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Abstract

Mode I steady-state crack growth is analyzed under plane strain conditions in small scale yielding. The elastic–plastic

solid is characterized by the mechanism-based strain gradient (MSG) plasticity theory [J. Mech. Phys. Solids 47 (1999)

1239, J. Mech. Phys. Solids 48 (2000) 99]. The distributions of the normal separation stress and the effective stress along

the plane ahead of the crack tip are computed using a special finite element method based on the steady-state fun-

damental relations and the MSG flow theory. The results show that during the steady-state crack growth, the normal

separation stress on the plane ahead of the crack tip can achieve considerably high value within the MSG strain gradient

sensitive zone. The results also show that the crack tip fields are insensitive to the cell size parameter in the MSG theory.

Moreover, in the present research, the steady-state fracture toughness is computed by adopting the embedded process

zone (EPZ) model. The results display that the steady-state fracture toughness strongly depends on the separation

strength parameter of the EPZ model and the length scale parameter in the MSG theory. Furthermore, in order for the

results of steady crack growth to be comparable, an approximate relation between the length scale parameters in the

MSG theory and in the Fleck–Hutchinson strain gradient plasticity theory is obtained.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The material fracture behavior is frequently assessed by a criterion parameter, the fracture toughness,
which characterizes the work of crack initiation or steady-state crack growth. The crack initiation work

corresponds to the initial fracture toughness (Cin), while the steady-state growth work corresponds to the

steady-state fracture toughness (Css), as sketched in Fig. 1(a). Both the initiation criterion and the steady-

state growth criterion are frequently applied to the elastic material and the elastic–plastic material, re-

spectively. For the elastic homogeneous material, the initial fracture toughness and the steady-state fracture

toughness are the same values [1]. However, for the elastic–plastic material, they are different, as shown in
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Fig. 1. Sketch of the steady-state crack growth is shown. (a) Fracture toughness curve and steady-state fracture toughness; (b) active

plastic zone for a mode I steady-state crack.
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Fig. 1(a). Before the steady-state crack growth is achieved, the crack has undergone a long stable advance

after initiation. Since the steady-state crack growth is the critical fracture state for the elastic–plastic ma-
terial, the measurements of the steady-state fracture toughness and the related researches have attracted a

great deal of interest [2–12].

About the steady-state crack growth study using the conventional elastic–plastic theory, many re-

searches have been published in the past decades. Only a part of those are mentioned here. Dean and

Hutchinson [13] and Parks et al. [14] investigated the elastic–plastic crack tip fields for the steady-state

crack growth under small scale yielding condition. These authors developed a special finite element method

based on the steady-state conditions by transferring the flow theory equations from time-rate form into

space-rate form. They used the special finite element method to calculate the steady-state crack tip fields
successfully. Gao and Hwang [15], Drugen et al. [16] and later Hwang and Luo [17] studied the steady-state

crack tip fields. Using the finite element method presented by Dean and Hutchinson [13], Varias and Shih

[18] computed the steady-state crack tip field for the model I crack when T-stress effect was considered; Suo

et al. [19] and Beltz et al. [6] investigated the steady-state fracture toughness by adopting a plasticity-free

strip model (SSV model). Tvergaard and Hutchinson [2,3] studied the fracture work for the mode I ho-

mogeneous material and bi-material using the embedded process zone (EPZ) model. Wei and Hutchinson

[7] used the SSV model and the EPZ model to study the steady-state fracture work for the thin film del-

amination and the thin film peeling test problem [8]. The same authors [9] investigated the model sensi-
tivities by presenting and adopting a unified model.

Note that from previous research for the steady-state crack growth using the conventional elastic–plastic

theory, the predicted peak separation stresses ahead of the crack tip are no larger than about 4–6 times the

yielding stress, no matter what separation models are used. However, there have been more and more

experimental evidences indicating that the higher separation stresses likely exist near the growing crack tip

[4,5,10,20]. Moreover, micro-scale predictions from the first principle calculations have shown that for the

metal/ceramic interface, the separation strength can achieve 30 or even 40 times the yielding stress of the

metal [21,22]. Obviously, the previous research has implied that the conventional elastic–plastic theory fails
to account for the separation stress elevation. The differences between the fracture behaviors at the macro-

scale fracture and at the meso-scale fracture are referred to as the size effects in fracture mechanics. Si-

multaneously, the size effects have been found in the other problems, such as the micro-indentation tests

[23–26], the torsion test for thin copper wires [27], as well as the bending test of thin beams [28]. In order to
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simulate the size effects, several versions of the strain gradient plasticity theories have recently been de-

veloped [29–34]. Using the strain gradient plasticity theories, the size effects can be characterized and

simulated. Some applications of the strain gradient plasticity theories to the simulations of the size effects

have been presented, such as the simulations for the micro-indentation tests [26,35–37] and for the sta-
tionary and growing crack tip fields, as well as for the thin film delamination [38–43]. Particularly, Wei and

Hutchinson [39] using the Fleck–Hutchinson�s strain gradient plasticity theory have studied the steady-state

crack growth problem and attained that the maximum separation stress near the crack tip can achieve 10

times the material yielding stress. This result has promoted the considerable interest for further efforts to

explore the linkage of the macroscopic fracture with the atomistic fracture [20].

