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Abstract. This paper explores the potential of the piecewise linear vibration absorber in a system subject to narrow
band harmonic loading. Such a spring is chosen because the design of linear springs is common knowledge among
engineers. The two-degrees-of-freedom system is solved by using the Incremental Harmonic Balance method, and
response aspects such as stiffness crossing frequency and jump behaviour are discussed. The effects of mass,
stiffness, natural frequency ratios, and stiffness crossing positions on the suppression zone are probed. It is shown
that a hardening absorber can deliver a wider bandwidth than a linear one over a range of frequencies. The absorber
parameters needed to produce good designs have been determined and the quality of the realized suppression zone
is discussed. Design guidelines are formulated to aid the parameter selection process.
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1. Introduction

The vibration absorber has found extensive uses in engineering and there are continuing efforts
to develop creative approaches to achieve better performance. This paper is concerned with
the behaviour of the absorber under harmonic loading whose frequency varies over a narrow
band, where it has been recognized that the employment of a nonlinear absorber spring can
improve the operating frequency range. Specifically, the frequency response of a piecewise
linear absorber is discussed in detail. The efficiency of an absorber in a narrow band environ-
ment is measured by the frequency window of a suppression band, within which the dynamic
amplification of the structure displacement is less than one. Roberson [1] observed that, for
the case of sinusoidal loading, an absorber with cubic springs can increase the bandwidth of
the suppression zone over its linear counterpart. He further noted that a softening spring yields
superior results over a hardening spring in the frequency range below the natural frequency of
the structure. Arnold [2] studied a similar configuration and came to the interesting conclusion
that a softening spring can have two anti-resonances, whereas a hardening spring has only one.
Miller and Gartner [3] carried out theoretical and experimental work on a pneumatic spring
absorber with hardening characteristics, and provided design details for a prototype.

Hunt and Nissen [4] analyzed a nonlinear absorber fabricated from softening Belleville
springs under harmonic loading. They concluded that a bandwidth up to twice that of a linear
spring can be obtained. Nissen et al. [5] conducted an optimization study on the application
of the Belleville washer as an absorber spring and provided guidance on design.

Rice and McCraith [6] investigated an asymmetric Duffing-type nonlinear absorber for a
structure subject to mass imbalance. They presented graphs on how the suppression bandwidth
is affected by design parameters and showed results that are up to 50% better than the linear
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absorber. They contended that a hardening absorber is equally as good as a softening one for
maximizing the bandwidth.

Natsiavas [7, 8] analyzed an asymmetric piecewise linear absorber under a harmonic load.
He assumed a single stiffness crossing per response cycle and obtained periodic solutions.
For large stiffness change, he detected Hopf bifurcations, period doubling bifurcations, and
chaotic motions. The focus was on bifurcation, chaos, and internal resonance, not the suppres-
sion zone.

Nissen et al. [5] provided a ready-to-use solution for the case of harmonic forcing by
advocating the choice of softening Belleville washers. However, this arrangement is effective
only for the situation where the excitation frequency is below the structure’s natural frequency.
The motivation for the present paper is to expand the arsenal of available devices by proposing
the use of piecewise linear springs in absorber design.

The rationale for combining linear springs to achieve nonlinear behaviour is that engineers
and designers are conversant with the design and fabrication of these components. The sizes
and material types of these springs come in a wide range to accommodate the large spectrum
of industrial and structural uses. Furthermore, the devices can be configured in a variety of
ways, such as helical springs, tension springs, torsional springs, to suit the situation at hand.
Of vital importance is that the design practices for these systems are common knowledge
to engineers and are also easily accessible in reference works such as the one by the SAE
Spring Committee [9]. This means that design, detailing and set-up of these assemblies can
be completed in an expeditious and economical manner.

The objective of this paper is to demonstrate that a piecewise linear absorber under har-
monic forcing can be effective in narrow band applications. It is shown that a hardening spring
can substantially improve the bandwidth over that available from a simple linear spring over
a reasonable frequency range.

