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Determination of plastic properties by instrumented spherical
indentation: Expanding cavity model and similarity solution approach
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The present paper aims to develop a robust spherical indentation-based method to extract
material plastic properties. For this purpose, a new consideration of piling-up effect is
incorporated into the expanding cavity model; an extensive numerical study on the
similarity solution has also been performed. As a consequence, two semi-theoretical
relations between the indentation response and material plastic properties are derived, with
which plastic properties of materials can be identified from a single instrumented spherical
indentation curve, the advantage being that this approach no longer needs estimations of
contact radius with given elastic modulus. Moreover, the inconvenience in using multiple
indenters with different tip angles can be avoided. Comprehensive sensitivity analyses
show that the present algorithm is reliable. Also, by experimental verification performed
on three typical materials, good agreement of the material properties between those
obtained from the reverse algorithm and experimental data is obtained.

I. INTRODUCTION

In recent studies, interest has been intensifying in the
development of indentation-based methods to extract
material elastic-plastic properties. In those studies, the
elastic-Hollomon power-law hardening hypothesis was
generally adopted, in which the uniaxial true stress-true
strain (s � e) curves of materials are assumed to be
expressible in the form

s ¼ Ee; for e � ey
s ¼ Ee1�n

y en; for e � ey
;

�
ð1Þ

where E is the elastic modulus, sy is the yield stress, n is
the strain-hardening exponent, and ey is equal to the ratio
of yield stress to elastic modulus. This material model
has also been used in the present study, and the indenter
was assumed to be rigid.

In recent years, some investigations have shown that the
stress-strain curve cannot be uniquely determined from
loading and unloading curve produced by a single sharp-
tipped indenter.1,2 Subsequently, several methods using
multiple sharp-tipped indenters have been developed to
extract plastic properties,3–8 although these methods still
present a degree of inconvenience when operating with
these indenters. In changing to spherical indentation, vari-
ous authors have demonstrated that, by analyzing the
force-depth curves, it is possible to determine material
plastic properties.9–24 However, most of these proposed

methods depend on estimates of the contact area under
the spherical indenter tip,9–19 the estimates being difficult
to obtain especially when “piling-up” occurs. For some
methods, additional problems are created by repetitive
loading and unloading, such as the method proposed by
Kucharski and Mroz17 and that by Huber and Tsakmkis.23

Later, the work of Nayebi et al.24 demonstrated the feasi-
bility in determining plastic properties by using a single
spherical indentation curve, but it is only applicable to
steels. In a recent study, by extending the representative
strain (as defined in the work of Dao et al.25 for sharp
indentation) to spherical indentation, two representative
methods were developed to avoid the above-mentioned
difficulties.20,21 Unfortunately, in those two methods, just
as in most previous work, the direct sensitivity analysis of
the acquired plastic properties (sy and n), associated with
errors in the measurement of indentation parameters, was
not mentioned, but it is now recognized as an important
factor in evaluating indentation-based methods. Perhaps
due to this sensitivity issue, Herbert et al.’s26 intentions to
obtain experimental verification for Al 6061 through the
use of a spherical indenter with 385 nm tip radius, have
shown that some of the proposed methods cannot derive
reasonable results of sy and n.

In our opinion, there are two main reasons for the
sensitivity problem of these methods. The first, and the
more important of the two, is the ill-formed conditions
of the equations used, which stem mainly from the de-
pendence of response parameters. For example, the rela-
tion between the ratio of unloading work to total work
Wu/Wt and the ratio of residual depth to max depth hr/hm
is expressed in an approximation as Wu/Wt � hr/hm for
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spherical indentation.27 Therefore, if these two response
parameters (Wu/Wt, hr/hm) are used, the sensitivity prob-
lem will inevitably arise. The second is that the variation
of plastic properties cannot be sufficiently reflected by
the selected response parameters, which can also lead to
sensitivity issues. According to our numerical results
corresponding to h/R = 0.3 (see Sec. II), the dimension-
less load F/ER2 of two different combinations of plastic
properties (n = 0 ey = 0.025 and n = 0 ey = 0.03) are 0.16
and 0.17, respectively. It can be easily deduced that, in
the reverse analysis, a variation of no more than 6% in
the dimensionless load will lead to more than 15% vari-
ation of ey.

