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Abstract

We derive a relationship between the initial unloading slope, contact depth, and the instantaneous relaxation modulus for displacement-controlled
indentation in linear viscoelastic solids by a rigid indenter with an arbitrary axisymmetric smooth profile. While the same expression is well known
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or indentation in elastic and in elastic–plastic solids, we show that it is also true for indentation in linear viscoelastic solids, provided that
he unloading rate is sufficiently fast. When the unloading rate is slow, a “hold” period between loading and unloading can be used to provide

correction term for the initial unloading slope equation. Finite element calculations are used to illustrate the methods of fast unloading and
hold-at-the-maximum-indenter-displacement” for determining the instantaneous modulus using spherical indenters.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Instrumented micro- and nano-indentation techniques are
laying an important role in the study of small-scale mechan-
cal behavior of “soft” matters, such as polymers, composites,
iomaterials, and food products. Since many of these materi-
ls exhibit viscoelastic behavior, modeling of indentation into
iscoelastic solids forms the basis for analyzing indentation
xperiments in these materials. Theoretical studies of con-
acting linear viscoelastic bodies became active since the mid
950s by the work of Lee [1], Radok [2], Lee and Radok [3],
unter [4], Graham [5,6], Yang [7], and Ting [8,9]. A num-
er of authors have, in recent years, extended the early work to
he analysis of indentation measurements in viscoelastic solids
10–16].

One of the widely used approaches is to obtain the elastic
odulus from the initial unloading slope (Fig. 1), dF/dh, using

∗ Corresponding author. Tel.: +1 810 986 0939; fax: +1 810 986 3091.

the well-known relationship [17–21],

dF

dh
= 4G

1 − ν
a = 2E√

π(1 − ν2)

√
A, (1)

where G is the shear modulus, E = 2G(1 + ν) the Young’s mod-
ulus, ν the Poisson’s ratio, a the contact radius, and A = πa2

is the contact area. Eq. (1) can be derived from the theory
for elastic contacts between flat surfaces and spheres [22], flat
punches [22], and conical punches [23]. Furthermore, Sned-
don has derived expressions for load, displacement, and contact
depth for elastic contacts between a rigid, axisymmetric punch
with an arbitrary smooth profile and an elastic half-space [24].
Using Sneddon’s results, Pharr et al. [18] showed that Eq. (1)
holds true for rigid indenters of arbitrary smooth profiles indent-
ing elastic solids. Eq. (1) has also been applied to indentation
experiments where plastic deformation occurs. Doerner and Nix
[17] suggested that if the area in contact remains constant during
initial unloading, the elastic behavior might be modeled as that
of a blunt punch indenting an elastic solid. Oliver and Pharr [19]
pointed out that Eq. (1) can be used even when the contact area
between the indenter and the solid changes continuously as the
E-mail address: yang.t.cheng@gm.com (Y.-T. Cheng). indenter is withdrawn and the indenter does not behave like a
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Fig. 1. Typical indentation load–displacement curve and initial unloading slope.

flat punch. We have recently shown that Eq. (1) is true for inden-
tation in elastic–plastic solids with or without work hardening
and residual stress [25]. On the other hand, Lu et al. [26], and
Kumar and Narasimhan [27] have recently suggested that Eq.
(1) may not be applicable to indentation in viscoelastic solids.

In order to use Eq. (1), the contact radius, a, or contact area,
A, must be known. For a given indenter, the contact radius or
area can be obtained from the contact depth, hc (see Fig. 2). The
most widely used method for estimating the contact depth, hc, is
the procedure proposed by Pharr et al. [18] and Oliver and Pharr
[19],

hc = hm − ξ
Fm

(dF/dh)m
, (2)

where Fm and (dF/dh)m are the respective load and the ini-
tial slope of the unloading curve at the indenter displacement,
hm. The numerical value of ξ is (2/π)(π − 2) = 0.727 and 3/4
for conical and paraboloid of revolution, respectively [18,19].
Although Eq. (2) was derived from solutions to elastic contact
problems, it has been used to estimate contact depth for inden-
tation in elastic–plastic solids [18,19] and viscoelastic solids

[20,21]. However, our recent work suggests that Eq. (2) may
not be applicable for conical and spherical indentation in linear
viscoelastic solids under certain loading–unloading protocols
[28,29]. In this paper, we examine the applicability of Eqs. (1)
and (2) for indentation in viscoelastic solids using axisymmetric
indenters of arbitrary smooth profiles.