In the present study, the steady-state crack growth is analyzed for a sharp macroscopic crack in an

elastic–plastic material, which is characterized by the MSG strain gradient plasticity theory [33,34]. Like

other strain gradient theories, the MSG theory includes a length scale parameter. Suppose that the mode I
crack extends over a sufficient distance, so that an observer traveling with the crack tip sees no variation in

the mechanical fields, as shown in Fig. 1(b). For comparing with the Fleck–Hutchinson strain gradient

plasticity theory, the MSG theory will be assessed in detail. The crack tip fields and the steady-state fracture

work will be figured out. Additionally, the cell size effects in the MSG theory, and the connections between

the MSG theory and the Fleck–Hutchinson strain gradient plasticity theory will be explored. The crack tip

fields, i.e., the distributions of the normal separation stress and the effective stress on the plane ahead of the

growing crack tip will be analyzed using the special finite element method based on the steady-state con-

ditions and the MSG theory. The steady-state fracture work or fracture toughness will be analyzed by
adopting the EPZ model. In order for the results of steady crack growth to be comparable, an approximate

relation between the length scale parameters in the MSG theory and in the Fleck–Hutchinson strain

gradient plasticity theory will be presented.
2. The MSG flow theory

The MSG flow theory has been derived by Qiu et al. [44] following the derivation line of the MSG

deformational theory [33,34]. The procedures can be summarized as follows: (1) Consider that a micro-scale
cell, with the cell size le and with the geometrically necessary dislocation density qG, is homogenized to an

equivalent solid characterized by the elastic–plastic theory plus a hardening law based on the Taylor model

[45]. (2) Applying the conventional volume average scheme to the micro-scale cell, one can derive the rate-

independent relations for the MSG flow theory. The results are listed as follows:
_rrij ¼ K _eekkdij þ 2l _ee0ij

 
� a0

3r0
ij

2r
_eep
!

ð1Þ
_ssijk ¼ c _ggijk

�
þ 1

2
ð _ggkij þ _ggkjiÞ þ

2K
l

�
� 4

3

�
_ggHijk

�
� a0

c
1þ a

3r0
mn

2r2
ðr0

ki _ggjmn

�
þ r0

kj _ggimnÞ

þ 1

1þ a
3

4r2
Gijkmn _rr

0
mn �

e
1þ a

�
þ 3l

r

�
3

4r2
Gijkmnr

0
mn _ee

p þ 3l
r

sijk

�
� Kl2e

6
gHijk

�
_eep
�

ð2Þ
_eep ¼ 1

1þ a
1

r
r0
ij _eeij

�
� a2lb

3

4g
g0ijk _ggijk

�
ð3Þ
where the flow criterion is expressed in terms of the Mises� effective stress [33,34,37]
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where fpðepÞ is the function in the uni-axial stress–plastic strain relation determined from uni-axial tension:
rI ¼ r0fpðepÞ ð7Þ
r0 is a reference stress; ep is accumulative plastic strain; b is the Burgers vector; a is an empirical coefficient

in the Taylor model and is taken the value around 0.3 for the conventional metals; K ¼ E=3ð1� 2mÞ and
l ¼ E=2ð1þ mÞ are the elastic bulk modulus and shear modulus, respectively; le is the cell size, and from
analysis of Gao et al. [33], Huang et al. [37] and Qiu et al. [44],
le ¼ 10lb=rY; l ¼ 18a2
l
r0

� �2

b ð8Þ
l is the length scale parameter characterizing the strain gradient strength [33,37]; g is the effective strain

gradient and can be expressed by the components of strain gradient gijk ¼ uk;ij as
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and the deviatoric and volumetric components of gijk are dictated as [30]
g0ijk ¼ gijk � gHijk; gHijk ¼ 1
4
ðdikgjpp þ djkgippÞ ð10Þ
A piecewise power law hardening stress–strain relation is considered to characterize the solid behaving at

macro-scale,
rI ¼ Ee; for e6
rY

E
; and rI ¼ r0e

N ; for eP
rY

E
ð11Þ
where N is material strain hardening exponent. From (7) and (11), one has
r0 ¼ rYðE=rYÞN ð12Þ

Through checking the relations from (1) to (10), and comparing the relations of the MSG flow theory with

the conventional elastic–plastic flow theory relations, obviously, the additional terms, effective strain

gradient and its rate, are included in the MSG flow theory. The strain gradient strength is characterized by

the length parameter l. When the length parameter is taken as zero, the MSG flow theory will degenerate to

the conventional elastic–plastic flow theory. According to the research for the MSG theory in Gao et al.

