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Abstract

A numerical study on shocked flows induced by a supersonic projectile moving in tubes is described in

this paper. The dispersion-controlled scheme was adopted to solve the Euler equations implemented with
moving boundary conditions. Four test cases were carried out in the present study: the first two cases are

for validation of numerical algorithms and verification of moving boundary conditions, and the last two

cases are for investigation into wave dynamic processes induced by the projectile moving at Mach numbers

of Mp ¼ 2:0 and 2.4, respectively, in a short time duration after the projectile was released from a shock

tube into a big chamber. It was found that complex shock phenomena exist in the shocked flow, resulting

from shock-wave/projectile interaction, shock-wave focusing, shock-wave reflection and shock-wave/

contact-surface interactions, from which turbulence and vortices may be generated. This is a fundamental

study on complex shock phenomena, and is also a useful investigation for understanding on shocked flows
in the ram accelerator that may provide a highly efficient facility for launching hypersonic projectiles.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Shocked flows induced by a supersonic projectile moving from a shock tube into a big chamber
are closely related to the ram accelerator research [1,2,6,7]. The problem is schematically shown in
Fig. 1, where several wave phenomena are defined. When the projectile moves within the shock
tube the diameter of which is set to be identical to the projectile�s, the precursor shock wave is
driven in front of the projectile, being similar to the piston/shock-tube problem. The precursor
shock wave propagates into the big chamber first and develops into the first blast wave, which
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Fig. 1. Computational domain and phenomena definitions.
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results in shock wave diffraction at the exit of the shock tube, shock wave reflection from the rigid
wall of the big chamber, and a jet flow developing in the vicinity of the exit of the shock tube.
Latter, when the projectile emerges from the shock tube and moves into the big chamber, the high
pressure gas behind the projectile rushes out and the second blast wave develops. Moreover, once
the projectile moves out of the supersonic flow region bounded by a barrel shock and a Mach disc,
a bow shock wave is generated in front of the projectile. This bow shock wave can catch up with
the precursor shock wave and will also interact with the shock waves reflected from the rigid wall.
These result in the shock-wave/moving-body interaction, shock wave focusing and shock/contact
surface interaction. This is an important topic for both shock wave research and engineering
applications.

The relevant topic was referred to by Glass many years ago in his book entitled ‘‘Shock Waves
and Man’’ [3], in which a series of photographs show the emergence of a 0.3-inch-diameter bullet
from a rifle at 2200 feet per second (Mp ¼ 2). An experimental study on axisymmetric supersonic
flows around cylindrical projectiles has been presented by Matsumura et al. (1993) [4]. Their case
is a supersonic projectile flying at a Mach number 4 in ambient air. Numerical work on shock
wave flows generated by supersonic projectiles discharging from shock tubes into ambient air was
reported by Jiang and Takayama [5] and in their work the interaction of the bow shock wave with
the precursor shock wave was emphasized. Motivated by the need for hypersonic launching
facilities, the ram accelerator has been intensively investigated both experimentally and numeri-
cally during the recent years [1,2,6,7]. However, most of the numerical researches on the ram
accelerator were carried out by solving the governing equations with the Galilean transformation
[6,7], which may lead to some discrepancies between numerical results and experiments data,
especially at the initial stage when the projectile is launched into the acceleration tube. The
shocked flows containing many unsteady wave phenomena are still largely unexplored.

The present study aims at understanding on wave dynamic processes occurring in shocked
flows at the projectile launching stage to demonstrates the unsteady flow phenomena and to
provide useful information for the research on the ram accelerator and on the gun-firing problem
[8,14]. The dispersion-controlled scheme based on the dispersion conditions [9,10] was used for
solving the Euler equations implemented with moving boundary conditions. These governing
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equations are chosen because the wave dynamic processes are emphasized in the present study, in
which viscosity effects are negligible [15]. If the phenomena related to the turbulence and viscosity
are to be examined, the Navier–Stokes equations with a suitable turbulence model have to be
adopted. Two special cases were chosen for validation of numerical algorithms. The first one is the
shock wave propagating from a shock tube into a big diameter chamber, which is the similar to
the computational domain shown in Fig. 1, but without the projectile. The second case is a
supersonic projectile flying in open space for verifying moving boundary conditions. After
checking accuracy of the numerical algorithms, further two cases of the shocked flows induced by
the supersonic projectile moving at two different Mach numbers were simulated and numerical
results were presented in a time sequence of isobars and isopycnics. From numerical solutions,
wave dynamics processes occurring in shocked flows were discussed in detail from a view point of
shock wave dynamics.
2. Governing equations

