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The plane wave solutions (3) will be stable if and only if the inequality (11) be satisfied for 
allk. WhenIc<l,F- 0 (s > 4), then after much simplification, the necessary condition 
for Rey(k) < 0 is contained in the hypothesis. 

Remark The time-decay estimates of the perturbation can be found in [5]. More details 
will be given out in part (II) of this paper. 
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Abstract: The properties of flow around a circular cylinder impulsively started into 
translatory and. rotatory motion with rotational parameter cr less than or equal to 8.0 and 
Reynolds number Re=lOO and 200 are investigated in the present paper. The vorticity 
and stream function N-S equations rue adopted here, with a Znd-order spatial and tem- 
poral accuracy AD1 (alternating direction implicit) scheme. Moreover the wall vorticity 
obtain through the principle of conservation of the total computational domain vorticity 
is determined by domain vorticity and stream function, therefore, through the wall vor- 
ticity iteration, the wall vorticity condition is not fixed during the time step. And the 
present model results indicate: (1) when (x >4.0, vortex street suppression is obvious for 
the computational period (t <SO) for all the Re numbers here studied; (2) the higher the 
cy number for the same Reynolds number, the slower the upper main vortex proceeds; (3) 
the maximum instantaneous transverse coefficient exceeds the limitation 47r. 
Keywords: wake, vortex shedding mode, rotation and translation, ADI, wall vorticity 
condition. 
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Introduction 

Flow around a spinning circular cylinder, known as the Magnus effect, is a classical 
fluid dynamics problem. Also this problem is prototypical in the study of unsteady flow 
separation, and particularly, has applications in the boundary layer control on airfoils. 

The structure of the flow around an impulsively started rotating circular cylinder de- 
pends mainly on two parameters. One is the rotational speed ratio CY, defined by cy = !la/U,, 
where a is the radius of the cylinder, and U, the approaching flow velocity and another is 
the Reynolds num’ber Re, defined by Re = 2U,a/v, in which v is the kinematic viscosity. 

Many scholars have been attracted to this problem since the well-known Magnus ex- 
periment in 1853, such as Prantl[l], Batchelorr2], Coutanceau[3*4], Changr5], Chen et a1.L6], 
Chew[‘] . 

Prandtl[‘] carried out a flow visualization experiment on this problem. And Coutanceau 
& Menard[314] investigated the early phase of the establishment of the flow past a circular 
cylinder started impulsively into rotation and translation through visualization with solid 
tracers. Their experimental Re and (Y ranges are 200-1000 and O-3.25 respectively. A lot of 
detailed photographs were presented for later comparison with calculations. 

For computational studies of this problem, the computational time, far field radius, wall 
vorticity condition (adopting integral form or one-sided differential formula) are key prob- 
lems. From the earlier documents, Only Chew et al.1’1 computation period is long enough, 
nondimensional time reaching 100, but their wall vorticity condition, adopting the 2nd or- 
der one-sided differential formula, is in doubt for large (Y case and long-time computation, 
according to Wu[‘l, because it violates the vorticity conservation law; though Chen et a1.L6] 
computation period is 54, their maximum computation radius is only 24; they present only 
the force coefficient for T 5 24 and the results are questionable for r >24. And the high Q: 
case, with long computational period, has never been investigated up to now. 

Above all, it’s necessary to investigate the long period characteristics of the flow around 
the circular cylind.er started impulsively into rotary and rotational motion, especially for 
the high cx case. Through the conservation law of total computational-domain vorticity, 
the integral form of the wall vorticity condition is adopted here, identical to the formula 
proposed by Badr[g~‘o]. 

The present model combines a second-order-accurate, alternating-direction, implicit 
stream-function/vorticity form of the Navier-Stokes equations (temporal accuracy strictly 
reaching the 2nd order by some prediction formula) with an integral wall vorticity formula, 
achieving satisfactory results compared to the earlier documents. And the present model 
has the following .properties: (1) the initial and final computation domains are the same 
and large enough for the present research; (2) the initial circular cylinder surface vorticity 
distribution matches well with the analytical solutions proposed by Badr et al.[lO]; (3) the 
nondimensional computational periods reach 60; (4) the U, velocity distributions along the 
z-axis are presented to examine the existence of the Von Karman vortex street. 

2. Fundamental Equations 

2.1 Physical Model 

A non-rotating coordinate system translating with the cylinder is used during the present 
study. And the fluid is supposed to be incompressible, two dimensional. The fluid at infinity 
has a uniform velocity of magnitude of U, in the x direction, and the cylinder rotates in 
the counterclockwise direction with angular velocity R, as shown in Fig.1. 
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Fig.1 Definition sketch 

A stream function/vorticity formulation is adopted here. In two dimensions the equa- 
tions and boundary conditions are: 

in which, 

T = aen<, e = nq, t = U, Y /a 

in which G, $,, F, 0, t stand for dimensional vorticity, stream function, radial and angular 
coordinates and time respectively. 