[33], the value of the length parameter l falls within the region of 1–10 lm for the typical metal materials.
3. Numerical formulation for steady-state mode I crack growth

A semi-infinite crack, depicted in Fig. 1, steadily advancing within the solid characterized by the MSG
flow theory, will be analyzed. For the mode I crack tip stress field, the strain gradient effects are weak and
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can be neglected at the points far away from the crack tip. When strain gradient effects are small, the stress

field can be described approximately by the classical elastic mode I solution with a r�1=2 dependence and

with the intensity factor KI. Within the active plastic zone, there exists a strain gradient dominated zone

surrounding the crack tip. The numerical method for the steady-state crack propagation will be discussed in
this section.

3.1. Steady-state formulation of the MSG flow theory

The rate-independent constitutive relations of the MSG flow theory (formula (1)–(3)) can be expressed in

a more compact form, as shown in Appendix A. For the steady-state crack growth and when crack ad-
vances along the x1 direction (Fig. 1), the rate quantities can be expressed as
ð _ssijk; _ggijk; _rrij; _eeijÞ ¼ � _aa
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where _aa is the crack tip advance velocity. Substituting (13) into (A.1) in Appendix A, the equations, in-

dependent of the crack tip velocity, are obtained in matrix form as
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where r, e, s and g are the matrices of stress, strain, higher-stress and higher-strain, the tensor expressions

of A, B, A0 and B0 are shown in (A.2)–(A.5) of Appendix A.

From Eq. (14), the rate-form constitutive relation of flow theory has been transferred into a special

constitutive equation in full quantities, additionally, with differentiation with respect to the coordinate x1.
Thus, one only needs to solve such a problem as (14), similar to a deformational plastic problem using the

iteration method [13,14], rather than using the usual scheme for solving the elastic–plastic flow theory

problem with loading step-by-step.

3.2. Variational equation for the steady-state crack growth

Based on Eq. (14) and the discussions in the last subsection, one may directly obtain the full quantity

stress and strain fields for the steady-state crack growth problem. Variational equation with full quantity

variables for strain gradient solid can be dictated as [30]
Z
V
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where the traction and torque on a surface S are defined by
tk ¼ ni rik

�
� osijk

oxj

�
þ ninjsijkðDpnpÞ � DjðnisijkÞ; rk ¼ ninjsijk ð16Þ
Here tk, rk and ni are the traction, torque and the external normal direction cosine, respectively, and fk is
body force. The differential operators D and Dj in (15) and (16) are defined as [30]
Dj ¼ oð Þ=oxj � njnkoð Þ=oxk; D ¼ nkoð Þ=oxk ð17Þ
Based on Eq. (15), the finite element formulation for strain gradient solid can be developed (see Section

3.3).



Fig. 2. Finite element mesh. (a) Global mesh, and (b) near tip mesh.
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Based on the variational equation (15), let us discuss the boundary conditions for the plane strain mode I

crack growth problem. Consider no body force case in the present research, fk ¼ 0. Referring to Fig. 1,

considering symmetry about the line ahead of the crack tip, one only needs to consider the upper-half plane

(x2 P 0). Referring to Figs. 1 and 2, boundary conditions can be described as
Conventional KI-field; for x21 þ x22 ! 1
t1 ¼ 0; t2 ¼ 0; r1 ¼ 0; r2 ¼ 0; for x1 < 0; x2 ¼ 0

u2 ¼ 0;
ou1
ox2

¼ 0; t1 ¼ 0; r2 ¼ 0; for x1 > 0; x2 ¼ 0

8>><
>>: ð18Þ
From the first line of Eq. (18), since strain gradient effect is very weak and can be neglected at the remote

boundary, boundary conditions corresponding to conventional KI-field are exerted. On the crack surface,

tractions are prescribed. On the surface of symmetry ahead of the crack tip, boundary condition is a mixed

one, as shown in the third line of Eq. (18), where torque condition r2 ¼ 0 comes from the condition r2 ¼ s222
from (16) and s222 ¼ 0 due to symmetry.
3.3. Finite element method for the steady-state problem

The special finite element method [13,14], in which the iteration procedures to solve the special stress–

strain differential equation (see (14)) are employed, is used to obtain the convergent solution directly. The

finite element approach and the solution procedures are outlined below.

