatigue crack propagation data has become a very important and ef-
ficient tool in the study of fatigue-related problems (ltagaki and Shinozuka, 1972; Cheng, 1988) .
This is especially true in the case where the fatigue damage is resulted from random loading. Due to
the random nature of the loads, although a lot of experiments have been performed for the past three
decades (Kitagawa et al ., 1978; Alawi and Shaban, 1989), all the data support the above conclu-
sion.

The purpose of this paper is to present a probabilistic model for predicting fatigue crack growth
life under random loading . Crack growth parameters ¢ and m in the Paris-Erdogan law are considered
as random variables, and their stochastic characteristic values can usually be obtained from a few
constant-amplitude fatigue tests. The fatigue crack growth life is predicted by using the Monte Carlo
simulation technique. The predicted results are in close agreement with those cf crack growth experi-
ments on offshore structural steel E36-Z35.

2. Descriotica or Response by Random Lovading

Random loading can be describeo by a power spectrum w(f) . A particularly common form of
response for lightly damped structures takes narrow band spectrum. This occurs when a structure is
excited over a wide range of frequency but responds at a well-defined single frequency . In this case,
the signal of stress response takes Gaussian distribution with a root mean square of ¢ and a zero mean
value, and the peaks £ of stress response have a probability density function known as the Rayleigh
distribution (Huang and Hancock, 1989):

p(k) = ;li—exp(ga’f). (2)

The probability of finding a peak between % and %k + dk is then p(k)dk , and for a stationary
process, this is independent of time. However, in fatigue it is the range, s , that is of interest, in a
statistical sense

s =2k . (3)
The probability density function of the ranges p(s) is then obtained using the transformation
p(s)ds = p(k)dk ; (4)

p(s) = Zsf—zexp(_—s;) . (5)

g

As the bandwidth of the loading increases, the form of the signal changes to broad band. In
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this signal, the cycles are not clearly defined. However, several methods of cycle counting have
been proposed including rain-flow counting method and range method (Dowling, 1972) . These cy-
cle counting algorithms allow broad band signals to be related to narrow band or simple sinusoidal
loading . Unfortunately, rigorous analytic expressions for the distribution of rainflow cycles in broad
band random signals have yet to be derived. But from experimental measurements of analogue sig-
nals, it has been suggested that the cumulative distribution of cycles should be expressed by a
Weibull curve fitting function of the form

p(2) = 1- e[~ (2)] (6)

where 7 and n depend upon the bandwidth parameter e

n=?2-¢ (e < 2/3) ; (7

y =42(2 - &?) (e <2/3) . (8)
The Rayleigh distribution characteristics of narrow band random loading ave ricovered by substi-
tutinge = Owhenn = 2andy = 22 .
3. CCrack Propzgaiicun Under Random Loading

During each cycle of the fatigue loading, the crack is assumed to propagate according to the
current stress intensity range AK such that the increment of the crack growth da is independent of the
previous stress cycling and there is no interaction effect between cycles. The stress intensity factor
can be written in the form

AK = fs V/ma (9

where f is a function of the geometry of the component (Rooke and Cartwright, 1985) . The crack
growth rate then becomes

:11—]‘:/ = ¢c[fsvVma]™. (10)
The increments of crack length due to the individual stress cycle S,, S,, ..., S, are

Aa, = cls, Vral"f (a))

Aa, = c[s, vV mal"f"(a)
b (11)

Aa, = c[s, Vral™f"(a))
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The average crack growth rate E[da/dN | then becomes
E[d—a] = c[f\/n-a]mrn s" p(s)ds (12)
dy 0

In non-dimensional manner, Eq. (10) takes the form

(=}
—
Sle
i

m mi2
mi2 S a
= = = 13
v = A (a)(ao) (13)
where A is defined as
A = cotaym " (14)

and a, is the initial crack length. For narrow band random loading, the mean value of (s/c )™ denot-

ed by y, , is
wo= B[(Z)] = sr(F 1) (1)
¢ c Z / .