Therefore, the focus of this study is to determine ways
to select the response parameters and to establish the rela-
tions between the selected response parameters and plastic
properties. According to the above criteria, there are two
mandatory requirements in the choice of response param-
eters: aside from the fact that the selected parameters
should be able to adequately reflect the variation of plastic
properties, the existence of sufficient independence be-
tween these selected response parameters is more impor-
tant. In the present article, the total workWt and the Meyer
index m were selected for this purpose, and to establish
relations between these two parameters and the plastic
properties, the expanding cavity models (ECMs)28–30 and
the similarity solution31 were used.

By considering the effect of piling-up on the volume
displaced by hydrostatic core, a modified ECM, in the
present study, was developed to describe the relationship
between indentation work and plastic properties. In tan-
dem, the similarity solution was further investigated in
detail numerically to obtain another function. From these
relations together with the well known elastic modulus
extraction method,32 a spherical indentation-based meth-
od to determine the plastic properties of materials has
been proposed.

II. FORWARD ANALYSIS

A. Expanding cavity models

Based on Hill’s solution for the quasistatic expansion
of an internally pressurized spherical shell of an elastic-
plastic material, ECMs have been developed to describe
the indentation responses of various materials.28,29 It is
worth noting that such ECMs have been found to break
down for materials having significant strain-hardening
characteristics. By assuming material incompressibility
(specifically a Poisson ratio of n = 0.5), Gao et al.30 later
developed a new ECM for power-law hardening materi-
als. However, because nonlinear terms had been ignored
in estimating the radius of elastic-plastic interface (c in
Fig. 1), this ECM has applicability only for small
indentation depths (a « R). In such cases, plastic
properties cannot be significantly characterized by the

spherical indentation response parameters, especially
for materials with small ratios of elastic modulus to
yield stress.30 Furthermore, neglecting the piling-up
effect also leads to errors in evaluating the volume radi-
ally displaced by the hydrostatic core, the investigation
of which will be given in detail below.
Following an early suggestion by Johnson,29 the stress

and displacement outside the hydrostatic core are radial-
ly symmetric, which leaves only the radial displacement
component ur, along with the constraint relations of
sy =sf and ey = ef, as degrees of freedom for the process.
Here r, y, and f denote the coordinates in the spherical
coordinate system. Assuming incompressibility of the
material, ur can be taken into account by a radially
expanded hydrostatic core, thereby deriving its volume as

V ¼ 2

3
p r þ urð Þ3 � r3
h i

¼ 2

3
pur 3r2 þ 3rur þ u2r
� �

:

ð2Þ
If no piling-up or sinking-in occurs, V should be equal

to the volume of indenter tip under the original surface,
which can be expressed as

V0 ¼ 1

3
ph2 3R� hð Þ ; ð3Þ

where R and h are the radius of the spherical indenter tip
and the indentation depth, respectively.
However, when piling-up or sinking-in occurs, some

fraction of the compressed material is ejected or com-
pacted into original surface, the volume of which is
denoted as Vp or Vs in Fig. 1. Therefore, the volume of
material that is radially expanded by the hydrostatic core
will differ. A great simplification can be derived if the
volumes Vp and Vs are assumed to be some fraction of the
hydrostatic core volume displaced by the indenter tip, here
denoted by Vp

0 and Vs
0 around the indenter in Fig. 1. In this

way, we introduce a correction factor k to take into
account this piling-up effect on V as shown below

FIG. 1. Schematic of the modified expanding cavity model in which

the effect of piling-up or sinking-in is equivalent to some fraction of

hydrostatic core volume displaced by indenter.
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V ¼ k3V0 ¼ 1

3
k3ph2 3R� hð Þ : ð4Þ

Assuming small deformations (ur « r), we can derive
ur from Eq. (2) as

ur � V

2pr2
; ð5Þ

and the constitutive equation33 with Eq. (5) then gives

er ¼ �2ey ¼ � 2ur
r

� � V

pr3
: ð6Þ

By symmetry considerations, the state of stress is
everywhere just hydrostatic tension sy supposed a
radial uniaxial stress sy � sr.