Anticipating a numerical implementation within a finite element framework, let E be a generalized strain
vector with components comprised of both the strains and the strain gradients, and let R be the stress vector
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containing components of stress and higher-stress. The matrix of incremental moduli for plastic loading is

denoted by D such that _RR ¼ D _EE, and the expression of D can be found in (A.1) of Appendix A or in (14).

Let U be the vector of nodal displacements and let B be the strain matrix such that E ¼ BU. The finite

element problem for U in terms of applied boundary nodal forces F and any specified generalized plastic
strain Ep is represented in the standard matrix notation as (see Eq. (15))
KeU ¼
Z
S
NTFdS þ

Z
V
BTDeEP dV where Ke ¼

Z
V
BTDeBdV ð19Þ
where the superscripts ‘‘e’’ and ‘‘p’’ represent the elastic part and plastic part for corresponding quantities.

Contribution of the applied boundary nodal forces F on the equilibrium relation (19) can be figured out

from three terms at the right-hand side of variational equation (15).

The iteration steps are as follows:

1. Use the distribution of Ep from the previous iteration in (19) to determine U. In the first iteration take
Ep ¼ 0.

2. Compute E from U.

3. Obtain a new estimate of the distribution of R. Use R ¼ DeE in the region upstream of the current es-

timate of active plastic zone and use R ¼ DeðE� EpÞ downstream from the active plastic zone. Where

yield is currently met, make use of the fact that for steady-state growth, _RR ¼ D _EE can be replaced by

oR=ox1 ¼ DoE=ox1 such that for any point (x1; x2Þ within the active plastic zone
Rðx1; x2Þ ¼ Rðx�1; x2Þ �
Z x�

1

x1

DoE=ox1 dx1 ð20Þ
where (x�1; x2Þ is corresponding point on the leading edge of the active plastic zone (i.e., the right edge of

the active zone). The integration in (20) is performed for fixed x2 and applies to all points within the

active plastic zone.

4. Use Ep ¼ E�De�1

R to compute the new estimate of Ep for the next iteration. Revise the active plastic

zone using the new estimate of R. To the left of the active plastic zone in the downstream unloading re-
gion, Ep is a function only of x2, corresponding to its value at the right edge of the active zone.

5. If satisfactory convergence has not been achieved, repeat steps 1–4.

A finite element procedure with the equal-height mesh specially designed for the regions around the

crack surface near crack tip to cope with the steady-state wake has been used to carry out the calculations,

as discussed above and described in Dean and Hutchinson [13]. In the present research, the displacement of

KI-field is exerted at the remote boundary. The total boundary conditions of the present mode I crack

problem consist of the displacement boundary condition and the zero-traction boundary condition. Thus,
the applied boundary nodal forces in Eq. (19) are equal to zero, F ¼ 0, from the right-hand side of Eq. (15).

In the present analysis, the adopted finite element mesh for mode I steadily growing crack is shown in Fig.

2. In the calculation, the nine nodal iso-parametric displacement element (higher-order displacement ele-

ment) will be adopted and the 2X2 Gauss integration points are selected for each element [39]. Under the

pure displacement variables, the displacement condition u2 ¼ 0 on the surface of symmetry in (18) will be

met on the nodes by exerting the constraints. The condition of symmetry ou1=ox2 ¼ 0 will be satisfied

automatically due to the prescription of the other conditions of symmetry (u2 ¼ 0, t1 ¼ 0, r2 ¼ 0) exerted on

the surface. The finite element methods for strain gradient solid have been assessed in Wei [43] and Chen
et al. [46].
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4. Crack tip field for steady-state crack growth

4.1. Solution expressions

After the steady-state crack growth problem is solved, one can compute the traction distribution along a

plane with normal direction cosine ni by using formula (16). For the present mode I crack growth problem,

and for the usually concerned plane ahead of the crack tip, along which the traction distributions are

calculated, take n1 ¼ 0 and n2 ¼ 1 along x1 > 0 and x2 ¼ 0. A remarkable feature of the strain gradient

effect is that the stress distribution along the plane ahead of the crack tip is significantly increased as

compared to conventional elastic–plastic theory results. Therefore the strain gradient plasticity theory is

expected to explore the size effects for solids at the meso-scale or micro-scale, and the related research has

attracted a great deal of interest recently.
From (16), one can calculate the normalized normal traction on the plane ahead of the crack tip
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The effective stress is also a quantity of concern
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Furthermore, in order to investigate the crack tip fields predicted using the strain gradient theory, the

effective plastic strain along the plane ahead of crack tip will be calculated. From (4), (7) and (11), the

effective plastic strain ep can be formulated in terms of the effective stress (re) and the effective strain

gradient (g) as
Eep=rY ¼ re
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In the normalized functions, (21) and (22), the strain gradient length parameter l has been taken for

normalizing the other length quantities and coordinates. Usually, another length parameter, the half height

of the plastic zone for conventional material in small scale yielding, RP, is used for normalization,
RP ¼ K2
I