The equations of motion for a two-degrees-of-freedom system representing a structure
and an absorber are formulated in Section 2. The equations are solved using the Incremental
Harmonic Balance method, as this is an accurate and efficient method for nonlinear frequency
response. The method for stability analysis is presented in Section 3, for it is necessary to
ensure that motion in the suppression zone is stable. The general behaviour of the system
is illustrated in Section 4 in order to demonstrate the various modes of behaviour in differ-
ent frequency regimes. The effects of various design parameters on the suppression band
are investigated in detail in Section 5. Simple guidelines on the parameter selection pro-
cess for achieving practical designs are discussed. Finally, the results are summarized and
recommendations for future work are made in Section 6.

2. Formulation

The equation of motion for a two-degrees-of-freedom system shown in Figure 1 is[
m1 0
0 m2

][
ÿ1

ÿ2

]
+
[
c1+ c2 −c2

−c2 c2

] [
ẏ1

ẏ2

]
+
[
k1y1− g(y2− y1)

g(y2− y1)

]
=
[
p cosλt

0

]
, (1)

wherem1, k2, c1, y1 are the mass, stiffness, damping, and displacement, respectively, of the
structure. The corresponding quantities for the absorber are denoted by the subscript 2, and the
superscript (·) denotes differentiation with respect to time. The absorber stiffness comprises
an initial branchk2 and an extended branchkd , connected at the stiffness crossing pointe.
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Figure 1. Structure and absorber model.

The applied harmonic load on the structure isp, the excitation frequencyλ, and timet . The
force-deflection relationg(y) for the absorber spring, wherey is the relative displacement, is

g(y2− y1) = g(y) =
 k2e + kd(y − e), y > e,

k2y, −e ≤ y ≤ e,
−k2e + kd(y + e), y < −e.

(2)

A change of variableθ = λt is introduced and Equation (1) is written in matrix form:

λ2My ′′ + λCy′ + f(y) = p(θ), (3)

where the primes denote differentiation with respect toθ . The Incremental Harmonic Balance
(IHB) method is used to solve this equation, as this approach has been shown by Lau et al.
[10] to be effective for finding periodic solutions for nonlinear vibration problems and has
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been successfully applied in piecewise linear analysis by Pun et al. [11, 12]. The procedure
here follows that of Lau and Zang [13]; a brief outline is described below, with more details
in the Appendix.

Let the current motion be represented byy0 andλ0, then the neighbouring statesy andλ
are given by

y = y0+1y, λ = λ0+1λ, (4)

where1 signifies an incremental change. Equation (3) is then expressed in incremental form
by making use of Equation (4):

λ2
0M1y′′ + λ0C1y′ + S1y = ε + q1λ, (5)

whereS is the tangential stiffness matrix,ε is the residual force vector and equals0 if the
current solution is correct, andq is the force vector due to a unit frequency change. The
periodic solution is taken as

yi =
n∑
i=1

(aij cosjθ + bij sinjθ) (i = 1 . . . 2), (6)

wheren is the number of harmonic terms,aij andbij are the amplitudes of the cosine and sine
harmonics, respectively. Let

z= [a1j , . . . , b1j , . . . , a2j , . . . , b2j , . . .]T (j = 1 . . . n), (7)

then

y = Hz. (8)

Substituting Equation (8) into Equation (5), and then performing the Galerkin procedure yields

A1z= ε̄ + q̄1λ. (9)

The matricesS, H, A, ε, ε̄, q, q̄ are given in the Appendix. It is noted that the integrals in the
Galerkin step necessitate the determination of the stiffness regimes of the absorber, which are
obtained by solving the values ofθ , for which

y2− y1 = e or y2− y1 = −e, (10)

by considering Equation (6). These angles are the temporal transition points between the
stiffness branches and can be ordered to delimit the motion status.

