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Abstract 
An investigation of fiber/matrix interfacial fracture 
energy is presented in this paper. Several existing theore- 
tical expressions for the fracture energy of interfacial 
debonding are reviewed. For the single-fiber/matrix 
debonding and pull-out experimental model, a study is 
carried out on the effect of interfacial residual compres- 
sive stress and friction on interface cracking energy 
release rate. 0 1998 Elsevier Science Ltd. All rights 
reserved 
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1 INTRODUCTION 

The fiber/matrix interfacial fracture energy release rate 
is one of the most significant micromechanical para- 
meters and has a large effect on the engineering proper- 
ties of composite materials. Much attention has 
therefore been paid to experimental methods for char- 
acterizing the interfacial fracture behavior and several 
theoretical models have been established in recent dec- 
ades. In 1969, Outwater and Murphy’ proposed the 
following formula for predicting the fiber/matrix inter- 
facial debonding energy release rate for the first time: 

vf$ld 
Gd = 2~ 

f 

where I’r is the fiber volume fraction, or is the fiber 
fracture stress, Ef is the fiber Young’s modulus and ld is 
the debonding length. For the single-fiber-reinforced 
matrix model (the representative unit of a unidirectional 
fiber composite), this formula can be rewritten as: 

where wd is the work of interfacial debonding and rf is 
the fiber radius. The last formula can be easily reduced 
to: 

331 

Here, Gd is the interfacial debonding energy release rate. 
The formula for interfacial debonding work, eqn (2), 
can be found in the two well-known books of Kelly2 
and H~ll,~ where it is given as: 

where d is the fibre diameter; the difference between 
eqns (2) and (4) is only in the two constant coefficients. 
However, both eqns (2) and (4) are open to question, 
since eqn (2) actually represents the strain energy stored 
in the fiber when it is stressed to its fracture strain, and 
generally, when debonding occurs, the stress in the fiber, 
bd, is much smaller than its fracture stress, or. Therefore 
the present author prefers the following expression: 

This formula can be seen in Ref. 4. od is debonding 
stress in the fiber. Written in terms of the single-fiber 

vfa$d 
Gd =r 

f 

debonding release rate, Gi, eqn (5) becomes: 

Gi =$ 
f 

Gi has been measured by Chua and Piggott5 by using 
the single-glass-fiber pull-out test; however, some errors 
were present in the formula used and the calculated 
result. In the analysis of brittle interfacial failure of the 
single-fiber pull-out test, as shown in Fig. 1, Piggott 
postulated that when the strain energy stored in the 
interface reaches or exceeds the interfacial crack propa- 
gation work, the interface debonds, and gave the fol- 
lowing formula? 
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Gi = 
1 &&J& 

ns tanh(ns) 4Er ’ 4Ei 
(7) 

where 

Elll 

> 

l/2 

n = Ef( I + u,) ln(r,/rf) 

s= L/rr, L is the embedded fiber length, u, is the matrix 

Poisson’s ratio and r, is the radius of the matrix (see 
Fig. 1). It should be pointed out that in this formula G, 
is inversely proportional to L. 

In view of the discussion above, the conclusion can be 
drawn that the fiber/matrix interfacial fracture energy is 
one of the most interesting topics. Proposition of a 

variety of formulae has deepened our insight into this 
problem. However, the problem still requires further 

investigation. In this paper, besides reviewing the effect 
of the matrix elastic modulus and of the Poisson’s ratios 
of fiber and matrix on interfacial debonding energy, the 
contribution of the interfacial residual compressive 
stress and friction to G, will be analyzed. 

2 INTERFACIAL FRACTURE ENERGY RELEASE 
RATE WITHOUT RESIDUAL STRESS 

In an analysis of the cylindrical single-fiber/matrix pull- 
out test model, in which there is partial interface 
debonding (Fig. 2) Charalambides and Evans7 derived 
the following formula by using the energy balance 
method: 

(8) 

where A = Em/Ef and Gtt is the mode II fracture energy 
release rate of the interface; for the experimental model 
shown in Fig. 2, Gtt%G,. This formula indicates that G,, 
is independent of L and the crack length, a, and is also 
independent of the Poisson’s ratios of the two compo- 
nent materials. 

The present authorX has examined the derivation 
process of eqn (8) and noticed that the assumption of 
uniform strain distribution has been made in deriving 
eqn (8); i.e. it is postulated that 

t+mFkix 
Fig. 1. Schematic drawing of the fiber pull-out experimental 

model. 

both in the matrix and in the fiber, strain is uni- 
formly distributed; and 
the strain values in the matrix and in the fiber are 
equal. 