3pr2
Y

ð24Þ
such that the normalized normal traction and the effective stress can be expressed as
t2
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¼ f 0 x1
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4.2. Crack tip field solutions

In the solution in the forms of (21) and (22), or (25) and (26), there are too many independent and non-
dimensional quantities included. For simplicity, in most cases of the present analyses, take the material

parameters, E=rY ¼ 500, m ¼ 0:3 and N ¼ 0:2 fixed, and discuss the influences of the other parameters. In



Fig. 3. Active plastic zones for two load levels.
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order to check whether the strain gradient effect occurs within a small area surrounded by the conventional

plastic zone and to check whether the plastic zone size is not influenced too much by the strain gradient

effect, Fig. 3(a) and (b) show the active plastic zones for two normalized loading levels, KI=ðrYl1=2Þ ¼ 4:5
and 9. Considering that the plastic zone is symmetric about x1 axis for the mode I problem, only a half zone

is shown in each figure by plotting Gauss points where plastic deformation has occurred. From Fig. 3(a)

and (b), the shapes of active plastic zones are very similar to each other, and to the sketch in Fig. 1(b) as

well. The active plastic zones near the crack tip and around the crack surface behind the tip are displayed.

As to the plastic zone size, from Fig. 3(a) and (b), the size of the plastic zone for loading level
KI=ðrYl1=2Þ ¼ 9 is obviously four times that for loading level KI=ðrYl1=2Þ ¼ 4:5. This result implies that in

small scale yielding, the conventional plastic zone size relation (formula (24)) is still valid for the strain

gradient solid. The active plastic zone size increases in proportion to the quantity K2
I .

Fig. 4 shows the influence of the cell size parameter in the MSG theory on the crack tip fields. Two sets

of results are shown in the Fig. 4, respectively, with solid lines and dashed lines. Two vastly different cell

sizes, le=l ¼ 10�8 and 10�2, have led to only a small difference of the corresponding results. Therefore, one

can take the ratio le=l as zero for simplicity [37,44]. However, for the present steady-state problem solved by

adopting the iteration scheme as formulated in Eq. (19), one can not take the ratio exactly equal to zero
from (A.7) and (A.8) of Appendix A, since otherwise Eq. (19) becomes singular. Subsequently, most results

obtained will be based on the parameter value of le=l ¼ 10�8. The result based on this parameter ratio only



Fig. 4. The influence of cell size on the results. The results show that the cell size influence is very weak.
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produces a negligible difference to the result based on a realistic value of the ratio, le=l, from 10�3 to 10�2

[33,34]. Additionally, the behaviors of the present steady-state crack growth problem can compare with

those of the stationary crack problem predicted by Qiu et al. [44].

Fig. 5(a) and (b) show the distribution of the normalized separation traction t2=rY and effective stress

re=rY along the plane x2 ¼ 0 ahead of crack tip for several load levels. From Fig. 5, it is clear that the

distributions of t2=rY and re=rY undergo a large increase for x1 < 0:06l. However, for x1 > 0:1l, both
distributions t2=rY and re=rY change very slowly with increasing normalized coordinate x1=l. Reader may

probably present a question here: what is the strain gradient sensitive region? However, since the strain

gradient length parameter l is taken as the normalizing quantity for coordinate in Fig. 5, it is difficult to
discuss the size of the strain gradient sensitive zone. This question will be answered later in the discussion of

Fig. 8 when RP is taken as the normalizing quantity for coordinate. The crack tip fields for different values

of N are shown in Fig. 6(a)–(c). From Fig. 6(a) and (b), the strength of the crack tip stress field is sensitive

to the value of material hardening exponent. For a weakly hardening material, the strength of crack tip

stress field is quite low. From Fig. 6(c), the effective plastic strain has a quick increase for x1 < 0:05l. For
comparison with conventional elastic–plastic solution given by Varias and Shih [18], a result considering the

strain gradient effect for N ¼ 0:1 and E=rY ¼ 300 is added in Fig. 6(c). Varias and Shih [18] calculated the

effective plastic strain distributed along the plane ahead of the crack tip for x1=lP 0:2 (l ¼ K2
I =100r

2
Y as

given in Fig. 6) using the conventional theory. Their result gives Eep=rY ¼ 3:390 at x1=l ¼ 0:2 from Fig. 5(a)

in Varias and Shih [18]. However, the corresponding value predicted using the present theory from Fig. 6(c)

is 1.252. Therefore, more blunting of crack tip shape is predicted from the conventional theory than that

from the strain gradient theory.