Assuming that the shocked flow induced by supersonic projectiles in the present study is
symmetrical during a short time duration of projectile launching and viscosity effects on wave
dynamic processes are negligible, a hyperbolic system of conservation laws for the perfect gas in
cylindrical coordinates can be written as
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where primitive variables in the unknown U are density q, velocity components u and v, and total
energy per unit volume e. Fluid pressure is denoted with p, which is related with the equation of
state for the perfect gas given by
e ¼ p
c� 1

þ 1

2
qðu2 þ v2Þ; ð1cÞ
where c, the specific heat ratio, is taken to be 1.4 in the present study.
3. Numerical methods

The finite difference equations of (1a) discretized by using the dispersion-controlled scheme
[9,10] are given in the form of semi-discretion as
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where A and B are the Jacobian matrices of oF=oU and oG=oU, respectively. I is a unit matrix,
b ¼ Dt=Dx, and KA and KB are vector matrices that consist of eigenvalues of matrices A and B,
respectively. In the above equations, the ð�Þþ or ð�Þ� superscript signs denote flux vector splitting
according to the Steger and Warming method [11]. The time-marching integration was performed
with a Runge–Kutta algorithms of second-order accuracy. As to the dispersion-controlled
scheme, it has been constructed to meet the dispersion conditions [9,10], therefore, it is capable of
capturing a discontinuity without any numerical oscillation and the need of additional artificial
viscosity that may, otherwise, smear some physical phenomena. Such a characteristic is very
helpful to highlight fine structures of shock wave interactions.

The computational geometry with sudden enlargement in its cross section is a shock tube
connected to a big chamber, as schematically shown in Fig. 1. The shock tube is 70 mm long and
50 mm in diameter and the big chamber is 530 mm long and 200 mm in diameter. The projectile is
50 mm long and 50 mm in diameter. The inner diameter of the shock tube is chosen as a reference
length in computation. The equally spaced grid system of 2400� 400 mesh points was used along
x- and r-directions, respectively, and 280� 100 points were distributed inside the shock tube. The
computation was carried out only in the half of the computational domain because the flow field is
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assumed to be axisymmetric. Reflecting boundary conditions were specified both on solid walls
and the axis of symmetry. Non-reflecting boundary conditions were applied at the inflow and
outflow boundaries [13].

In order to simulate a moving projectile, two mesh systems are used in computation and both
are equally spaced. The main mesh system is set in the laboratory-fixed coordinates and the
moving mesh system is in the projectile-fixed ones. The moving mesh containing the projectile
moves on the fixed main mesh at the projectile speed. The surfaces of the projectile are traced step
by step so that the moving boundary conditions being consistent with the Euler equations and the
numerical scheme could be applied on the projectile. The detailed descriptions of the moving
boundary conditions has been reported by Jiang and Takayama [5]. The equations of the moving
boundary conditions are given here for completeness.
ua0 ¼ 2:0 � U � ua;
va0 ¼ va;
qa0 ¼ qa;
pa0 ¼ pa;

8>><
>>: ð9Þ
where U is the projectile speed, a denotes the mesh point being adjacent to the projectile boundary
and a0 is a�s mirror image inside the projectile.

Oswatitsch [8] pointed that for high-speed projectiles, the most significant accelerations occur
near the breech leaving the projectile speed relatively constant over most of the latter portion of its
in-bore trajectory, the properties of the gas slug at the muzzle can be obtained by using the
Rankine–Hugoniot relations under the assumption that the gas velocity is equal to the projectile
launch speed. Schmit et al. [14] carried out their theoretical analysis based on the assumption and
the obtained results agree well with experiments. Based on these pioneer works and considering
the practical launching of a projectile into the acceleration tube, we simplify initial conditions for
numerical simulations assuming that the friction between the projectile and the shock tube wall is
negligible. In the initial stage, with the projectile moving down the shock tube, the precursor
shock wave is taken as having arrived at the exit of the shock tube and the projectile is located at a
distance being 110 mm behind the precursor shock wave. The surrounding condition in the big
chamber is ambient air at Pa ¼ 1 atm and Ta ¼ 297 K. Behind the precursor shock wave, the
column of gas on either side of the projectile and the projectile itself all move at the same velocity,
the so-called post-shock velocity, Vp, determined according to a given Mach number ofMp ¼ Vp=c,
where c is referred to as the sound speed in ambient air. Using the projectile speed and the
ambient air condition, the initial flow state between the precursor shock wave and the projectile
can be specified with standard adiabatic shock relations [8]. The gas state behind the projectile is
taken to be the same as the post-shock state in front of the projectile because that projectile moves
loosely and the friction between the projectile and the shock tube wall is negligible.
4. Accuracy check on numerical algorithms

