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It is shown that in a Kdrmadn vortex street flow, particle size influences the dilute particle dispersion. Together
with an increase of the particle size, there is an emergence of a period-doubling bifurcation to a chaotic orbit,
as well as a decrease of the corresponding basins of attraction. A crisis leads the attractor to escape from the
central region of flow. In the motion of dilute particles, a drag term and gravity term dominate and result in a

bifurcation phenomenon.

PACS: 47.52.+j

The motion of bubbles, drops and solid particles in
a non-uniform flow has received great attention due to
its applications and fundamental significance. It plays
a dominant role in the transport phenomena of partic-
ulate and multi-phase systems. Due to particle motion
in the low Reynolds number category, the equation
of motion for a small rigid sphere in a non-uniform
flow filed is deduced.l! The motion of particles has
abundant phenomena, even though the background
flow is very simple. Especially, when the background
flow is dominated mainly by large-scale structures, the
fluid viscosity is not included in the governing flow
equation./? In a periodic Stuart vortex flow, depend-
ing on the value of parameters, the particles asymp-
totically concentrate along periodic, quasi-periodic, or
chaotic open trajectories. 4]

For the particle dispersion in a plane wake flow, the
particle focusing is shown experimentally and stud-
ied by discrete vortex methods.!®/ In the range of the
Reynolds number, the plane wake flow can be mod-
elled by a Karmén vortex street. By considering
Stokes drag, this focusing phenomenon is studied in
terms of the two-dimensional central manifolds.l! In
the Lagrangian motion equation of dilute particles,
dimensionless parameters closely join together, for ex-
ample, particle size is related to the parameters, which
cannot be taken as continuous dynamical parameters
when the others are constants. In this letter, we will
consider the effects of particle size on dilute particle
dispersion in a Kérmén vortex street flow.

The motion of a small spherical particle in a non-
uniform flow field u is governed by the momentum

equation!!+4]

%d%(PP + 0.5pp)% = %d?l))(PP — pF)g + gd%PF%
 Srdppeu = V)t ) P [ L

: (j_'T‘ - i—‘:)df + dbor(u—V) xw, (1)

where V is the velocity of the particle, dp is the par-
ticle diameter, p is the density, g is the gravitational
acceleration, v is the fluid kinematic viscosity, w is
the vorticity of the flow fluid, and the subscripts F
and P refer to the fluid and particle, respectively.
The parameter f; related to the Reynolds number
(Rp = |u — V|dp/v) is described!"4 as

0.82—0.05log 1P

fa=1+0.1315R} , 0< Rp < 200. (2)

Introducing the dimensionless quantities é = pp/pr,
e=1/(05+68),t* =t/T,V* =V /(/T),u* = u/Uy,
w* = wl/Us, and g* = g/g (T is the particle vis-
cous relaxation time d% /(18¢v)), we non-dimensionlize
Eq. (1) and ignore the Basset history term. Thus,

Eq. (1) can be described by

dv 3
o = Ba+ 56A2u-Vu—|— (Au—V)fy

1
+ EeA(Au - V) Xw, (3)

where A = U, T/l, B = (1 — 1.5¢)T?g/l and the as-
terisks for the dimensionless quantities are omitted for
convenience. Moreover, the Reynolds number is writ-
ten as Rp = Rp/A|Au — V| (Rp = Usdp/v).

The flow field uw is chosen to be a Karméan vor-
tex street flow. Since the size of particles and their
concentration are sufficiently small, their mutual in-
teractions as well as their effects on the base flow can
be neglected. The stream function of Kérman vortex
street flow is

I ch2n(y — h/2)/l] — cos(2mz /1)
V(@y) = o 0 ey + h/2) /1 T cos(@ra/l) T VY
I'  mh
Ve = ﬂthT’ (4)

where I is the strength of vortices, I and h are the
streamwise and transverse spacing of vortices, respec-
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tively. The dimensionless quantities denoted by as-
terisks are defined as z* = z/l, y* = y/l, h* = h/l,

=I'/(Uxl) and ¥* = ¥/(Ul). A parameter « is
introduced to remove the singularities of the velocity
field w ] and the asterisks for the dimensionless quan-
tities are omitted for convenience. Thus, the modified
velocity field is given by

ov T [ sh[2m(y — h/2)]
e = dy 2 |ch[2n(y — h/2)] — kcos(27mx)
3 sh27(y + h/2)] .
ch27(y + h/2)] + Kk cos(27z) | «
v =~ _ _E[ 1
Y Ox 2 | ch[2n(y — h/2)] — K cos(2mx)
1 sin(2mx)
ch[2n(y + h/2)] + K cos(2mz) | ’ (5)
which has the symmetries
Uy (2, y,A') = g (2,Y, k),
uy(z, =y, —K) —-Uy(w,y,H%
um(ac—f—l/2 K) = ug(z,y, K),
uy(z +1/2, —y, k) = uy(z,y, k).