In order to investigate clearly the effect of length parameter l in the MSG strain gradient theory, another

length parameter, RP, the half height of the plastic zone in small scale yielding, is taken as the normalizing

length quantity. Fig. 7 shows surface opening profile behind and near the tip during crack steady-state

growth. From Fig. 7, considering strain gradient effect (l=RP ¼ 2), crack tip becomes considerably sharp,
even for a weakly hardening material (N ¼ 0:001). With increasing l, crack tip failure behavior tends to be a

cleavage separation. In Fig. 7, l=RP ¼ 0:0 corresponds to the results of the conventional elastic–plastic

theory, which imply strong crack tip blunting. Fig. 8 shows the separation traction distributions along the

plane x2 ¼ 0 ahead of the crack tip with the coordinate x1=RP for several values of l=RP. For comparison,

the result corresponding to the conventional elastic–plastic J2-flow theory, or for l=RP ¼ 0, is also shown in



Fig. 5. The crack tip fields for different load levels based on the MSG theory. (a) Distributions of separation tractions, and (b) dis-

tributions of effective stress.
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Fig. 8. For comparing the present results with the corresponding results based on the SG strain gradient

flow theory [30,39], in Fig. 8 the material parameter value E=rY ¼ 300 is taken into account. The SG theory

results from Wei and Hutchinson [39] are also shown in Fig. 8. From Fig. 8, the normal traction on the

plane x2 ¼ 0 ahead of the crack tip achieves a bigger value near the crack tip with increasing l, corre-
spondingly, with increasing length parameter l=RP. For example, at x1 ¼ 0:01RP, the normal traction

achieves a value as high as 12 times the yield stress for l=RP ¼ 4. However, the corresponding value at the

same point (x1 ¼ 0:01RP) predicted from the conventional elastic–plastic theory (l=RP ¼ 0:0) is only 6 times
the yield stress. Now, let us discuss the strain gradient sensitive region. From the results of the MSG strain

gradient theory shown in Fig. 8, the strain gradient theory results (l=RP ¼ 0:3–4) deviate from the con-

ventional theory result (l=RP ¼ 0) considerably for x1=RP < 0:04, so that this region can be taken as the

strain gradient sensitive zone.

It is interesting to compare the results using the MSG theory with the corresponding results obtained by

Wei and Hutchinson [39] using the Fleck–Hutchinson SG strain gradient plasticity flow theory in Fig. 8.

Obviously, the length parameter l in the MSG theory must be considerably larger than that in the Fleck–

Hutchinson SG theory in order for results predicted by both theories to be matched with each other. Fig. 9



Fig. 6. The crack tip fields for different plastic hardening exponents based on the MSG theory. (a) Distributions of separation tractions,

(b) distributions of effective stress and (c) distributions of effective plastic strain.

Fig. 7. The crack surface opening profile near the crack tip for different length parameters and for different hardening exponents.
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shows the cell size effect for two sets of ratio le=l when the plastic zone size is taken as the normalizing
length quantity. The cell size effect is quite small, as is expected.



Fig. 8. The distributions of separation traction near the tip for several length parameter values. The half height of active plastic zone is

taken as the normalizing length quantity. Both theory results are compared.

Fig. 9. The influence of cell size on the separation traction near the crack tip is shown and the influence is weak.
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5. Steady-state fracture toughness

For the fracture process zone models, earlier work [47] gave a formulation in terms of the process zone at

the crack tip for elastic crack growth problem. A great progress was made since the fracture process zone

(or called EPZ) model was successfully applied to the elastic–plastic fracture process description [2,3,48]. In

this section, the MSG solid is taken as the description of the elastic–plastic solid in the EPZ model. The

traction–separation law characterizing the fracture process is prescribed as a boundary condition along the

plane ahead of the crack tip, as depicted in Fig. 10. The continuum description of the elastic–plastic solid
holds everywhere outside the extended fracture plane. Heretofore, conventional J2 flow theory has been

used to describe the solid when strain gradient effect is negligible. Attention here will be focused on steady-

state, mode I plane strain toughness under small scale yielding conditions. Based on the discussion in the

previous sections and the results of the last section, the expectation is that the strain gradient effect will

elevate the stress level within the fracture process zone.