2. Analysis

We consider a rigid, smooth, frictionless, axisymmetric
indenter of arbitrary shape, f(r) (Fig. 2) indenting a viscoelastic
solid that can be described by the following constitutive rela-
tionships [30,31] between deviatoric stress and strain, Sij and
dij, and between dilatational stress and strain, σii and εii,

sij(t) = 2
∫ t

0
G(t − τ)

∂dij(τ)

∂τ
dτ,

σii(t) = 3
∫ t

0
K(t − τ)

∂εii(τ)

∂τ
dτ, (3)

where G(t) is the relaxation modulus in shear and K(t)
is the relaxation modulus in dilatation. The time-dependent
Young’s modulus and Poisson’s ratio are then given
by E(t) = 9K(t)G(t)/[3K(t) + G(t)] and ν(t) = [E(t)/2G(t)] − 1,
respectively.
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Fig. 2. Illustration of surface deformation by an axisymmetric indenter.
When G(t), K(t), and ν(t) are time-independent, Eq. (3)
educes to the ones for elastic solids. The corresponding inden-
ation problem has been solved previously, for example, by
neddon [24], for the contact depth and indenter displacement
elationship:

=
∫ 1

0

f ′(x)√
1 − x2

dx, (4)

nd for the load and displacement relationship:

= 4Ga

1 − ν

∫ 1

0

x2f ′(x)√
1 − x2

dx, (5)

here x = r/a and f′(x) = df(x)/dx. Using these relationships,
harr et al. [18] derived Eq. (1) for rigid indenters of arbitrary
mooth profiles indenting purely elastic solids.

Applying the theories developed by Lee and Radok [3], Gra-
am [5] and Ting [8] to the problem of indentation in viscoelastic
olids and assuming time-independent Poisson’s ratio, we can
rite,

(t) =
∫ 1

0

f ′(x)√
1 − x2

dx, (6)

(t) = 4

1 − ν

∫ t

0
G(t − τ)

d

dτ

[
a(τ)

∫ 1

0

x2f ′(x)√
1 − x2

dx

]
dτ. (7)

here x = r/a(t).
Eqs. (6) and (7) become the familiar equations for spher-

cal indentation in linear viscoelastic solids. In the “classical
pherical” indenter approximation, where the indenter shape is
paraboloid of revolution, where f (x) = (1/2)((ax)2/R) and R



4 Y.-T. Cheng et al. / Materials Science and Engineering A 423 (2006) 2–7

is the indenter radius, the relationship between contact depth,
hc(t), and the indenter displacement is given by, using Eq. (6),

h(t) = a2(t)

R
= 2hc(t), (8)

and that between force and displacement is given by, using Eq.
(7),

F (t) = 8

3(1 − ν)R

∫ t

0
G(t − τ)

da3(τ)

dτ

= 8
√

R

3(1 − ν)

∫ t

0
G(t − τ)

dh3/2(τ)

dτ
dτ. (9)

Eqs. (6)–(9) are special cases of more general expressions
derived by Graham [5] and Ting [8]. They showed that Eqs.
(8) and (9) are valid when the contact area is a monotonically
increasing function of time. The equations for unloading where
the contact area decreases monotonically have also been derived
[5,8], though they are more complicated. In the following, we
use Eqs. (6) and (7) to derive the equation for initial unload-
ing slopes for arbitrary indenter profiles and validate them using
finite element calculations.

Differentiating Eq. (7) with respect to time, we obtain

dF (t) 4
{∫ t dG

∣∣∣ d
[ ∫ 1 x2f ′(x)

]

U
b

W
E
t

A
x

f (x

dx

Thus, the last three terms in Eq. (1) indeed cancel each other
and Eq. (10) becomes

dF (t)

dt

= 4

1 − ν

{∫ t

0

dG

dη

∣∣∣∣
η=t−τ

a(τ)
dh(τ)

dτ
dτ + G(0)a(t)

dh(t)

dt

}
.