The solution process can be started by using estimated amplitudes at a prescribed fre-
quency, which means thatλ is fixed and1λ = 0. Equation (9) is then iterated for1z until ε̄
becomes acceptably small, indicating that a correct solution has been attained. The solution
at a neighbouring frequency value is next sought by using the previously foundz as a starting
point, prescribing1λ and repeating the iteration procedure. In this way the entire resonance
curve can be traced out. A more complete discussion on the continuation strategy is contained
in [14].
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3. Stability Analysis

The approach to stability analysis is based on that introduced by Masri and Caughey [15] and
the procedure follows the formulation outlined in Pun et al. [16]. To facilitate analysis, the
equation of motion is expressed in standard state-space form:

Dv̇+Gv = pd cos(λt + φ)+ ps, (11)

v = [ẏ1, ẏ2, y1, y2]T . (12)

(The details for these and the following matrices are provided in the Appendix.) This equation
is valid within a single stiffness regime, and the phase angleφ is introduced to maintain force
continuity in the piecewise linear nature of the motion.

The solution to Equation (11) can be written as

v = BE(t)B−1(v0− µ0φ − vs)+ µ(t)φ + vs , (13)

v0 = [ẏ1(0), ẏ2(0), y1(0), y2(0)]T , (14)

where the motion begins at a stiffness boundary, as governed by Equation (10), and the starting
time is 0. The perturbed motioñv caused by deviation in the initial conditions is

ṽ = v+ δv. (15)

The motion deviationδv can be expressed as

δv(t + δt) = ∂v
∂v0

δv0+ ∂v
∂φ
δφ + ∂v

∂t
δt. (16)

Making use of Equation (13) in Equation (16) results in

δv(t + δt) = BE(t)B−1δv0− BE(t)B−1µ0φ̄δφ

+ µ(t)φ̄δφ + BĖ(t)B−1v̄0δt + µ̇(t)φδt, (17)

v̄0 = v0− µ0φ − vs . (18)

As the flight regions are determined by the relative displacementy, δy is used instead ofδy2

by transformingδv to δw

δw = Tδv, (19)

δw = [δẏ1, δẏ, δy1, δy]T , (20)

δw0 = [δẏ1(0), δẏ(0), δy1(0), δy(0)]T , (21)

δw(t + δt) = TBE(t)B−1T−1δw0− TBE(t)B−1µ0φ̄δφ + Tµ(t)φ̄δφ

+ TBĖ(t)B−1v̄0δt + Tµ̇(t)φδt. (22)

To retain the perturbed motion along the stiffness boundary att = 0,δy(0) is taken as 0 and the
phase angle is perturbed throughδφ. The original motion reaches the next stiffness boundary
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at t = t1, but the perturbed motion arrives at this point at a slightly different timet1+δt , when
δy becomes 0. These observations can be utilized in the fourth row of Equation (22) to obtain
a relation forδt :

0 =
3∑
j=1

[TBE(t1)B−1T−1]4j [δw0]j

+ [−TBE(t1)B−1µ0φ̄ + Tµ(t1)φ̄]4δφ + [TBĖ(t1)B−1v̄0+ Tµ̇(t1)φ]4δt, (23)

where the subscripts of the brackets refer to the elements of the enclosed matrix or vector.
Furthermore, consideration of the continuity of the harmonic force yields

δφ(t + δt) = λδt + δφ. (24)

Theδy term inδw is replaced byδφ to form δw̄ as the appropriate motion deviation. This is
achieved by combining the first three rows of Equations (22), (23) and (24) to give

δw̄1 = Q1δw̄0, (25)

δw̄0 = [δẏ1(0), δẏ(0), δy1(0), δφ]T , (26)

whereδw̄0 andδw̄1 are the deviations at the beginning and end of this flight leg, respectively.
This analysis is then repeated for the next flight regime, usingδw̄1 as the initial deviation. As
there are four stiffness crossings in a period, the deviationδw̄4 at the end of a period is given
by

δw̄4 = Q4Q3Q2Q1δw̄0 = Qδw̄0. (27)

The initial conditionsv0 and the stiffness crossing timesti (i = 1 . . . 4) are available from the
IHB solution, so thatQ can be readily calculated. The eigenvalues ofQ determine whether
the deviation grows or decays with time. The interest here is in a stable periodic orbit and the
modulus of every eigenvalue should be less than 1.