Computations of the strain and stress distributions of 
this model were carried out by means of the finite-ele- 

ment method (FEM), the results indicating that the 
strain distribution is widely different from this assump- 
tion. Nevertheless, for a wide range of variations of A 
and Vr, this formula gives a good prediction of Gii. 
When Em is too small compared with Ef, eqn (8) yields 
results with greater inaccuracy. For instance, if 
h-657x 10e3, the relative deviation of Gii of eqn (8) 
from the FEM result is greater than 10%. For this case, 
a modification factor Q was recommended and a revised 
formula was given as: 

Gr = (9) 

where u is a number approximating to 1; e.g. for the 
above case, if cr=O.97, the deviation reduced to less 
than 3.5%. 

In Ref. 9 the following formula can be found. which 
is similar to eqn (8) but takes the Poisson’s ratios into 

account: 

where 

k= 
i-vf + yu, 

A(1 - ur) + 1 + u, + 2y 

ur and u, are the Poisson’s ratios of fiber and matrix, 
respectively, and 

f’ Vf )/=_!I__ 
rk - rf - I - VI 

Vi- being the fiber volume fraction. 
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Fig. 2. Cylindrical fiber/matrix pull-out test model with par- 
tially debonded interface. 
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It is easily seen that all the expressions of eqns (7), (8) 
and (10) have a common term, airf/4Ef, with different 
non-dimensional coefficients. To compare these for- 
mulae, calculations were conducted by using the material 
constants of a commonly used carbon-fiber-reinforced 

epoxy composite, for which Ef= 258-6 GPa, 
E,,, = 3*4GPa, vr= 0.25 and v, =O-35. As for the geo- 
metry of the test model, as shown in Fig. 2, different 
diameters may be assigned by different investigators; 
however, for a case study, rf= 4.5 mm and r,,, = 16.2 mm 
are adopted here. The results are listed in Table 1. 

The data in Table 1 illustrate that fi$, indicating 
that Poisson’s ratio has little influence on Gn. However, 
fi is very different from fi and f3, and the smaller is L, 
the larger will bef,; this may be ill grounded. 

3 INFLUENCE OF INTERFACIAL RESIDUAL 
STRESS AND FRICTION ON G,, 

For most polymer-based composites, the thermal 
expansion coefficient of the fiber, ar, is far smaller than 
that of the matrix, (Y,. Because the service temperature, 
T,, of composite structures is much lower than the cure 
temperature, T,, there exists considerable residual com- 
pressive stress at the fiber/matrix interface in the service 
condition. By using the axisymmetric thermal elasticity 
method, the following equation predicting the residual 
stress, qo, was derived. A brief derivation is given in 
Appendix A, where the sign of q. is assumed to be 
opposite to that of Kim and Mai 

-(%l - af)A T 
q” = “;j I-$ 

( > 

(12) 

where AT= T,-T,, f= (1 + Vr)/( 1 - VF) and 
VF= rF/r,!, is the fiber volume fraction. Since AT is 
negative, q. is positive. Taking carbon/epoxy as an 
example, (r&22x 10-6K-‘, ae3.1 x 10-6K-’ and 
A Tz- 160°C; the values of E,, Ef, v,, vf, r,,, and rf are 
the same as those for the calculations of Table 1. Sub- 
stituting these data into eqn (12) results in 
q0=6.732GPa. It should be pointed out that the abso- 
lute value of q. stands for compression. 

For the cylindrical single-fiber/matrix pull-out test 
model, Kim and Mai present the following equation 
describing the dependence of the fiber pull-out stress, 
CJ~, on the debonding length, z (see Fig. 2): 

Table 1. Results of the comparison calculation of different 
formulas 

Formula 

eqn (7) cw (8) cqn (10) 

Coefficient fi” f-2 h 

Result 0.4022 0.1349 0.1343 

“f, depends on embedded length, L; here L = 130 mm. 

a;=ao+(a-ao) 
[ 

exp(iz) - 1 

exp(Zz) - 1 + 0 1 (13) 

where C? is the term considering the influence of residual 
stress, its expression being given as 

6= @[I-t @($I 

(note here that the sign is opposite to that in Kim and 
Mai9); 

’ + (9 (2) 
e= 1+(@$ 

i = 2pk/rf; k is as given as in eqn (11); I_L is the friction 
coefficient which can be very different depending on the 
fiber surface treatment;‘O o. is the fiber pull-out stress 
when debonding length z = 0 or friction is zero (p = 0, 
i = 0). It can be seen from eqn (12) that as the 
debonding crack grows the fiber pull-out stress becomes 
larger. 