2.2 Mathematical Model 

Assuming that the cylinder radius a is the characteristic length for T, a/U, the time 
scale, and U, the velocity scale, we obtain the following non-dimensional equations: 

f[g(<,q)$ + $($w) - -gZw)] == v2w (3) 

inwhich,R=v,@=&, o5 m w = e, (Y = g, subject to the non-slip condition on the 
cylinder surface: 

t>o, $J=o, fLa, <=o 
at 

(5) 

there’s no restriction on w for surface (’ = 0; remote condition: $ = 2sinh7rsinnn, for < + co; 

1 w 1 all, -- u, = -re”E aq’ -- Vi3 = Ten5 at (6) 
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(7) 

in which u, v are defined as: u = 
Therefore, we can get: 

$$v=-3. 

t=o, $ =!a,rl)w (8) 

2.3 Discretization (ADI) 

The AD1 (alternating direction implicit) scheme is adopted for the discretization of 
equation (3), with Snd-order accuracy 0 ( iAr2 + AC2 + An”). 
l Along the direction: 

?A++ wij -WG 

dt,d- iAT - wij+1 
n+t - zw;+* + w;y; 

ReAn2 
+ 

4A71 

WE+1 - 2w; + wg1 g+ t (w?. v+l - W&l) 
ReAT2 - 4A77 

+2 
wi=l n+a _ 2w;++f + w;Jli 

(9) 

, u;++JT$ - w;-?“) 
ReAt2 

in which 

wn+t = +(5w; -(Jij -7 = f(3w; - w;--“,,zp = i(5$ -$-‘),q’ = ;(5V; _ ql)* 

l Along the direction: 

II;-” (w;zj - d-t&.) 
- 

4At 
(10) 

ReAt2 

in which 

wij n+i = +(3w;+i - wg, u;?” = i(7u; - 3u?$-9, z/;;+’ = ;(7V; _ 3V;-1)* 

2.4 Vorticity Boundary Conditions 

According to Gresho[l’], 
fluid domain is given by 

Therefore, 

/--@A= Jo’” 

the total non dimensional vorticity Q in the computational 

J 
R 2 La 

r<drde = 
s/ 

2r2e2mE<<d<dn 
0 0 0 

01) 

= -2acY (12) 

And referring to the method by Badrl”], the Fourier expansions of the $, 5 are aa follows 

$J(<, 11,~) = iFo(E, 7) + fJ{F,I, ~)cosnv + fn CC, T)sinnvl (13) 
n=l 

x(&q, T) = &Jo(F, T) + ~{GX, ~)cosnrrl+ gn,(t, T)sinnvl (14) 
n=l 
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Substituting (l5), (16) into (4), we can obtain 

tPF, -_ 
at2 

n2F, = e2cGn n = 0, 1,2.. . 

a2fn -_ 
x2 

n2 fn = e2<g, n = 1,2.., 

(15) 

(16) 

Given x, we have 

G,,d r 
J 

n = 0,1,2...for [ # 0 
= 0 

xcosn0d6 (17) 

gn2 7r 
s 

xsinnede n = 0,1,2...for c # 0 (18) 
r 0 

J ‘-= r2e(-)“XG,dX = -279 n := 0 
0 0 nf0 

s 
‘O” ,2e(2-n)~Xg,dX = -2n, n = 1 

0 0 nfl 

(19) 

If (14) is substituted into (12), the total non-dimensional vorticity can be derived and 
matches with Gresho’&‘I result. Therefore, the nature of the integral formula is the con- 
servation of the total computational domain vorticity. 

3. Results and Discussion 

The present calculation is carried out for 1005 Re 5 200 and 0.55 (Y 5 8.0 on a 
Pentium PC with main frequency 120MHz. The computation domain is O< < 5 15/8, 
05 772, or a 5 r 5 361.58a, 0 2 8 5 21r (the corresponding computation parameters are: 
A< = l/120, An := l/80, grid 151x161 for [, n direction respectively). For calculation 
details and verification of the present model, refer to Caimao Luo & Xuequan EIi21. 

3.1 The First Upper Vortex Development for Re=lOO and 200, 3.255 a 58 

Fig.2 gives the first upper vortex development for Re=200, o=4, showing that only the 
upper vortex is generated at r=l, becoming stronger and stronger at the subsequent instants 
r=2, 3, 4, 5, 6. From r=7 it begins to shed from the cylinder. And the upper vortex is 
brought downstream by the oncoming flow since I-=7. For the case 01 >3, the first upper 
vortex evolving process is similar. But the first vortex locations for various (Y and Reynolds 
number cases at r=36 are different, as can be seen in Figs.2, 3. It can be observed from 
Figs.2, 3 that the main vortex moves downstream more slowly as (Y increases, which can also 
be inferred from Fig.7. 