4. Fundamental Behaviour

The uncoupled natural frequenciesw1 andw2, together with the following normalized vari-
ables, are introduced:

w1 =
√
k1

m1
, w2 =

√
k2

m2
,

x1 = k1y1

p
, x2 = k1y2

p
,

d1 = c1

2
√
k1m1

, d2 = c2

2
√
k2m2

,

m = m2

m1
, r = w2

w1
, α = λ

w1
,

k = kd

k2
, u = k1e

p
, v = 1

mr2
, (28)
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Figure 2. Free vibration modes, reduced displacementversusreduced frequency, case 1, — mode 1, - - - mode 2.

wherexi is the reduced displacement,di the damping ratio,m the mass ratio,r the natural
frequency ratio,k the stiffness ratio,u the stiffness crossing position,α the reduced frequency,
and the subscripts 1 and 2 refer to the structure and absorber, respectively. The stiffness cross-
ing positionu is a displacement measure of the nonlinear strength and should be seen as being
relative to the displacementv of a linear undamped absorber excited at the natural frequency
ratio r. This is the linear turning frequency at which the structure is stationary because the
absorber can completely counterbalance the applied force. Ifu is larger thanv, then nonlinear
action does not occur because linear action alone can cancel the loading. Ifu is less than
v, then nonlinear action is precipitated as the absorber moves beyondu to reach dynamic
equilibrium.

In this section the general behaviour of the piecewise linear absorber is illustrated through
representative cases that reflect the various modes of response. The basic parameters are a
mass ratio of 0.1, natural frequency ratio of 1, structure damping ratio of 0.05, and absorber
damping ratio of 0.01. The stiffness ratio and crossing position are varied as follows: (1)k = 4,
u = 1; and (2)k = 2, u = 1. The structure damping ratio has little effect on the suppression
zone and the chosen value is simply a reasonable figure. The absorber damping does influence
the results and a minimum value following Nissen et al. [5] is used. Case 1 is a highly nonlinear
hardening absorber, whereas case 2 is a low nonlinear strength absorber. The two system
normalized (with respect tow1) natural frequencies in both cases are 0.8542 and 1.1705.
Three harmonic terms have been used to compute the following response.

The free vibration backbone curves for the system in case 1 are shown in Figure 2. The
fundamental backbone curve grows more rapidly than that at the second frequency, which is
bent considerably more to the right. This is a sign that nonlinear behaviour is more pronounced
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Figure 3. Backbone curve of the absorber alone, reduced displacementversusreduced frequency, case 1.

at the second natural frequency. This characteristic is intimately related to the free vibration
behaviour of the absorber as a single-degree-of-freedom oscillator. The free vibration back-
bone curve of the absorber spring alone is shown in Figure 3 and, as it is a hardening spring, the
curve leans towards the increasing frequency direction. This is the reason why the composite
system second mode exhibits a considerable nonlinear quality.

The forced responses around the suppression zone for the structure and absorber are shown
in Figures 4 and 5. The structure looping response around the reduced frequency of 2 is caused
by the hysteresis of the absorber. As the hysteresis is proportional to the nonlinearity, the extent
of the looping response is a function of the nonlinear strength of the absorber. It is known that
hysteresis in an oscillator can be controlled by damping, and in the light of the connection
between the absorber oscillator and the structure, it is apparent that absorber damping is
fruitful for diminishing the structure looping response. However, the use of absorber damping
is always a dilemma because it reduces absorber displacements and, hence, lowers absorber
efficiency.

For a structure under harmonic loading, the vibration of the absorber mass exerts a force in
the absorber spring to counteract the applied force, thus minimizing the displacement of the
main mass. For a linear absorber whose backbone curve is a vertical straight line at the natural
frequency ratio, the suppression zone is positioned at that frequency. For a hardening absorber
with a backbone curve bent to the right, it follows that the suppression zone is located to the
right of the natural frequency ratio.

Natsiavas [7, 8] solved periodic solutions by using an analytical procedure formulated
on the basis of a single stiffness crossing for an asymmetric piecewise linear absorber. Ac-
counting for the differences in stiffness symmetry and the starting reference position, that is
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Figure 4. Structure’s reduced displacementversus reduced frequency, forced vibration, case 1, — stable,
- - - unstable.