33 Because there is no
additional elastic strain produced by the hydrostatic ten-
sion (n = 0.5), the relationship between the uniaxial
stress |sy � sr| and strain |er| can be directly obtained
by applying uniaxial test data.33 For power-law harden-
ing materials, the relation between |sy � sr| and |er| can
be expressed as30

sr � syj j ¼ E erj j; for erj j � ey
sr � syj j ¼ Ee1�n

y erj jn; for erj j � ey
:

�
ð7Þ

Therefore, |er| on the elastic-plastic boundary should
satisfy

erj jr¼c ¼
V

pc3
¼ ey : ð8Þ

Combining Eq. (4) and Eq. (8) gives

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

pey
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 3R� hð Þ

3ey
3

s
:3

vuut ð9Þ

It has already been remarked that each element of the
hemispherical shell is stressed, apart from a supposed
hydrostatic tension sy, by an uniaxial amount |sr � sy|.
It is evident that the hydrostatic stress does not produce
any strain energy (n = 0.5), and hence the strain energy
density expended by uniaxial stress |sr � sy| can be
expressed by

w ¼
R

sr � syj jd erj j : ð10Þ
By inserting Eq. (7) into Eq. (10), the strain energy

density of the elastic and elastic-plastic region can be
derived as

w1 ¼ n� 1

2ðnþ 1ÞEe
2
y þ

Ee1�n
y

nþ 1
enþ1 c � r � að Þ

w2 ¼ 1

2
Ee�2 ( r � cÞ

;

8>>>><
>>>>:

ð11Þ

where a is the radius of the hemispherical hydrostatic

core, which is easily found to be a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rh� h2

p
:

From Eqs. (6) and (8), we can derive the distribution
of equivalent strain as

erj j ¼ c

r

� �3
ey : ð12Þ

Because the friction was found to produce negligible
effects on force-depth curves,34 the total external work is
approximately equal to the total strain energy, which can
be written as

Wt ¼ R ca w12pr2dr þ
R1
c w22pr2dr

¼ R ca n� 1

2ðnþ 1ÞEe
2
y þ

Ee1�n
y

nþ 1
enþ1
r

 !
2pr2dr

þ R1c 1

2
Ee�2

r 2pr2dr : ð13Þ

It should be noticed that there is only hydrostatic
pressure and the material is treated as an incompressible
fluid, so there is no work done on the core region.35

Inserting Eq. (12) into Eq. (13) leads to the total strain
energy, which can be integrated as

Wt ¼
2pEe2yc

3

3n nþ 1ð Þ
c

a

 !3n

� 1

2
4

3
5þ n� 1ð ÞpEe2ya3

3 nþ 1ð Þ

c

a

 !3

� 1

2
4

3
5þ pEe2yc

3

3
; ð14Þ

where c can be determined by Eq. (9), and k is the cor-
rection factor considering the piling-up effect. According
to the results of dimensional analysis of Ni and Cheng,27

the degree of the piling-up or sinking-in depends only on
ey and n with fixed h/R. In the present study, we take h/R
= 0.3, which is sufficient to reflect differences in material
plastic properties, and therefore we can assume that

k ¼ f ey; n
� 	

: ð15Þ
To determine the function f, finite element calculations

were performed using ABAQUS for different combina-
tions of plastic properties, with ey from 0.0003 to 0.03
and n from 0 to 0.5, which cover most engineering
metals. The spherical indenter tip was assumed to be
rigid. Coulomb’s friction law was applied to the contact
surfaces, and the friction coefficient was taken to be 0.15.
Poisson’s ratio was also fixed at 0.3. Both of these para-
meters are minor factors in the indentation analysis.34 By
setting the total work obtained in the simulations to equal
the corresponding analytical ones, values of k (see Fig. 2)
can be derived. The fitting function f is given as