Only when k = 1, does the velocity field satisfy the
Euler equation. Since the error increases with the de-
viation of k from 1, we take x = 0.99 as an approxi-
mation in this simulation.

The particle motion is described by a four-
dimensional, nonlinear autonomous dynamical system
of the form

=V, y=1V,,
V, :g Au - Vu, + (Au, — Vi) fa
+ %esz(Auy -V
V, = eA’u - Vu, + (Auy — V,)fa
- %EAWZ(AUI _V,)-B. (6)

Using a fourth-order Runge-Kutta algorithm, we in-
tegrate Egs. (6) with a time step At = 0.01. Since
air is chosen as the fluid media in the wake, the
properties of fluid in Egs. (6) are pr = 1.225kg/m3
and v = 1.45 x 107° m2/s.[8] Moreover, other pa-
rameters in Egs. (6) can be taken as U, = 4m/s,
pp = 2.4x10% kg/m3 from Ref. [5] as well as I' = 1 and
h = 0.3. In order to draw a bifurcation diagram and
particle trajectories, 20 points along the y coordinate
and 100 points in the street with their corresponding
flow field velocities are taken as initial conditions of
Egs. (6), respectively. We investigate the motion of
particles under the variation of dp for [ = 0.1m. In
the total 21000 time steps, points in the first 20000
time steps are discarded as transients; points in the
following 1000 time steps are plotted as particle tra-
jectories. In the particle trajectories, points y at x = 0

versus dp are plotted as a bifurcation diagram. For a
dense bifurcation zone, the diagram is calculated again
by using a smaller time step At = 0.001 and enlarged.

0.8 .

dp (10~%m)

Fig. 1. A bifurcation diagram for a continuous range of
dp showing the vertical position of particles at z = 0.
The dense bifurcation zone is enlarged and redrawn at the
bottom-right corner.

In order to display the influence of particle size on
the dilute particle dispersion, we plot a bifurcation di-
agram y ~ dp in Fig.1. When dp < 2.62 X 10~ ° m,
the velocity of the particle dispersion is very slow, so
that most of the particle trajectories are preserved
near the street, as well as divided into two sets: one
above the street, the other under the street. When
dp > 2.62 x 107°m, particle trajectories under the
street leave far from the street, but the particle tra-
jectories above the street converge on a period-1 orbit.
For dp = 2.62x107° m—7.85x107° m, period-1 orbits
above the street are presented as particle trajectories.
Especially, for dp = 6.87 x 107°m — 7.48 x 10~ °m,
another period-1 orbit appears in the street. In this
case, there are two attractors for the particle tra-
jectories. As dp = 7.85 x 107°m, the period-1 or-
bit bifurcates to a period-2 orbit. For dp = 7.85 X
107 m — 1.03 x 10~*m, particle trajectories are pre-
sented as period-2 orbits. As dp = 1.03 x 10~4m, the
period-2 orbit bifurcates to a period-4 orbit. For dp =
1.03x10™* m—1.10x10~* m, particle trajectories con-
verge on period-4 orbits. When dp > 1.10 x 10™%m,
the period-4 orbit bifurcates further to a period-8 or-
bit and finally to a quasi-periodic or chaotic orbit.
This bifurcation behaviour is clearly presented in the
enlarged zone in Fig. 1. As dp = 1.276 x 107%m, a
crisis occurs, so that the quasi-periodic or chaotic or-
bit disappears, i.e. escapes from the central region of
flow. Moreover, a similar bifurcation process emerges
in a range near dp = 1.1 x 10~% m.

In the following, we give some examples for differ-
ent values of dp. In order to display the dispersion of
particles in the street, we also plot the basin of attrac-
tion in Fig. 3, which describes a distribution of initial
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Fig. 2. Typical trajectories on the z — y plane for: (a) dp = 3 X 107° m and all streamlines; (b) dp = 7 X 1075 m;
(c)dp =1x10"*m; (d) dp = 1.05 x 10~%m; (e) dp = 1.2 x 104 m.
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Fig. 3.

points attracted on the orbits. Concerning the sta-
bility of orbits, we take x = 0 as a Poincaré section
and determine their maximal Lyapunov exponents.[®!
In Fig. 2(a), for dp = 3 x 107 m, a period-1 orbit and
all corresponding streamlines are drawn. The period-
1 orbit, where the particles move from left to right,
distributes above the street. In Fig. 4, for the period-
1 orbit, the maximal Lyapunov exponent is —0.05, so
the orbit is stable. In the motion of particles, points
corresponding to those in the basin of attraction in
Fig. 3(a) suspend on the period-1 orbit. At the same
time, points corresponding to those outside the basin
of attraction in Fig.3(a) escape from the central re-
gion of flow. In Fig.2(b), for dp = 7 x 10~°m, two
period-1 orbits are placed above and in the street, re-
spectively. On the orbit above the street, the particles
move from left to right. In Fig.4, the maximal Lya-
punov exponent of the period-1 orbit is —0.17, so the
orbit is stable. However, on the orbit in the street,
the particles move in an opposite direction, i.e. from
right to left. The maximal Lyapunov exponent of the
period-1 orbit is —0.53, so the orbit is also stable. For
the two period-1 orbits, the corresponding basins of
attraction are plotted in Fig.3(b). One is similar to
that in Fig. 3(a), the other is distributed in two local
zones. The basin for the orbit in the street is sur-
rounded by that for the orbit above the street. In
Fig.2(c), for dp = 1 x 10~% m, a period-2 orbit, which
distributes above the street, is drawn as a particle tra-
jectory. On the orbit, the particles move from left to
right. In Fig.4, the maximal Lyapunov exponent of
the period-2 orbit is —0.003, so the orbit is stable.