Figure 5. Absorber’s reduced displacementversus reduced frequency, forced vibration, case 1, — stable,
- - - unstable.
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Figure 6. Absorber’s relative reduced displacementversusreduced frequency, forced vibration, case 1, — first
harmonic, - - - second harmonic.

equivalent to a four stiffness crossing in the present case. As it is not necessary to make an
assumption concerning the crossing frequency in utilizing the IHB method, it is instructive to
examine the current results from this perspective. The IHB analysis has been carried out with
three odd harmonics, and the magnitudes of the first and second harmonics of the absorber’s
relative reduced displacement are plotted in Figure 6, from which it is apparent that the second
harmonic is a small fraction of the first for the complete frequency range. The third harmonic
is not shown as it is generally very close to 0. It can be seen that the second harmonic is nearly
0 in the reduced frequency regime of 1.2 to 2 where the suppression zone is located. Motions
dominated by the first harmonic show four crossings per cycle, as higher harmonics are needed
to supply the higher frequency components that lead to more crossings. The time history of
the motion at a reduced frequency of 0.78, where the amplitude of the second harmonic is
maximum, is presented in Figure 7. There are four stiffness crossings per period, which is a
typical scenario. This result is a confirmation that there are generally four stiffness crossings
per cycle for the stiffness range appropriate for absorber springs.

Figure 4 shows that the structure response traces out a loop inside the suppression zone,
an obviously undesirable feature due to the presence of the jump phenomenon, which can
lead to volatile motion. This is attributed to strong nonlinearity in the form of a high stiffness
ratio. It is more usual to see a loop overhanging the zone rather than directly within it as
here. However, such an encroachment still presents the possibility of highly abrupt movement,
where the periodic solution jumps from one branch to another, should the structure be subject
to an accidental displacement. Furthermore, high nonlinearity may induce bifurcations in the
suppression zone, where unstable periodic response yields to quasi-periodic motion, as de-
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Figure 7. Time history of structure’s reduced displacement, forced vibration, case 1,α = 0.78.

tailed in Rice and McCraith [6], and Natsiavas [7, 8]. This is evident at the reduced frequency
of 1.37, where Hopf bifurcations caused by excessive nonlinearity are detrimental to absorber
performance.

The frequency response of the structure in case 2, a weakly hardening absorber, is shown
in Figure 8. It can be seen that there is no loop in the response and all the solutions are stable.
This is due to the low nonlinearity of the system, and certainly the quality of the motion around
the suppression zone is better than the previous case.

5. Suppression Zone Analysis

In this section the effects of the stiffness ratio, crossing position, and natural frequency ratio
on the characteristics of the suppression band are investigated in some detail. It is well known
that the band increases with mass ratio and, hence, two representative values of this parameter,
0.25 and 0.1, are used for illustration. The structure and absorber damping ratios are fixed at
0.05 and 0.01, respectively, as in the previous section. In this work it has been found that
structure damping has very little effect on the zone. Three harmonic terms have been used to
compute the following results.

The suppression zone boundaries for a system with a mass ratio of 0.25, natural frequency
ratio of 1, and a tuned linear absorber displacement of 4, are plotted as a function of the
stiffness ratio in Figure 9. Two cases are considered, one with a crossing position 1 and
the other 4. The boundaries converge at the stiffness ratio of 1 because the system becomes
linear at this point and, thus, the influence of nonlinearity is brought out in the diagram. For a
crossing position of 4, the zone abruptly widens for stiffness ratios below 0.2, and in contrast
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Figure 8. Structure’s reduced displacementversusreduced frequency, forced vibration, case 2, — stable.