k¼ f ey;n
� 	¼ �0:0077n2þ0:0534n�0:0304ð Þlog2 ey

� 	
þ 0:3717n2�0:1331n�0:0774ð Þlog ey

� 	
þ0:495n2�0:3016nþ1:0627 : ð16Þ

As illustrated in Fig. 2, the value of k for small ey can
be either greater or smaller than unity and depends on
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the degree of work hardening. For large ey, k is greater
than one for all values (n > 0). According to the above
analyses, we can deduce that smaller values of k are
obtained with greater piling-up. With different combina-
tions of plastic properties, opposite trends can therefore
be observed for values of correction factors k and the
degree of piling-up from those obtained by Cheng
and Cheng.36

It should be stressed that the Poisson ratio, as well as
the friction coefficient, adopted in the simulations and
theoretical analysis were not identical. However, a pre-
vious investigation has shown that such differences will
not produce significant effects on force-depth curves,34

and even if small effects occur, these have already been
included in the correction factor k.

Thus, by inserting Eqs. (9) and (16) into Eq. (14),
relations between the indentation work (Wt) and plastic
properties (ey, n) can be established. The comparison
between the indentation work obtained by Eq. (14) and
that from simulations is shown in Fig. 3. It is clear that
even for various indentation depths (0.1R � h � 0.3R),
Eq. (14) can also give an approximate estimation of
the total indentation work. Moreover, unlike previous
work22 in which three sets of 144 empirical parameters
are in need, Eq. (14) derived in the present study
contains only nine empirical parameters. However, if
we use the total work calculated from two different
depths to solve for the plastic properties, ey and n, simi-
lar equations used will result in an ill-formed condition
for the solution. To derive stable results for plastic
properties, we resort to the similarity solution,31 in
which the Meyer index is mainly dependent on n. More-
over, we can deduce from Eq. (14) that Wt depends on
both ey and n, so it is reasonable to believe that the
issues associated with the ill-formed solution can be
resolved to a certain degree with the selection of such
parameters.

B. Similarity solution

The most extensive studies of spherical indentation
were realized by Meyer,37 who found that mean pressure
increases with the ratio of the size of impression to the
spherical diameter according to the simple power law.
Subsequently, Hill et al.31 demonstrated, in particular for
spherical indentation of power-law solids, that solutions
for moving contact may be generated from a stationary
solution by an appropriate scaling procedure. In this
spirit, they provided a rigorous solution, the so-called
similarity solution, as follows

FIG. 2. The relationship between the correction factor k and the

plastic properties of materials. The fitting results are calculated by

Eq. (16).

FIG. 3. Comparison between the indentation work obtained by

Eq. (14) and the indentation work obtained by simulation: (a) h/R =

0.1, (b) h/R = 0.2, and (c) h/R = 0.3.
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F

pa2c
¼ abnk

ac
2R

� �n
; ð17Þ

where F is the indentation force; ac is the contact
radius that is always assumed to be the same as the
radius of the residual impression, and a and b are
universal constants with values a = 2.8, b = 0.4 pro-
posed previously by Tabor.9 Moreover, according to
the suggestion of Hill, the ratio cm = ac/a is an
invariant throughout the indentation process and is
dependent only on the strain-hardening exponent n as
follows31

c2m ¼ 5

2

2� n

4þ n


 �
: ð18Þ

Inserting Eq. (17) into Eq. (18) and taking logarithms,
Field and Swain16 obtained

logF ¼ log
abnc2þn

m

2nRn


 �
þ 2þ nð Þlog a : ð19Þ

Clearly, a linear regression of log F and log a gives
2 + n as the gradient, which is also called Meyer index
(m). However, a more extensive numerical study by
Mesarovic and Fleck34 has shown that the domain of
validity of the similarity solution is limited both by elas-
tic effects for small indentation depth and finite defor-
mation effects for large indentation depth, and they
suggested that the similarity solution cannot be directly
used to extract the properties of materials.