Basins of attraction on the = — y plane corresponding to the typical trajectories in Fig.2 for:

0.8 0.8

(a)
dp =3x1075m; (b) dp = 7 x 10~° m (Besides the two local zones marked by thinner lines for the basin of period-1
orbit in the street, the global zone presents the basin for the period-1 orbit above the street.); (c) dp = 1 x 10~% m;
(d) dp = 1.05 x 1074 m; (e) dp = 1.2 x 10™4 m.

The corresponding basin of attraction is plotted in
Fig.3(c). In the motion of particles, the points at-
tracted on the period-2 orbit in Fig. 3(c) are less than
those attracted on the period-1 orbit in Fig.3(a). In
Fig.2(d), for dp = 1.05 x 10"%m, a period-4 orbit
is drawn above the street. On the orbit, the parti-
cles move from left to right. In Fig.4, the maximal
Lyapunov exponent of the period-4 orbit is —0.02, so
the orbit is stable. The corresponding basin of at-
traction is plotted in Fig.3(d). The geometry of the
basin is different from those in Figs. 3(a)—3(c). Some
points near y = 1 escape from the basin of attrac-
tion in the dispersion of particles. In Fig.2(e), for
dp = 1.2 x 10~*m, a quasi-periodic or chaotic orbit
is drawn above the street. On the orbit, the parti-
cles move from left to right. In Fig.4, the maximal
Lyapunov exponent of the orbit is 0.51, so the orbit is
chaotic. The corresponding basin of attraction is plot-
ted in Fig.3(e). The geometry of basin is similar to
that in Fig. 3(d), but the escaped zone increases. The
escaped points in Fig. 3(e) permeate into the basin of
attraction in Fig. 3(d). From those examples, we can
conclude that, along with the increases of particle size,
more and more initial points distributed in the central
region of flow escape. At the same time, the particle
trajectories bifurcate from periodic orbits to chaotic
orbits.

In order to explain the bifurcation phenomenon,
we analyse the orders of magnitude of parameters in
Eq.(3). To give physical values in the calculation,
the parameters f; and € appear to be of the order
of one and 1074, respectively. When d is taken as
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Fig. 4. Variation of the maximal Lya-
punov exponent Amax with dp.

10=% — 10~*m, the parameters T, A and B appear to
be of the order 1073s—10"'s, 107! —1 and 1073 — 1,
respectively. In this case, Eq. (3) is dominated by the
drag term (Au — V) f4 and the gravity term Bg. In
Ref. [6], by considering the drag term, the essential
dynamics takes place on the two-dimensional centre
manifolds. To compare with the result, we find the bi-
furcation process disappearing when we eliminate the
gravity term in Eq. (3). In the following, we take the
attractors for dp = 7 x 1075 m as an example to dis-
cuss their existence. In Fig. 5, we present the values of
Vi, Vy, uy and (Au, — V) fg — B along the two period-
1 orbits. For the period-1 orbit above the street, in
Fig.5(a), since V;; > 0 in z € [0,1), the motional di-
rection of particles is from left to right. Firstly, when
a particle moves from ¢ = 0 to z = 0.475, the nega-
tive term (Au, — V,)fs — B causes a decrease of V,
from 0.130 to —0.135. At the same time, it leads to
an increase of the term (Au, —V,)fq— B. Then, when

Fig.5. Distribution of V,, Vj, uy and (Auy — V) fq — B along = on the
period-1 orbit (a) above the street; (b) in the street for dp =7 x 1075 m.

tional direction of particles is from right to left. In the
same way as in Fig.5(a), the term (Au, — V,)fs — B
brings into a periodic vibration of particles and makes
the period-1 orbit. From the above observation, we
can conclude that the drag and gravity terms lead to
the bifurcation behaviour in dilute particle dispersion.
The direction of V,, and distribution of u, determine
the vertical position of attractors.

In summary, we have shown that in a Kérmén
vortex street flow, particle size influence dilute parti-
cle dispersion. Along with an increase of the particle
size, a period-doubling bifurcation to a chaotic orbit
emerges, as well as a decrease of the corresponding
basins of attraction. A crisis leads the attractor to
escape from the central region of flow. In the motion
of dilute particles, the bifurcation phenomenon results
from drag and gravity terms.
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