Figure 9. Suppression zone boundaries, stiffness ratioversusreduced frequency,m = 0.25, —u = 1, - - -u = 4.
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Figure 10. Structure’s reduced displacementversusreduced frequency,m = 0.25, k = 0.2, u = 4, — stable,
- - - unstable.

it widens only marginally for higher stiffness ratios. The opposite behaviour is observed for
a crossing position of 1, where the zone widens for high stiffness ratios but narrows for low
ones. Unfortunately, the solutions in the low stiffness ratio region for a crossing position of 4
are not stable, as shown in Figure 10 for a stiffness ratio of 0.2. However, the crossing position
1 case can be realized in practice, as Figure 11 shows that the solutions in the zone are able
for a stiffness ratio of 2. The equivalent linear absorber is that with a stiffness ratio of 1 in
Figure 9. It can be seen that the nonlinear absorber produces a bandwidth of 0.35, compared
with the linear case of 0.21, an improvement of 1.7 times.

The variation of the zone as a function of the crossing position is shown more directly in
Figure 12. For a natural frequency ratio of 1 (stiffness ratio of 2), it is apparent that the band-
width increases with a decreasing crossing position. Next, the effect of the natural frequency
ratio, is illustrated, and Figure 13 shows that for a crossing position of 1 (stiffness ratio of
2) lowering the natural frequency ratio below 1 decreases the bandwidth. For convenience,
the absorber damping ratio has been kept at 0 for the analyses in this figure, as checks show
that the results are nearly identical to those for a damping of 0.01. These results and other
similar ones have shown that, for effective bandwidth control, changes in one variable need to
be compensated by variations in others to lead to a sound performance.

For the low mass ratio case of 0.1, the suppression zone boundaries are shown in Figure 14
for a natural frequency ratio of 1, tuned linear absorber displacement of 10, with crossing
positions 1 and 10. The same general behaviour as for the heavy mass ratio case is exhibited
and it is seen that a hardening absorber with a stiffness ratio of 2 and crossing position of
1 is effective in providing a good bandwidth. The zone ranges from a reduced frequency of
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Figure 11. Structure’s reduced displacementversusreduced frequency,m = 0.25, k = 2, u = 1, — stable,
- - - unstable.

Figure 12. Suppression zone boundaries, crossing positionversusreduced frequency,m = 0.25,k = 2.
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Figure 13. Suppression zone boundaries, natural frequency ratioversusreduced frequency,m = 0.25, k = 2,
u = 1.

Figure 14. Suppression zone boundaries, stiffness ratioversusreduced frequency,m = 0.1, —u = 1, - - -u = 10.
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Figure 15. Bandwidthversustrough’s reduced frequency, — nonlinear, - - - linear.

1.15 to 1.44, for a bandwidth of 0.29 which is a 3.2 times improvement over the linear case
of 0.09. This enhancement is better than that for the heavier mass ratio of 0.25, where the
increase is only 1.7 times for the same stiffness ratio. This is achieved at the expense of higher
nonlinearity in terms of the crossing position, which results in shifting the zone slightly to the
right. The resonance curve for this case has already been shown in Figure 8, where periodic
solutions in the zone are stable. An absorber with a crossing position of 10 is not effective,
even at very low values of stiffness ratio.

The paradigm that a hardening absorber can provide good bandwidth at a low stiffness
crossing position serves as a starting point in the search for appropriate absorber configur-
ations. The frequency at which the minimum displacement in the zone occurs is used as a
reference, and is referred to as the trough frequency. For a mass ratio of 0.1, extensive analysis
on absorber performance has yielded a relationship between the bandwidth and the trough’s
reduced frequency which is presented in Figure 15. The corresponding values for a linear
absorber are also plotted. It is evident that the bandwidth increases as the zone moves away
from the region near the structure frequency.

The benefit of a piecewise linear absorber can be illustrated in an example. Consider a
structure of mass 10 kg, support stiffness 28000 N/m, damping 52.92 N-sec/m, resulting
in a natural frequency of 52.92 rad/sec. A harmonic load of magnitude 700 N acts on the
structure at an operating frequency of 62.83 rad/sec. A linear absorber tuned to the operating
frequency with mass 1 kg, stiffness 3947.77 N/m, damping 1.26 N-sec/m, corresponding to
m = 0.1 andd2 = 0.01, gives a suppression zone from 57.9 to 65.95 rad/sec, for a bandwidth
of 8.05 rad/sec. A piecewise linear absorber of the same mass, initial stiffness 1792 N/m,
extended stiffness 4838.4 N/m, stiffness crossing point 0.0375 m, damping 0.85 N-sec/m,
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Figure 16. Structure’s reduced displacementversusfrequency, — (· · ·) nonlinear stable (unstable), – – linear,
◦ ◦ ◦ time integration.