In the opinion of the present authors, an empirical
modification may after all be accepted as a feasible
means to develop greater accuracy and expand the
domain of validity of the similarity solution. In the
present study, a fixed range of 0.6 � a/R � 0.7 was
chosen so that h is restricted to less than 0.3R. Using
the extreme points of the range, the gradients of linear
regressions of log F and log a can be approximately
expressed as

m ¼ log F0:7=F0:6ð Þ
log 0:7R=0:6Rð Þ ¼ 14:9 log

F0:7

F0:6


 �
; ð20Þ

where F0.6 and F0.7 are the indentation forces
corresponding to a = 0.6R and a = 0.7R, respectively.
According to the dimensional analysis of Cheng and
Cheng,36 we can derive

F0:6

ER2
¼ f0:6 v; ey; n

� 	
F0:7

ER2
¼ f0:7 v; ey; n

� 	
: ð21Þ

Because the functional dependence on n is found to be
small, it can be neglected, and we then obtain from
Eq. (20)

m ¼ 14:9 log
f0:7 ey; n
� 	

f0:6 ey; n
� 	

" #
¼ fm ey; n

� 	
: ð22Þ

Based on the above finite-element method (FEM)
results, the gradients of linear regression of log F and
log a for various materials are shown in Fig. 4. It is
obvious that, unlike the suggestion by Field and Swain,16

the gradient m not only depends on n, but it also slightly
depends on ey. The fitting function of m is given as

m ¼ð�792:59n2 þ 1675:9n� 962:01Þe2y
þð68:187n2 � 112:78nþ 57:84Þey
�1:4569n2 þ 2:8637nþ 1:7178 : ð23Þ

III. REVERSE ANALYSIS

A. The principle of reverse analysis

As a direct application of the analytical expressions,
Eqs. (14) and (23), presented in Sec. II, a new method
has been developed for plastic properties characteriza-
tion as illustrated in Flow Chart 1. For a given spherical
indentation test with a specific range of h/R (h/R from
0 to 0.3 R), Wt and m can be obtained from the force-
depth curve. Considering the fact that the elastic
modulus E of tested materials can be determined by the
Oliver-Pharr method32 with assumption of n = 0.3, E is
then considered as a priori known. Using Newton’s
iteration method, Eqs. (14) and (23) can be solved for
plastic parameters sy (sy = Eey) and n.

B. Numerical verification

Numerical indentation simulations were first per-
formed to examine the effectiveness of the reverse anal-
ysis algorithm. In this article, materials with different
plastic properties within the following ranges, ey0 varies
from 0.0003 to 0.03, and n0 is set between 0 and 0.5,
were simulated so that most engineering materials are
covered. Combinations (ey0, n0) were inputted in FEM

FIG. 4. The relationship between the Meyer index m and material

plastic properties. The fitting results are calculated by Eq. (23).
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experiments, and the resultant force-depth curves were
then used to calculate indentation parameters Wt and m,
from which the material plastic properties (ey, n) can be
derived by our reverse algorithm. The numerical verifi-
cation results are shown in Table I, where ey0 and n0
represent the input parameters while ey and n are results
predicted by reverse analysis. For all cases, it can be
readily seen that after several iterations the results con-
verge to unique solutions. Comparing solutions obtained
by our method with the input parameters, the maximum
error of the new spherical indentation algorithm is ap-
proximately 10%, and in most cases these errors are
below 5%, which makes the algorithm fairly reliable
with a satisfactory accuracy.

Furthermore, for this indentation-based method to
be widely adopted in extracting plastic properties, it
must be proven to be sufficiently robust so that
small uncertainties or variations in the measured inden-
tation response parameters from experiments, which
could arise due to several factors associated with the
test instrumentation, the test environment, or test materi-
al, do not lead to unreasonable high variability in
the estimation of material properties. Therefore, the
stability of the proposed method needs to be investigated
in greater detail.
To characterize the sensitivity of the proposed

method, independent relative perturbations were intro-
duced intoWt, m, and E. Following an early suggestion of
Cao20 and Oliver,32 the relative perturbation of E to be
introduced in the present sensitivity analysis was set to
be 4%, and the relative perturbations of Wt and m were
determined to be 3 and 2%, respectively, according to the
discrete degree of physical test data of three typical mate-
rials, which are to be presented in the next section. After
introducing these perturbation levels in the response para-
meters, the inverse approach outlined in Flow Chart 1 was
followed to identify the plastic properties sy

0 and n0. The
relative errors of yield stresses [i.e., (sy

0 � sy0)/sy0] were
then presented as three-dimensional maps (see Fig. 5).
It can be clearly seen that the maximum deviation of yield
strength of the algorithm is approximately 30%, and in
most cases these errors are below 10%.