If flow physics is going to be explored with numerical solutions, checking accuracy on the
numerical algorithms and validating numerical solutions are necessary. Two special cases were
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chosen for the purpose because experimental data for the present study are not available. The first
case for validating numerical solutions is a shock wave propagating from a shock tube into a big
chamber, being similar to the configuration as shown in Fig. 1 but without the projectile. The
second one for verifying moving boundary conditions is a projectile flying in open space at a
supersonic speed, being similar to the present study without the tubes. Accuracy of the present
algorithms can be demonstrated in this way so that certain confidence could be gained on
numerical simulations.
4.1. Validation of numerical solutions with experiments

In the first test case, the diameter ratio of the big chamber to the shock tube is taken to be 2:1.
The initial shock Mach number of the transmitting shock wave is Ms ¼ 1:3. The computational
geometry is shown in Fig. 1, but without the projectile. The corresponding experiment was
conducted with a specially designed aspheric cylindrical test section connected to the 55 mm
diameter shock tube at the Shock Wave Research Center, Tohoku University, Japan. This test
section permits collimated incident light rays to traverse the inner circular cross sectional bore
parallel and emerge parallel. Interferometry is chosen to determine the density distribution within
the flowfield because the density is more sensitive to small variations than other flow parameters,
which can also provide qualitative information for CFD validation. For a direct comparison, the
computational interferogram was constructed from numerical solutions by using techniques de-
scribed by Jiang et al. [12]. Both the experimental interferogram and numerical result are pre-
sented in Fig. 2.

By comparing Fig. 2(a) with (b), it is obvious that agreement between the numerical result and
the experiment is excellent. This is true not only because the number of fringes is identical but the
Fig. 2. Comparison of the experimental interferogram with the numerical one showing a transmitting shock wave

propagating at Ms ¼ 1:3 in a big chamber. (a) Experimental interferogram and (b) computational result.



Fig. 3. Verification of moving boundary conditions, the projectile speed of Vp ¼ 1600 m/s.
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position of each fringe matches well with each other with minor exceptions. In fact, the maximum
shift in fringe position is less than one fourth of the distance between the two adjacent fringes.
This maximum discrepancy means that errors in the integrated density are less than 4% of the
initial density according to the fringe pattern analysis because one fringe shift corresponds to a
density shift of 13.68% of the initial density in front of the transmitting shock wave. Considering
the difficulty in timing numerical results to match exactly the experiment and some experimental
uncertainty, such a level of accuracy is perfectly acceptable to confirm that the numerical simu-
lations represents the physics occurring in the shock wave propagation.
4.2. Verification of moving boundary conditions

The second case for verification of the moving boundary conditions is a projectile flying in open
space at a supersonic speed. Simulations were carried out by solving the governing equations first
in the projectile-fixed coordinates with fixed boundary conditions, and then in the laboratory-
fixed coordinates with moving boundary conditions. The flow field suffers the Galilean trans-
formation but thermal state parameters remain identical. These results are presented with isobars
in Fig. 3, where the result with the fixed boundaries is plotted in the upper half and that with the
moving boundaries is in the lower half. Good agreement was observable from the stand-off dis-
tance of the bow shock wave and from the number of isobars in the flow field, except a slight shift
of the position of the two corresponding isobars in the wake. In fact, the discrepancy of the
stagnation pressure in front of the projectile is less than 7%. Hence the reliability of the moving
boundary conditions was well demonstrated.
5. Results and discussion

In the following discussion, a number of major wave dynamic processes will be identified, which
interact with each other in different ways. The first process is the generation of the first blast wave
resulting from the gas behind the precursor shock wave, which will disturb the flow it has passed.
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The second process is the second blast wave induced by the high pressure gas behind the projectile,
including its generation, motion and interaction with the first blast wave. The third one is the
instability development of contact surfaces and shear layers, which is induced by reflected shock
waves and shock wave focusing. The last process of the moving shock wave interaction occurs
later when the bow shock wave catches up with the precursor shock wave, from which a new bow
shock wave develops and a contact surface follows.

5.1. Case 3: the projectile moving at a Mach number of Mp ¼ 2:0

The third case is the shocked flow induced by a projectile moving at a Mach number of
Mp ¼ 2:0 and its numerical results are presented in a time sequence in Fig. 4. In this figure, isobars
are plotted in the lower half of each frame and isopycnics in the upper half at the same time.