where I'( ) is the gamma function .
The corresponding standard deviation of (¢/a)” is

o, =87 [P(me 1) - (24 1)] (16)

For a broad band loading, the distribution of stress cycles obtained by the rain-flow algorithm
can be approximated by Eq. (6), and the corresponding definitions of z, and o, are as follows:

mo= () (17)

12

s, = 7'"[1“(27m+1) - FZ(%L+I)] . (18)

Therefore, the fatigue crack growth rate under random loading can be expressed in the general

form:
a2) -
m/2
v = A" (a)n ((l_o) M5 (19)
or
da _ m w2 mi2
o (a)x™ a™ pu, . (20)
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Assuming that a, is the initial crack size and AN the cycle step length, integrating Eq. (20)
yields

AN
a = [ e n " (a)a ™ wdN + 4y = FUAN + g 1

AN

=
1}

N +AN
! 12 2
a, = j "™ " (a)a,m™ p,dN + a, = FPAN + a,
N
1

N,

N, + AN T (21)

n-1

N +AN
n-1 12
a, = j "™ " (a,_Ya, " p,dN + a,., = F"AN + ¢

N

n-1

=2
I

\ N.., + AN

where a, adds up to a giver crack lergth, and //, is ke appropriate crack growth life.
4. Materials and Test Specimens

The material used in these tests is E36-Z35 steel prescribed for key structures of offshore plat-
forms. The mechanical properties of this material are given in Table 1, while the chemical composi-
tion is shown in Table 2.

Table 1 Mechanical properties of steel E36-735
a, (MPa) o, (MPa) 3 (%) E (MPa)
42 57 34 206.2
Table 2 Chemical composition of steel E36-Z235
C Si Mn P S Cu Al Nb
0.16 0.33 1.34 0.10 0.01 0.02 0.49 0.35

The specimens are three-point bending ones with dimensions of 28 mm in thickness, 85 mm in
width and 370 mm in length. All specimens are pre-cracked to 8 mm in initial length under constant-
amplitude loading at room temperature. To three-point bending specimen, f(a) takes the following
form:

(a) = —=[7.51 4+ 3( 2 os)z]in(—;—:‘l’——) (22)
fla) = —l;—«/; S+ 3 -0. cos(%)
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where B and w are the thickness and width of the specimen respectively .
5. Analysis of Test Results

The tests are carried out on a servohydraulic MTS machine. The test frequency is 10 Hz. The
carck length during fatigue tests at room temperature can be measured directly by a microscope. Two
kinds of effective stress amplitude distributions are investigated. One has a probability density func-
tion known as the Gaussian distribution with the mean value of 11.10 kN and the variance of 0.55
kKN. The other has the Weibull probability density function with a shape parameter of 1 and scale pa-
rameter of 11.85 kN. The experimental results are shown in Figs. 1(a) and 1(b), respectively. In
Eq. (21), ¢ and m are considered as random variables, whose means and variances are given in
Table 3. The Monte Carlo simulation technique is applied to the process of the crack growth a vs ¥
data. The simulation results are also listed in Figs. 1(a) and 1(b), respectively. It is evident that
the results from the Monte Carlo simulation agree closely with those of the crack propagation experi-
ments on steel E36-Z35, which presents the accuracy and efficiency of the developed probabilistic
model for predicting fatigue crack growth life.

6. Conclusion

A probabilistic model is presented to predict fatigue crack growth life under random loading by
considering material inhomogenety. Crack growth parameters ¢ and m are taken as random variables
defined by specified prcbability density functions. By using the Monte Carlo simulation, the crack
growth life to reach a given crack length is predicted. The predicted results are in close agreement
with the test data on steel E36-Z35. This probabilistic model shall be applied to predict fatigue crack
growth life of a structural component subjected to random loads.

Table 3 The stochastic characteristic values of crack growth parameters ¢ and m

for steel E36-Z35

Characteristic values T logc m
Mean value -13.93 2.2309
Variance 0.0997 0.335
Distribution Normal Normal
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Fig. 1. Comparison of the simulation results with the test ones.
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