C. Experimental verification

All of the indentation experiments were performed
using an MTS Nano Indenter XP (Oak Ridge, TN), and
the nominal radius of spherical indenter tip was given as
10.6 mm. To verify the radius of the indenter, Steel IF
was selected as the standard reference material. It has a
relatively smooth surface and a known true stress-true
strain curve. The loading rate was held at the constant

TABLE I. Comparison between the input values and identified plastic properties for various materials simulated in this article.

n0 = 0 n0 = 0.1 n0 = 0.3 n0 = 0.5

ey0 (%) N ey (%) N ey (%) N ey (%) N ey (%)

0.0300 �0.0025 0.0307 0.0962 0.0314 0.2886 0.0322 0.4803 0.0312

0.0500 �0.0021 0.0498 0.0976 0.0508 0.2886 0.0529 0.4908 0.0540

0.1000 �0.0028 0.0984 0.1019 0.0985 0.2954 0.1009 0.5030 0.0988

0.2000 �0.0044 0.1984 0.1106 0.1915 0.3029 0.1951 0.5109 0.1899

0.3000 �0.0014 0.2982 0.1154 0.2854 0.3069 0.2891 0.5196 0.2743

0.5000 �0.0039 0.5085 0.1242 0.4706 0.3112 0.4785 0.5234 0.4554

0.7500 �0.0041 0.7681 0.1227 0.7176 0.3101 0.7251 0.5178 0.7047

1.0000 �0.0022 1.0285 0.1149 0.9789 0.2992 0.9991 0.5044 0.9833

1.2000 �0.0032 1.2291 0.1097 1.1879 0.2874 1.2325 0.4972 1.2036

1.5000 �0.0107 1.5456 0.0942 1.5233 0.2753 1.5752 0.4832 1.5537

2.0000 �0.0249 2.0679 0.0717 2.0803 0.2657 2.1198 0.4705 2.1173

2.5000 �0.0171 2.5113 0.0804 2.5357 0.2821 2.5665 0.4762 2.6142

3.0000 0.0211 2.8466 0.1182 2.8800 0.3161 2.9332 0.4975 3.0406

FLOW CHART 1. Extracting plastic properties of materials from

spherical indentation tests.
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value of 1 mN/s, and 10 indentation tests were performed
on samples of the target material. The average measured
force-depth curve was compared with simulated force-
depth curve obtained by introducing in the FE analysis
the true stress-true strain data. The indentation
dimensionless load F/ER2 was plotted versus the dimen-
sionless depth h/R. As shown in Fig. 6, both the experi-
mental and the FE-simulated indentation curves are in
good agreement, when the tip radius was 10.8 mm, a
value very close to its nominal radius.

Aside from Steel IF, two other typical materials with
known uniaxial true stress-true strain relations, Al 6061
and Steel S45C, were chosen to examine the proposed
method. Ten experiments were performed for each
material. Figure 7 illustrates the average load-displace-
ment data acquired for the three types of materials
according to the procedure outlined above. The error
bars span one standard deviation about the mean values.

Figure 8 illustrates the linear regression of log(F) versus
log(a). Furthermore, the mean values and coefficients of
variation (COVs) of indentation response parameters are
presented in Table II, among which the elastic modulus
were obtained by the Oliver-Pharr method.32 From
Table II, it is clear that the COVs of E, Wt, and m are
below �4, �3, and �2%, respectively. It is reasonable
to believe that the actual values of E, Wt, and m should
be restricted in the variation range of their physical test
data, if enough replications of tests are performed and no
obvious faults exist in the test procedures. The above
sensitivity analyses were performed just based on this
assumption. By introducing the mean values of E, Wt,
and m, syp and np of each tested material can be derived
by our method. The results, together with the actual true
stress-true strain relations obtained by tension tests, are
shown in Fig. 9. In addition, the relative errors of yield
stress determined by our method are given in Table III,

FIG. 6. Comparison between numerical and experimental indentation

curves for Steel IF assuming a radius of 10.8 mm.