(14)

Suppose unloading takes place immediately after t = tm with a
constant unloading rate of (dh(t)/dt)|t+m = −vh, we obtain using
Eq. (14) the initial unloading slope,

dF

dh
= dF/dt

dh/dt
= 4

1 − ν

[
G(0)a(tm) − 1

vh

∫ tm

0

dG

dη

∣∣∣∣
η=tm−τ

a(τ)

×dh(τ)

dτ
dτ

]
. (15)

When the unloading rate, vh, is sufficiently fast, the second term
on the right-hand side approaches zero, independent of the load-
ing history

dF

dh
= 4

1 − ν
G(0)a(tm) = 2E√

π(1 − ν2)

√
A(tm). (1′)

Once this limiting case is reached, Eq. (1′) can be used
t
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dt
=

1 − ν 0 dη ∣
η=t−τ dτ

a(τ)
0

√
1 − x2

dx dτ

+ G(0)
d

dt

[
a(t)

∫ 1

0

x2f ′(x)√
1 − x2

dx

]}
. (10)

sing Eq. (6), the derivative in the second term of Eq. (10)
ecomes

d

dτ
a(τ)

∫ 1

0

x2f ′(x)√
1 − x2

dx

= a(τ)
dh(τ)

dτ
+ da(τ)

dτ
h(τ) − da(τ)

dτ

∫ 1

0

√
1 − x2f ′(x) dx

− a(τ)
d

dτ

∫ 1

0

√
1 − x2f ′(x) dx. (11)

e now show that the last three terms on the right-hand side of
q. (11) cancel each other. Using x = r/a and, and the fundamen-

al theorem of calculus, we obtain

d

dτ

∫ 1

0

√
1 − x2 df (x)

dx
dx

=
∫ r=a(τ)

r=0

∂

∂τ

⎛
⎝

√
1 −

(
r

a(τ)

)2
⎞
⎠ df (r)

dr
dr. (12)

fter evaluating the partial derivative in the integrand and using
= r/a, we have

d

dτ

∫ 1

0

√
1 − x2 df (x)

dx
dx = 1

a(τ)

da(τ)

dτ

[
h(τ) −

∫ 1

0

√
1 − x2 d
 )

dx

]
. (13)

o determine the “instantaneous” properties, G(0)/(1 − ν) or
(0)/(1 − ν2), provided that the contact depth, hc or area, A,

s known as a function of hm = h(tm). The latter condition is
rovided by Eq. (6) for axisymmetric indenters of arbitrary pro-
les, which becomes Eq. (8) for spherical indenters. Thus, the
nloading slope equation can be used to measure G(0)/(1 − ν)
r E(0)/(1 − ν2) by instrumented indentation with axisymmetric
ndenters of arbitrary smooth profiles, when the unloading rate
s sufficiently fast.

When the unloading rate is slow, however, the second term
n Eq. (15) is non-negligible and a correction to Eq. (1) is nec-
ssary. Since the second term in Eq. (15) is an integral over
he entire loading history, it is in general complicated. How-
ver, the second term becomes an experimentally measurable
uantity for a loading history consisting of a “hold” period
etween loading and unloading. Specifically, we consider a
isplacement profile shown in Fig. 3. It has a loading period
here the displacement is given by an arbitrary monotonically

ncreasing function of time, a hold period at a constant displace-
ent, and an arbitrary unloading period with an initial unloading

ate, vh = |dh/dt|. The displacement profile may be described
s

(t) =
{

g(t), 0 ≤ t < t1,

g(t1), t1 ≤ t < tm,
(16)
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Fig. 3. Illustration of a displacement profile for displacement-controlled inden-
tation.

where g(t) a monotonically increasing function with g(0) = 0.
Inserting Eq. (16) in Eq. (14) and noting that dh(τ)/dτ = 0 during
the hold period, we obtain the rate of force relaxation at the time
of the end of the hold period (t−m),

dF (t)

dt

∣∣∣∣
t−m

= 4

1 − ν

∫ t1

0

dG

dη

∣∣∣∣
η=t−m−τ

a(τ)
dg(τ)

dτ
dτ. (17)

Consequently, the initial unloading slope equation, Eq. (15),
becomes

dF

dh

∣∣∣∣
h=hm

= 4

1 − ν

[
G(0)a(tm) − 1

vh

∫ t1

0

dG

dη

∣∣∣∣
η=tm−τ

a(τ)
dh(τ)

dτ
dτ

]