Fig. 4(a) shows the frame at t ¼ 162 ls, when the projectile is just released from the shock tube
and the precursor shock wave driven by the projectile has propagated into the big chamber. In this
early frame, the precursor shock wave has transmitted into a sphere shape; a contact surface
follows, which separates the gas being initially in the shock tube from that in ambient air; a
secondary shock wave is generated due to locally developed supersonic flows, the rim of which
sucks into the low-pressure core of the primary vortex ring; an under-expanded jet develops and
the barrel shock is generated. Later, as shown in Fig. 4(b) at t ¼ 230:5 ls, the precursor shock
wave reflected from the rigid chamber wall and the reflected shock wave interacts with the contact
surface. In Fig. 4(c) at t ¼ 282:7 ls, the high pressure gas behind the projectile rushes out and the
second blast wave, named after the transitional ballistic regime, develops. There is nothing that is
observable in front of the projectile, because the projectile moves in the region where the particle
velocity is approximately the same to the projectile speed. Meantime, the reflected shock interacts
with the primary vortex ring and the distorted portion of the shock wave bends backward. Fig.
4(d) at t ¼ 338:2 ls shows that a bow shock is driven in front of the projectile because the pro-
jectile speed is much higher than the particle velocity in front of it. A cylindrical shock wave with a
curved front was observed beside the projectile in Fig. 4(e) at t ¼ 442:7 ls, propagating in the
radial direction. Actually, this is the leading shock wave of the second blast wave, but distorted in
the jet flow region where flow velocity varies dramatically from the axis of symmetry. On the other
hand, the contact surface and the shear layer are also disturbed by the shock wave in return.

The leading shock wave of the second blast wave overtakes the projectile from Fig. 4(d) and
interacts with the bow shock wave in Fig. 4(e) and develops into a curved shock wave in Fig. 4(f)
at t ¼ 498:1 ls, clearly delineating the flow influenced by the projectile from that by the precursor
shock wave. The reflection of the precursor shock wave from the rigid chamber wall transits from
a regular reflection as shown in Fig. 4(b) to a Mach reflection in Fig. 4(d), in which a shear layer is
clearly visible from the triple-point. The reflection of the curved shock occurs from Fig. 4(e) and
the reflected shock wave interacts with the shear layer in Fig. 4(g) at t ¼ 561:8 ls, which results in
intense shear layer instability in Fig. 4(g) at t ¼ 561:8 ls. Meanwhile, a new shear layer originating
from the frontal edge of the projectile is generating because the projectile speed is much faster
than the particle velocity around it. A shock wave focusing behind the projectile occurs from Fig.
4(d) and (e), which results from the secondary shock wave diffracting over the rear surface of the
projectile as it moves through the shock wave. This becomes another source that will generate
perturbations on the wake behind the projectile, as shown in Fig. 4(e) and (f). The curved shock



Fig. 4. A time sequence of isobars (lower) and isopycnics (upper) showing the shocked flow induced by the projectile

moving at Mp ¼ 2:0, CS––contact surface; SW––shock wave; second blast––the second blast wave.
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wave catches up with the precursor shock wave in Fig. 4(h) at t ¼ 618:9 ls. This shock wave
interaction leads to the the generation of a contact surface and a series of expansion waves. The
expansion waves run away quickly and is the only contact surface observable in front of the
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projectile, as shown in Fig. 4(i) at t ¼ 684:1 ls. A new precursor shock wave develops in Fig. 4(j)
at t ¼ 752:7 ls, and can be also defined as the new bow shock wave. Only after this stage, the
flowfield around the projectile may be approximately treated as a steady state with the Galilean
transformation.

By examining the flowfield between the Mach disk shock and the projectile at the frame shown
in Fig. 4(h), it is found that a shock wave propagates toward the axis of symmetry, which results
in the shock wave focusing in Fig. 4(i). Fig. 4(h) shows also that the reflected shock wave from the
chamber wall interacts with the shear layer, which imposes more disturbances on the shear layer
development and leads to its rolling up in Fig. 4(i). The effect of these interactions is observable in
Fig. 4(j), where complex shock-wave phenomena appear behind the projectile and the well-
shocked flow develops. It seems that turbulent flows observed in this region from experiments in
many previous work are due to these wave dynamic processes. Although the present simulations
do not reproduce correctly the flow state, but do provide valuable information for understanding
on the mechanism of flow state transitions.

5.2. Case 4: the projectile moving at a Mach number of Mp ¼ 2:4

Numerical results of case 3 presented in the last section shows the development of the shocked
flow and a number of major wave dynamics phenomena in it. The last case, the projectile moving
at a higher Mach number of Mp ¼ 2:4, is carried out to examine the effect of the projectile speed
on the shocked flow. The numerical results of case 4 are presented in Fig. 5 in a time sequence of
pressure and density distributions. The same display style is adopted as is used in Fig. 4.