provides a zone from 57.44 to 68.84 rad/sec, for a bandwidth of 11.4 rad/sec. This zone is 41%
wider than the linear one. The trough frequency is at 63.27 rad/sec which is almost identical
to the operating frequency. This case corresponds tom = 0.1, r = 0.8, k = 2.7, u = 1.5,
v = 15.6, d1 = 0.05,d2 = 0.01. The bandwidth and trough frequency can be normalized by
the structure’s natural frequency to give reduced values of 0.22 and 1.19, respectively, which
are in agreement with Figure 15. The suppression zones given by the nonlinear absorber,
linear absorber, and time integration results for the nonlinear case are compared in Figure 16.
Note that the nonlinear absorber yields an almost symmetric zone with gentle slopes along the
sides, so that the displacement does not increase steeply once the excitation sways beyond the
borders.

Some design guidelines can be formulated on the basis of the above results. It can be seen
from Figure 11 that increasing the stiffness ratio while keeping other parameters constant
increases the bandwidth, and moves the suppression zone to the right. Also apparent from
the same diagram is that lowering the stiffness crossing has a similar effect. Figure 15 shows
that the bandwidth increases as the natural frequency ratio is raised. These three fundamental
aspects can be used to configure an absorber for top response, in conjunction with the fol-
lowing suggested parameter ranges. The stiffness ratio should be between 2 and 3, as higher
values generally lead to instability problems in the zone. The stiffness crossing position, which
accounts for both the load magnitude and the mass ratio, should be between 0.1 and 0.25 of the
tuned absorber displacement. The desired trough frequency determines the natural frequency
ratio, which should be about 0.6 to 0.9 of the former. This is to enable the formation of a
symmetric zone, so as to allow movement of the operating frequency in both directions.
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Having established the preliminary parameters, these can then be fine tuned according to
the three basic guidelines. For instance, if the trough frequency turns out to be lower than
anticipated, then increasing the stiffness ratio or the natural frequency ratio, or lowering the
crossing position, are choices of action that can improve the situation. Another scenario may
be that the trough frequency is correct but the bandwidth is too narrow. A possible way to
rectify this is to lower both the natural frequency ratio and the crossing position, and to
increase the stiffness ratio. The present results indicate that there are usually more than one
configuration that can yield a good bandwidth at a particular frequency. This means that there
are various combinations of the parameters that can develop very similar suppression zones, on
account of the interaction among the principal parameters as explained above. Such flexibility
for synthesizing an appropriate design greatly enhances the attractiveness of this device as a
vibration engineering solution.

Finally, it is desirable to be able to extrapolate the parameters of an absorber designed for
a particular load level to another. The load effect is illuminated by the ratio of the stiffness
crossing position to tuned absorber displacement, oru/v, which can be expressed asek2/p.
This ratio indicates that a change in load magnitude can be compensated by a proportional
change in the stiffness crossing point. The suppression zone of the modified system is the
same as the original one. This guideline is a means of extending a reference configuration to
different load levels.

6. Conclusions

The piecewise linear absorber is potentially a popular choice as there are a wide range of
materials available for developing appropriate practical applications. Furthermore, designers
are already well acquainted with the material performance and fabrication requirements of
linear spring design.

The general behaviour of the piecewise linear absorber has been reviewed, in which it is
stressed that the free vibration of the absorber mass alone is a major determinant of system
response. The number of stiffness crossings for the absorber spring has been examined, with
indicative results showing that there are four stiffness crossings per load cycle, which is in line
with work in the literature based on assumed crossing frequencies.