___- =L -1’ ___ 
(a) r=l (b) r=2 



226 Communications in Nonlinear Science & Numerical Simulation Vo1.3, No.4 (Dec. 1998) 

(d) r=4 

(e) r=5 (f) 7=6 

(h) r=8 

(i) r=12 

Fig.2 Instantaneous streamline patterns for Re=200, cy=4, A<= L/80, Av=1/80 (151 x 161) 



No.4 LUO et al.: Strearm-vorticitp NS . . . 227 

(a) ff=4 

(b) cx=5 

(c) CY=~ 

(d) a=8 

Fig.3 Instantaneous streamline patterns for Re=lOO, r=36, A<-l/80, Aq=l/80 (151 x 161) 
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3.2 Vortex Shedding Suppression at Various (Y’S 

It can be shown from Figs.3, 4 that the gap between the zero streamline (the darkest 
area in the streamline pattern) and the circular surface becomes wider as (Y increases, with- 
out regular vortex shedding at r=36. Moreover, the vortex shedding suppression can be 
confirmed by Fig.5, which gives the long time situation of the cylinder wake, indicating that 
no further vortex is shed except for the first upper main vortex. Figs.6, 7 shows that the 
main vortex moves faster as (Y decreases, with the minimum of the U, corresponding to the 
first shed vortex. 

Above all, at least at 7=60, for Re=lOO, 200, a=4, 5, 6, 7, 8 there is no Von Karman 
vortex street appearing, the vortex shedding being suppressed completely. 

3.3 Force Coefficients for Re=lOO and Re=200, a 18 

Figs.8 and 9 give the in-line and transverse force coefficient temporal variation for 
Re=lOO, ~~0.5, l.0, 2.07, 4.0, 5.0, 6.0, 7.0, 8.0 respectively, showing that the first peak 
increases with cq and the periodicity deteriorates with a growth. After the in-line force 
coefficient reaches its first peak, it will decrease with time to a stable state, with time the 
in-line force curve reaching steady state, multiplying with QI. Figs.10 and 11 present the in- 
line and transverse force coefficient temporal variation for Re=200, 0=0.5, 1.0, 2.07, 3.25, 
4.0, 5.0, 6.0, 7.0, 8.0 respectively, indicating that the periodicity of the force coefficient co- 
incides with Figs.:LO and 12. Other features of the curve variation are similar to those of 
Re=lOO case. 

From Fig.9 and Fig.11, it can be observed that the instantaneous maximum value of the 
transverse force coefficient exceeds 4n, limitation proposed by B.K.Batchelor, for cy=7, 8. 

4. Conclusions 

The present article combines successfully the strictly 2nd-order accurate spatial and 
temporal AD1 scheme with the integral wall vorticity condition derived from the total com- 
putation domain vorticity reservation law. Based on the model, the long time flow develop- 
ment for Re=200, a=4.0, 5.0, 6.0, 7.0, 8.0 and Re=lOO, (r=4.0, 5.0, 6.0, 7.0, 8.0 has been 
investigated. The final conclusions are: (1) for Re=lOO, 200 (~=4, 5, 6, 7, 8, no vortex street 
appears for a=60, with the vortex shedding being completely suppressed; (2) the first peak 
of high (Y number of the in-line force coefficient case can last for comparatively longer time 
than low (Y number case, and the peak value increases with a; (3) the first upper main vortex 
moves more slowly as the a number becomes larger. 
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(a) a=325 

(e) a=7 

Fig.4 Instantaneous streamline patterns for Re=200, ~=36, At-l/80, Aq=1/80 (151x161) 
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(a) a=4 

(b) a=8 

Fig.5 Instantaneous streamline patterns for Re=200, r=60, A<-l/80, Ay=l/80 (151x161) 

Fig.6 U, distribution along the x-axis for Re=lOO, r=58, Ae=l/80, Av=l/80 (151~161) 
(a) o=4; (b) o=5; (c) a=6; (d) cr=7; (e) o=8 

Fig.7 U, distribution along the x-axis for Re=200, r=58, At=l/80, Aq=1/80 (151 x 161) 
(a) cu=4; (b) (~=5; (c) cr=6; (d) cu=7; (e) cr=8 
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Fig.8 In-line force coefficient temporal variation for Re=lOO, 
a=O.5, 1.0, 2.07, 4.0, 5.0, 6.0, 7.0, 8.0 

ow 20.00 40.00 

Fig.9 Transverse force coefficient temporal variation for Re=lOO, 
a=O.5, 1.0, 2.07, 4.0, 5.0, 6.0, 7.0, 8.0 

e.m 1 

0.m ‘1 
I I 

000 20.00 40.00 

Fig.10 In-line force coefficient temporal variation for Re=200, 
a=O.5, 1.0, 2.07, 3.25, 4.0, 5.0, 6.0, 7.0, 8.0 
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Fig.11 Transverse force coefficient temporal variation for Re=lOO, 
(~=0.5, 1.0, 2.07, 3.25, 4.0, 5.0, 6.0, 7.0, 8.0 
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