Fig. 10. EPZ model for determination of steady-state toughness. The traction–separation relation characterizing the fracture process is

applied along the plane ahead of the tip and is specified by several model parameters.
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The form of the traction–separation law shown in Fig. 10 is exactly the same as that employed in

Tvergaard and Hutchinson [2]. However, within the context of the MSG theory, it is t2, not r22, that is work
conjugate to the crack opening separation d ¼ u2ðx1; 0þÞ � u2ðx1; 0�Þ. Thus, in the present version of the

EPZ model, the relation between t2 and d in Fig. 10 is prescribed as the condition along the plane ahead of

the crack tip (i.e. on x2 ¼ 0 for x1 > 0Þ. The work of fracture per unit area, C0, is related to r̂r and d by
C0 ¼
Z dc

0

t2 dd ¼ 1

2
r̂rdcð1þ k2 � k1Þ ð27Þ
where k1 ¼ d1=dc and k2 ¼ d2=dc characterize the shape of traction–separation relation in the EPZ model.

The numerical method discussed in Section 3 is applied to the previous steady-state problem, combined

with additional condition from the EPZ model. Now, the iteration scheme must satisfy the traction–sep-

aration relation ahead of the crack tip and the level of the remote stress intensity KI must be adjusted such

that the propagation condition at the tip is met, i.e.
d ¼ dc at x1 ¼ 0 ð28Þ
The aim here is to obtain the relation between Kss and the parameters specifying the fracture process and

the MSG solid. The results will be presented using the equivalent energetic measure of steady-state

toughness (Fig. 1)
Css ¼
1� m2

E
K2

ss ð29Þ
Accordingly, this quantity measures the total fracture work and Cp ¼ Css � C0 is the plasticity contribution

to the fracture work.

About the EPZ model, the shape parameters, k1 and k2, have been shown to be relatively unimportant

[2,3]. Thus, the EPZ model provides two independent dominating parameters (C0; r̂r) for crack growth and
another parameter, crack tip opening displacement dc, related with them through (27). C0 characterizes the

crack separation work per unit length of the crack tip advance. r̂r is the maximum separation strength near
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the tip during crack growth. In the present research, assume that the two-parameter (C0; r̂r) criterion

characterized by the EPZ model is still valid for crack growth in the strain gradient solid. Considering that

there will be many parameters in the analysis, we take ðk1; k2Þ ¼ ð0:15; 0:5Þ for simplicity in the present

research.
Dimensional considerations now give a parametrical relation about the normalized steady-state fracture

toughness as
Css

C0

¼ F
E
rY

; m;N ;
r̂r
rY

;
le
l
;
l
R0

 !
ð30Þ
where a length parameter R0 is introduced, and its definition is
R0 ¼
EC0

3pð1� m2Þr2
Y

ð31Þ
Besides l and le, R0 is the only length quantity in the model. It can be interpreted as an estimate of the half
height of the plastic zone in the limit that Css is only slightly greater than C0. Equivalently, it can be thought

of as the estimate of the half height of the plastic zone when KI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EC0=ð1� m2Þ

p
is applied at the remote

boundary. Note that RP defined by (24) is precisely equal to ðCss=C0ÞR0. From (27), crack tip opening

displacement dc closely depends on the process zone dominating parameters (C0; r̂r). Using R0 definition in

Eq. (31), one obtains simply
dc
R0

¼ 6pð1� m2Þ
ð1þ k2 � k1ÞðE=rYÞðr̂r=rYÞ

ð32Þ
and roughly estimates dc � ð0:01–0:05ÞR0 for the conventional metal materials and for separation strength

r̂r � ð1–5ÞrY. Therefore, the length parameters in the EPZ model such as d1 ¼ k1dc and d2 ¼ k2dc are two

orders smaller than the plastic zone size of the small scale yielding case, R0. This is likely to be a reason why

the values of d1 and d2 play an insignificant role in the EPZ model. The length parameter l in the MSG

strain gradient plasticity is of the same order as R0 (see subsequent analysis result). Thus, the value of dc is
also two orders smaller than material length parameter. Therefore, we expect that the two-parameter (C0; r̂r)
criterion characterized by the EPZ model is still valid for crack growth in the strain gradient solid.

The role of strain gradient hardening in determining toughness is seen in Fig. 11 for the case of a solid

with moderately high strain hardening, N ¼ 0:2. From Fig. 11, the increase of the steady-state toughness

normalized with the separation work, with the maximum separation strength, is very abrupt for r̂r=rY > 2.