By using eqn (13) the debonding energy release rate, 
Gn, with consideration of the interfacial residual stress 
and friction can be estimated: 

GII = hAz+O 
[ (OhP)~2+~z(Z + Az) - (4iz] rf 

4Ef 
z (14) 

Using a Taylor series expansion method and taking the 
limit of eqn (14), we have 

(15) 

where (0:): represents the derivative of the pull-out 
debonding stress with respect to z. Numerical calcula- 
tions have to be used to obtain the approximations to 
CY~ and Gn. Actually, the curve of 0: versus z is nearly a 
straight line, (Figs 3 and 4), so 

rf(ci)’ 
GI, = - 

2-S 

In order to illustrate the influence of residual stress, qo, 
and interfacial friction, p or i, on Gu, calculations of 
the variations of CT: and Gn with cracking length, z, and 
friction factor, p, were conducted. The values of the 
parameters used are: ~0 = 1 GPa and I_L = 0.25 (the other 
parameters are the same as those given in the previous 
section). Thus, we obtained k=0.0213, B= 1.351, 
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i = 0.002367 mm-‘, 6 = 3.13 16 GPa. Substituting these 
parameters into eqns (13) and (15) the variations of ai 
and G,, with z and p were obtained. The resulting 

curves are shown in Figs 3 and 4. Figure 3 shows the 
curves of D: and Gii versus z, and Fig. 4 shows ai and 
Gn versus CL. The right ordinate represents normalized 

fiber pull-out stress, 

and the left ordinate is the normalized energy release 

rate, 

It can be seen that residual stress and friction exert 
considerable effects on the pull-out stress and debond- 
ing energy release rate. As the debonded crack grows, 
the pull-out stress, crdp, and debonding energy release 
rate, Gn, are enhanced, and when the interfacial friction 
is larger, 0: and Gii are larger. 
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Fig. 3. Curves of normalized fiber pull-out stress and inter- 
facial debonding energy release rate versus debonded length, z. 

1 
1.6 

1.7 

1.6 2 
e 

1.5 z 
6 

1.4 = 

iI 
1.3 .j 

9 
1.2 2 

1.1 

1 
0 0.2 0.4 0.6 0.6 1 1.2 1.4 1.6 1.6 2 

lnterkialfrktion factor 

Fig. 4. Curves of normalized fiber pull-out stress and interfacial 
debonding energy release rate versus interfacial friction, CL. 

4 CONCLUDING REMARKS 

Although investigations of the problem of interfacial 
fracture have been carried out for more than 20years, 
the problem is not yet completely solved. Theoretically, 

obtaining the strictly exact solution of the bimaterial 
model is not easy; both shear-lag analysis and the sim- 
plified elasticity solution are approximate results. 
Experimentally, the theorem for pull-out of a fiber from 
a matrix using the cylindrical bimaterial mode1 is sim- 
ple, but in reality, many factors, such as the measure- 
ment of fiber embedded and free lengths and rigidity of 
the test fixture, exert large effects on the results. If the 
viscoelasticity of the materials is taken into considera- 
tion the problem is further complicated. 
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APPENDIX 

The residual thermal stress acting on the interface 
between fiber and matrix, 40, can be analyzed by using 
classical elastic mechanics. The model of Fig. 2 is a 
concentric cylinder mode1 consisting of a solid cylinder 
(the fiber) and a thick-walled cylindrical shell (the 
matrix). Here, the problem is typically a two-dimen- 
sional plane strain problem in polar coordinates. 

l For the fibre, under the action of the compressive 
residual stress, qo, the stress in the fibre is uniform 
and cr = o8 = -q. (the sign of q. is opposite to that 
in Ref. 9). 
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l For the matrix, under action of qo the stresses in 
the cylindrical shell are 

rkrf r f 
ar = -40 2 2 _ $) 

r (rln 
+ 40r2 _ 2 (‘43) 

m rr 

00 = 40 G44) 

At the position of r = rf 

a,Ll = -40 (AY 

eel,,,, = 40 
rf + ri 
r2 - rf 

(‘46) 
m 

According to the stress/strain relationship of the matrix 
with consideration of thermal expansion, we have 

Since 

we have 

(A71 

& -_= AR+,+~(“~+~) (A8) 
rf 

Equating eqn (AZ) with eqn (A8) yields 

A %G, - w) 
40 = - 

( ) 
(A9) 

+Jv,+ I # +!$ 