= 4

1 − ν

[
G(0)a(tm) − (dF/dt)|t−m

vh

]
. (18)

Or equivalently,

4G(0)

1 − ν
a = 2E(0)

1 − ν2 a = dF

dh

∣∣∣∣
h=hm

+ (dF/dt)|t−m
vh

. (19)
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3. Finite element calculations

We now demonstrate the validity of Eqs. (1′) and
(19) for spherical indentation in linear viscoelastic solids
using finite element calculations. We consider a friction-
less, rigid spherical indenter of radius R = 2 �m indenting an
isotropic linear viscoelastic solid. A three-parameter “stan-
dard” linear viscoelastic model with a constant Poisson’s
ratio is used to describe the extension relaxation modulus,
E(t) = 2G(t)(1 + ν),

E(t) = k1 + k2 exp

(−t

τ

)
=

{
k1 + k2 for t � τ,

k1 for t � τ,
(20)

where τ is the relaxation time. From Eq. (19), we have
E0 = k1 + k2 and E∞ = k1 for t = 0 and t = ∞, respectively.
In this work, we choose a linear viscoelastic material with
E0 = 696 MPa, E∞ = 68.9 MPa τ = 0.99s, and ν = 0.4833. The
finite element mesh was the same as that used in Ref. [36].
Finite element calculations were carried out using the classical
isotropic linear viscoelastic model implemented in ABAQUS
[37] using either load or displacement as the independent
variable, though only the displacement-controlled indentation
results are given in this paper.

3.1. Method of fast unloading without a hold period
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q. (19) shows that G(0)/(1 − ν) or E(0)/(1 − ν ) can be obtained
rom the measurement of initial unloading slope, dF/dh, the rate
f relaxation of force on the indenter immediately before unload-
ng, (dF/dt)|t=t−m , and the rate of unloading, vh. The advantage
f this “hold at the maximum indentation depth” method is that
ny rate of unloading, vh, can be used, provided that the force on
he indenter is recorded prior to unloading so that (dF/dt)|t=t−m
s known.

The above analysis is based on the assumption that displace-
ent is the independent variable. When force is the independent

ariable, a corresponding set of equations have recently been
roposed by Ngan et al. using an alternative approach for inden-
ation in linear viscoelastic solids [32–35].
For constant indentation displacement rate profiles given in
ig. 4a, the corresponding loading–unloading curves from finite
lement calculations are shown in Fig. 4b. These examples
learly show that, for the same loading history, the initial unload-
ng slopes converge when unloading rate is sufficiently fast, in
greement with Eq. (19). A tangent line with the converged ini-
ial unloading slope is also shown in Fig. 4b. Furthermore, finite
lement results show G(0)/(1 − ν) or E(0)/(1 − ν2) can indeed
e obtained using Eq. (1′), thus validating the method of fast
nloading [28,29].

.2. Method of arbitrary unloading rate with a hold period

We first study the contact depth for the displacement-control
pherical indentation in linear viscoelastic solids with the dis-
lacement profile of 10 s loading, 2 s holding, 5 s unloading
see Fig. 5(a)). The maximum indenter displacement is 1 �m.
ig. 5(b) presents the calculated load–displacement curve for

his displacement history. Fig. 5(c) shows the dependence
f indentation force (F) and the ratio of contact depth to
ndentation depth, hc(t)/h(t), as a function of time. Fig. 5c
hows that the force decreases when the indenter position is
eld constant, as expected from stress relaxation. The calcu-
ations also show that hc(t)/h(t) is a constant (≈0.52) during
he loading, holding, and at the moment of initial unload-
ng.

This seemingly unintuitive result that, for the displacement-
ontrolled indentation, the contact depth does not change when
he indenter is held at a fixed depth may be understood by con-
idering the hold period as a second loading period with an
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Fig. 4. Displacement–time profiles (a) and the calculated loading–unloading
curves (b) for the same loading rate and three different unloading rates. The
tangent line with initial unloading slope is also shown for the converged unload-
ing curve (b). The loading–unloading curves are labeled by the time duration of
unloading.

infinitesimally small positive indenter displacement rate. Dur-
ing this period, hc(t)/h(t) is expected to be a constant since the
displacement is an increasing function of time. We can also
imagine using a very slow loading rate such that the mate-
rial behaves approximately as a purely elastic solid with a
modulus given by E∞. The hc(t)/h(t) is a constant for both
the loading and holding for elastic solids. FEM results also
show, as seen from Fig. 5c, that Eq. (8) does not apply to
the entire unloading period. In fact, hc(t)/h(t) decreases with
time. Nevertheless, these results confirm that Eq. (8) can be
used to obtain the contact depth for the loading and hold-
ing periods, as well as at the point of initial unloading for
displacement-controlled spherical indentation in linear vis-
coelastic solids.