Generally speaking, wave dynamic processes occurring in case 4 appear to be similar to these
being observable in case 3, for example, the first blast wave in Fig. 5(a) at t ¼ 135 ls; the second
blast wave behind the projectile in Fig. 5(b) at t ¼ 227:5 ls; the development of the bow shock
wave in Fig. 5(c) at t ¼ 356:7 ls; the bow shock joining the leading shock wave of the second blast
wave in Fig. 5(d) at t ¼ 431:6 ls, from which a curved shock wave develops; the reflection of the
curved shock wave sweeping over the shear layer and the contact surface in Fig. 5(e) at t ¼ 466:9
ls to Fig. 5(h), which leads to intense flow instability; catching up of the bow shock wave with the
precursor shock wave in Fig. 5(f) at t ¼ 515:9 ls; instability of the shear layer from the projectile
frontal edge in Fig. 5(g) at t ¼ 567:6 ls; and a new bow shock generating in Fig. 5(h) at t ¼ 635:6
ls. However, there are still some discrepancies observable, which result from the higher projectile
speed. The first one is the shock cell in case 4 is wider and longer than in case 3, which is concluded
by comparing Fig. 5(c)–(h) with Fig. 4(e)–(j). This is because the jet flow associated with the
second blast wave is more highly under-expanded due to the higher flow pressure behind the
projectile in case 4. The second is the stronger reflection of the precursor shock wave, which is
identified from the contact surface originating from the triple-point in Fig. 5(c) and (d), which is
more intense than in Fig. 4(e) and (f). The third is the stand-off distance of the precursor shock
wave. It is shorter in Fig. 5(h), but longer in Fig. 4(j). This is because the new bow shock in case 4
is stronger due to the higher projectile speed. Another difference is the shock wave focusing as
shown in the central area of Fig. 5(h), which is also more intense than in Fig. 4(i). In conclusion,
the wave dynamics processes in case 4 did not change significantly as the projectile speed in-
creases, but wave interactions appear more intense. It may imply that more vortices and turbu-
lence will be induced.
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moving at a Mach number of Mp ¼ 2:4. First blast––the first blast wave; bow SW––bow shock wave.
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5.3. Computational schlieren results

Figs. 4 and 5 show complex shocked flows induced by a supersonic projectile moving from a
shock tube into a big chamber. A question is that it is possible to visualize the wave dynamics
processes with flow visualization techniques, for example, with schlieren method. With the
algorithms introduced by Jiang et al. [12], computational schlieren results are created by inte-
grating the cylindrical density distribution of the numerical simulations of case 3, and presented in
Fig. 6 in a time sequence. From this figure, the reflection of the precursor shock wave in Fig. 6(a)
at t ¼ 440:7 ls, the bow shock wave generation in Fig. 6(b) at t ¼ 470:0 ls, catching up of the bow
shock wave with the precursor shock wave in Fig. 6(c) at t ¼ 603:8 ls, the development of the new



Fig. 6. A time sequence of numerical schlieren photos showing wave interactions in the shocked flow induced by the

projectile moving at a Mach number of Mp ¼ 2:0.
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bow shock wave in Fig. 6(d) at t ¼ 708:3 ls, and the instability development of the contact surface
and the shear layer from Fig. 6(b)–(d) while the reflected shock waves from the chamber wall are
sweeping over them. All the wave phenomena are standing out clearly against the background
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flow, demonstrating vividly intensive wave interactions. As is well known, schlieren results include
the effect of integrating three-dimensional density distribution along light path, some physics may
be smeared. However, most of the wave dynamics phenomena being observable in Fig. 4 are also
observable in Fig. 6, even can be more clearly identified. This is a helpful indication for investi-
gating further the shocked flow by motivating the experimental study on the present case.
6. Conclusions

From the discussion in the above sections, the numerical investigation can be summarized as
follows: The dispersion-controlled scheme implemented with the moving boundary conditions
were well validated and the shocked flow induced by a supersonic projectile moving from a shock
tube into a big chamber was simulated successfully. The shocked flow is characterized with several
major wave dynamic processes: the generation of two blast waves; the reflection of the precur-
sor shock wave and the leading shock wave of the second blast wave; the interaction among
reflected shock waves, contact surfaces and shear layers; catching up of the bow shock with the
precursor shock wave; and shock wave focusing behind the projectile. The wave dynamic pro-
cesses do not change significantly as the projectile speed increases, but wave interactions do ap-
pear more intense. These wave dynamics processes and their interactions will induce vortices and
turbulence in the wake behind the projectile, which agrees with previous experimental observa-
tions and is worth to be investigated further in future.
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