TABLE II. The mean values and COVs of E, Wt, and m obtained from for three materials.

E Wt m

Materials Mean (GPa) COV (%) Mean (J � 10�6) COV (%) Mean COV (%)

Steel S45C 173.89 �3.2 0.687 �2.1 2.142 �2.3

Al 6061 71.23 �1.9 0.386 �2.3 2.136 �0.9

Steel IF 188.83 �3.0 0.357 �2.8 2.135 �1.4

FIG. 5. Sensitivity distribution observed in the determination of the

yield stress with uncertainties of (a, b) +4 and �4% in E, (c, d) +3 and

�3% in Wt, and (e, f) +2 and �2% in m.

FIG. 7. Averaged load versus normalized displacement curves for

Steel S45C, Al 6061, and Steel IF. The error bars span one standard

deviation about the mean.
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in which syt stands for the actual yield strength.
From Fig. 9 and Table III, it is evident that the proposed
method can give good estimations of the yield strengths
and hardening behaviors of practical materials.

It is worth noting that the Oliver-Pharr model should be
used with caution for a wide range of materials, especially
when piling-up occurs. However, from Fig. 5, we can
conclude that the proposed method is, fortunately, insensi-
tive to the error in the elastic modulus, so good agreements
between estimated and actual results can be derived
for most commonmetals, at least for the materials selected
in this article. Furthermore, we can also resort to other
methods to extract the elastic modulus, for example, the
method proposed by Ni and Cheng,27 in which there is
also no need in estimating the contact radius, whereas
more experimental verifications are needed.
It must also be stressed that the proposed method is

not applicable for very shallow indentation depths, be-
cause in such cases, the surface roughness, the grain size
of materials, and the indentation seize of effect (ISE)
will obviously affect the test results. However, the sensi-
tivity problem of the indentation-based method cannot
be avoided completely. Therefore, we suggest that the
method proposed in this article should be used with
indentation depths of more than 1 mm.

IV. CONCLUSION

In this article, theoretical analyses and numerical
studies were performed to elucidate the mechanics of
instrumented spherical indentation, and a new method
has been proposed to extract the plastic properties of
materials from only a single indentation curve. The key
results of this investigation can be summarized as follows:
(1) By taking into account the effect of piling-up, we

developed a modified ECM for power-law hardening
materials, which provides us with a semi-theoretical re-
lation between the total indentation work and properties
of materials at different depths (0.1 � h/R � 0.3). Based
on the similarity solution, an empirical relation with
fixed validity range of 0.6 � h/R � 0.7 was also derived.
(2) Using these two relations, a new inverse approach

to extract plastic properties of materials from the spheri-
cal indentation loading curve has been presented. In
contrast to most previous work, the present approach no
longer needs the estimation of contact radius or residual
radius of indentation with known elastic modulus; also
the inconvenience of using multiple indenters with dif-
ferent tip angles is no longer required here.
(3) By considering the divergence of the actual test

data, more extensive sensitivity analyses using numerical

FIG. 8. Linear regression of Log (F) versus Log (a) used in the

similarity solution.

TABLE III. Relative errors of the yield strengths estimated by the

proposed method.

Materials syp (MPa) syt (MPa) (syp � syt)/syt

Steel S45C 400 425 �5.8%

Al 6061 277 275 �0.7%

Steel IF 161 149 8.3%

FIG. 9. Comparison between estimated and actual true stress-true

strain curves of (a) Steel S45C, (b) Al 6061, and (c) Steel IF.
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methods were performed for a wide range of materials.
Furthermore, three materials with known uniaxial stress-
strain relations were selected to examine the practicability
of the proposed method. Both numerical and experimental
results indicate that the present approach has the ability to
effectively measure plastic properties of materials.
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