In Fig. 11, the curves corresponding to several normalized length parameters are plotted. The conventional

elastic–plastic J2-flow theory result, corresponding to l=R0 ¼ 0, implies that under steady-state crack

growth, the separation strength near the crack tip never obtains a high value (around five times the yield

stress). If a material or a bi-material interface bonded by two materials has a higher separation strength
than five times the yield stress, from the conventional theory result, the steady-state crack growth process

becomes difficult to be realized, or even impossible. However, using the strain gradient plasticity theory or

considering the strain gradient effects, the predicted results display that the separation traction ahead of the

crack tip is elevated very much, thereby allowing higher peak separation stresses to be overcome. It is also

interesting to compare the results based on the MSG theory to those based on the Fleck–Hutchinson SG

strain gradient plasticity theory [39], also shown in Fig. 11. Firstly, the trends of curves Css=C0 � r̂r=rY for

both theories are very similar; secondly, the length scale parameters in both theories seems to have an

approximate relation
lMSG � ð4–5ÞlSG ð33Þ



Fig. 11. Steady-state fracture toughness changes with the separation strength and the normalized length parameter based on two strain

gradient theories: The MSG theory and the SG theory of Fleck–Hucthinson�s strain gradient theory. Through comparison a relation of

length parameters in the two theories is set up.
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where lMSG is the length parameter of the MSG theory [33,34], and lSG is the length parameter of the SG

flow theory [30,39]. Under this relation, both theory results of the toughness–strength curves (Fig. 11)

merge approximately. From previous studies for both theories by Gao et al. [33], Huang et al. [34], Begley

and Hutchinson [36], Wei and Hutchinson [9], Wei [42] and Wei et al. [26], the approximate relation be-

tween length parameters (formula (33)) is reasonable.
6. Concluding remarks

Mode I steady-state crack growth has been analyzed under plane strain conditions in small scale
yielding. The elastic–plastic solid is characterized by the mechanism-based strain gradient plasticity theory.

The following conclusions have been obtained:

1. For the steady-state crack growth, the crack tip separation stress achieves considerably high value within

a sensitive zone of the strain gradient.

2. The steady-state fracture toughness is very sensitive to the material length parameter in the strain gra-

dient plasticity theory and the separation strength of the EPZ model.

3. The length parameter in the MSG theory is about 4–5 times the corresponding quantity in the Fleck–
Hutchinson strain gradient plasticity theory.

For the fracture work calculation using the EPZ model, with values of l=R0 larger than about 2 (MSG

theory), the peak separation traction well above 10rY can be attained. Atomic separation of a metal lattice

or a metal/ceramic interface typically requires a work of separation, C0, on the order of several Jm�2. Using

representative values for E and rY for the typical metals, one finds values of R0 in the range from about 0.1

to 1 lm. The available experimental data indicate that l in Fleck and Hutchinson theory [30] is likely to be

on the order of half or 1 lm [20,26,36], the corresponding length parameter value in the MSG theory is
likely on the order of several micro-meters from the discussion in the last section. Therefore, the values of l
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in the MSG theory at least as large as several times R0 must be expected for fracture processes based on

separation at the atomic scale.
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Appendix A. The compact form of the MSG flow theory

The MSG flow theory can be expressed with a compact form
_rrij ¼ Aijkl _eekl þ Bijklm _ggklm
_ssijk ¼ A0

ijklm _eelm þ B0
ijklmn _gglmn

(
ðA:1Þ
and the expressions of coefficient tensors can be obtained from (6) as
Aijkl ¼ Lijkl �
3a0lr0

ijr
0
kl

r2
eð1þ aÞ ðA:2Þ

Bijklm ¼
a0lr2

0r
0
ijg

0
klm

8gr2
eð1þ aÞ ðA:3Þ

A0
ijklm ¼ 3a0l

2r2
eð1þ aÞGijkpq

3ð2þ aÞ=2þ ere=ð2lÞ
r2
eð1þ aÞ r0

pqr
0
lm

�
� dpldqm

�
� 1

3
dpqdlm

��

� 3a0l
r2
eð1þ aÞ sijk

�
� Kl2e

6
gHijk

�
r0
lm ðA:4Þ

B0
ijklmn ¼ Pijklmn � a0

ll2e
16r2

eð1þ aÞ ½ðr
0
kidjl
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kjdilÞr0
mn þ ðr0
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ln�

þ ð6þ 3aþ ere=lÞlr2
0

32gr4
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Gijkpqr
0
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0
lmn �

lr2
0

8gr2
eð1þ aÞ sijk

�
� Kl2e

6
gHijk

�
g0lmn

)
ðA:5Þ
where
Lijkl ¼
E

2ð1þ mÞ dijdkl

�
þ dildjk þ

2m
ð1� 2mÞ dijdkl

�
ðA:6Þ

Pijklmn ¼
ll2e
12

dildjmdkn

�
þ 1

2
ðdimdjn þ djmdinÞdkl þ

1

8

2K
l

�
� 4

3

�
½ðdikdjl þ djkdilÞdmn þ ðdikdjm þ djkdimÞdln�

�
ðA:7Þ
Other parameters and variables have been defined in formulas from (6) to (12).

For the elastic case, the coefficient tensors become
Aijkl ¼ Lijkl; Bijklm ¼ 0; A0
ijklm ¼ 0; B0

ijklmn ¼ Pijklmn ðA:8Þ
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