We now verify Eq. (19) using finite element calculations.
Since S ≡ (dF/dh)|h=hm , (dF/dt)|t=t−m , and the contact area, A,
can be obtained from finite element calculations, the instanta-
neous modulus Ecal

0 can then be obtained from Eq. (19) and be
compared with the actual instantaneous modulus, E0, used as
an input parameter for the finite element calculations. Table 1
summarizes the results for displacement-controlled indentation
with various loading, holding, and unloading period. Cases I

Fig. 5. Displacement profile as the input to the finite element calculation (a),
the calculated load–displacement curve (b), and the calculated ratio of contact
depth to indenter displacement, hc(t)/h(t), and the indentation force, F(t) (c).

and II in Table 1 show that when there is no hold segment,
the slower the unloading rate, the larger the deviation from the
actual instantaneous modulus. However, for the indentation with
a hold segment, the instantaneous modulus calculated using Eq.
(19) agrees well with the actual value. Thus, Eq. (19) is valid
for displacement-controlled spherical indentation in linear vis-
coelastic solids.

Furthermore, the data in Table 1 show that the contact depth
is given by Eq. (8). Contact depths calculated using Eq. (2) can
lead to large errors even when the method proposed by Ngan et
al. for correcting Eq. (2) is used.
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Table 1
Displacement-controlled indentation in a linear viscoelastic solid using a spherical indenter of 2 �m radius

Case number

I II III IV V VI VII VIII

Maximum displacement, hmax (�m) 1 1 1 1 1 1 1 1
Loading time (s) 10 10 10 10 10 10 10 1
Hold time (s) 0 0 5 2 2 10 1 5
Unloading time (s) 5 0.01 5 5 10 1 1 5
Unloading rate, vh (�m/s) 0.2 100 0.2 0.2 0.1 1 1 0.2
Apparent stiffness, S (�N/�m) 3501 2425 2436 2571 2717 2429 2524 2456
Force relaxation rate, (dF/dt)|t−m (�N/s) – – −1.70 −31.72 −31.72 −0.068 −91.58 −8.20

Force at unloading, Fmax (�N) 378 378 171 198 198 169 246 176
Contact area, A (�m2) 5.79 5.79 5.73 5.76 5.76 5.70 5.77 5.67
Calculated instantaneous modulus, Ecal

0 (MPa) 989 685 689 683 679 691 688 689
Actual instantaneous modulus, E0 (MPa) 696 696 696 696 696 696 696 696
Relative error, (Ecal

0 − E0)/E0 (%) 42 −1.6 −1.0 −1.9 −2.4 −0.7 −1.2 −1.0
Contact depth by FEM, hc (�m) 0.531 0.531 0.525 0.528 0.528 0.521 0.529 0.519
Average, hc/h 0.521 0.521 0.524 0.523 0.523 0.524 0.523 0.520
Contact depth by Ngan’s method, hNgan (�m) 0.919 0.883 0.947 0.939 0.938 0.948 0.924 0.945

4. Summary

We have derived a relationship between initial unloading
slope, contact depth, and instantaneous relaxation modulus for
indentation in linear viscoelastic solids by a rigid indenter with
an arbitrary axisymmetric smooth profile. This derivation shows
that with increasing unloading rate, unloading slope converges to
a limiting case given by Eq. (1′). Thus, fast unloading is essen-
tial in determining the instantaneous modulus from the initial
unloading slope using Eq. (1′). When the unloading rate is slow,
a correction to the initial unloading slope equation is necessary.
For slow unloading rates, the method of “hold at the maximum
indentation depth” can be used to obtain instantaneous modulus
using Eq. (19) together with the general equation for contact
depth Eq. (6). Finite element calculations have been used to
demonstrate both the method of fast unloading and “hold at the
maximum indentation depth” for spherical indentation in linear
viscoelastic solids.
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