The width of the suppression zone has been analyzed through the effects of the stiffness
ratio, crossing position and natural frequency ratio, under the condition of harmonic loading.
A consistent trend discovered is that a hardening absorber with a low crossing position yields a
significantly higher bandwidth than the corresponding linear one. The improvement increases
as the trough frequency departs from the structure natural frequency. For a mass ratio of 0.1,
it is shown that about a 40% higher bandwidth is possible at a reduced frequency of 1.19.
The benefits of a softening absorber is not so definite, even though wide bandwidth solutions
have been found. These inevitably exhibit some instability behaviour in the suppression zone.
Hopefully, ongoing work would rectify the situation.

This paper has shown that it is feasible to develop a piecewise linear absorber to deliver
an excellent attenuation performance. Useful guidelines to aid designers in picking absorber
parameters have been synthesized. To fully harness the potential of this concept, an optimiz-
ation study is planned to methodologically probe the best configurations and to include other
designs aspects such as static displacement and stiffness asymmetry.
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Appendix

Some matrices and vectors in Equation (5) in the text are given below.

S= df(y0)

dy
(A1)

can be readily evaluated through the use of the step function

ε = −λ2
0My ′′0 − λ0Cy′0− f(y0)+ p(θ), (A2)

q = (−2λ0My ′′0 − Cy′0). (A3)

For the Galerkin approximation

H =
[

hT 0
0 hT

]
, (A4)

hT = [cosjθ, . . . , sinjθ, . . .] (j = 1 . . . n), (A5)

1y = H1z, δ(1y) = Hδ(1z), (A6)

y′ = H ′z, y′′ = H ′′z, 1y′ = H ′1z, 1y′′ = H ′′1z, (A7)

whereδ represents variation. Carrying out the Galerkin step by making use of Equations (A6,
A7) in Equation (5) and integrating over 2π ,

2π∫
0

δ(1yT )(λ2
0M1y′′ + λ0C1y′ + S1y)dθ =

2π∫
0

δ(1yT )(ε + q1λ)dθ, (A8)

yields Equation (9), with

A =
2π∫

0

HT (λ2
0MH ′′ + λ0CH ′ + SH)dθ, (A9)

ε̄ =
2π∫

0

HT ε dθ, (A10)

q̄ =
2π∫

0

HT q dθ. (A11)

For Equation (11)

D =
[

O M
M C

]
, G =

[ −M O
O K

]
, K =

[
k1+ ke −ke
−ke ke

]
, (A12)
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pd = [0,0, p,0]T , (A13)

ps = ye(k2− kd)[0,0,1,−1]T , (A14)

ke =
 kd
k2

kd

, ye =
 e y > e,

0 −e ≤ y ≤ e
e y < −e,

(A15)

B and E(t) are based on the eigenvaluess1, s2, and eigenvectorsb1, b2 of the eigenvalue
problem

sDv = Gv. (A16)

Note that the remaining two eigenvalues and eigenvectors are complex conjugate of the above
ones.

I = √−1, sj = ξj + Iρj , bj = brj + Ibij , 1= bTj Dbj (j = 1 . . . 2), (A17)

B = [br1,br2,−bi1,−bi2], (A18)

E(t) =
[

Er −Ei
Ei Er

]
, (A19)

Er = diag[exp(−ξj t) cos(ρj t)] (j = 1 . . . 2), (A20)

Ei = diag[−exp(−ξj t) sin(ρj t)] (j = 1 . . . 2). (A21)

The termµ(t)φ is the steady-state solution and is most conveniently found by

Kd = −λ2M + IλC+ K , (A22)

p̄ = [p,0]T , (A23)

a= K−1
d p̄, (A24)

a= ar + Iai , (A25)

µ(t) =
[ −λar sin(λt) −λai cos(λt) −λar cos(λt) λai sin(λt)

ar cos(λt) −ai sin(λt) −ar sin(λt) −ai cos(λt)

]
, (A26)

µ0 = µ(t = 0), (A27)

φ = [cosφ, cosφ, sinφ, sinφ]T , (A28)

φ̄ = [− sinφ,− sinφ, cosφ, cosφ]T , (A29)

vs = [0,0,0,−ye(k2− kd)/kd ]T , (A30)

T = diag[T̄, T̄], T̄ =
[

1 0
−1 1

]
. (A31)
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