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ABSTRACT: The formation mechanism of water film (or crack) in saturated sand is analyzed numerically. It
is shown that there will be no stable ‘‘water film’’ in the saturated sand even if the strength of the skeleton is zero
and no positions are choked. The stable water films initiate and grow if the choking state keeps unchangeable
once the fluid velocities of one position decreases to zero in a liquefied sand column. A simplified method for
evaluating the thickness of water film is presented according to a solidification wave theory. The theoretical
results obtained by the simplified method are compared with the numerical results and the experimental results
of Kokusho.

1 INTRODUCTION

It is often occurred on the ground slope that sand
deposit translates to lateral spreading or even landslide
or debris flow not only during, but also after earth-
quakes. If the sand deposit on a slope are composed of
many sublayers, there will be a water film forms once
it liquefied (Kokush et al. 1998) which may serves
as a sliding surface for postliquefaction failure. As a
result, landslide or debris flow may happen on a slope
with very gentle slope-angle. Seed (1987) was the first
to suggest that the existence of water film (crack) in
sand bed is the reason of slope failures in earthquakes.
Some researchers (Fiegel, G.L. & Kutter, B.L. 1994,
Kokusho, T. 1999, Zhang Junfeng 1998) performed
some experiments to investigate the formation of crack
in layered sand or in a sand containing a seam of non-
plastic silt. Nevertheless, the mechanism of the for-
mation of cracks or ‘‘water film’’ in a sand layer with
the porosity distributed continuously is not very clear.

In the viewpoints above, Firstly, we present a
pseudo-three-phase model describing the moving of
liquefied sand and numerically simulates. Secondly,
we present a simplified method to analyze the evolu-
tion of the water film.

2 FORMULATION OF THE PROBLEM

It is considered here a horizontal sand layer, which is
water saturated and the porosity changes only verti-
cally. The fine grains may be eroded from the skeleton
and the eroding relation is assumed to be proportional

to the velocity difference of grains and pore water
(Cheng, C.M. et al. 2000). The x axis is upward.
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in which Q is the sand mass eroded per unit volume of
the sand/water mixture, ρs is the grain density, u and
us are the velocities of pore fluid and sand grains, q
is the volume fraction of sand carried in percolating
fluid, T and u∗ are physical parameters, λ is a small
dimensionless parameter, ε(x, t) is the porosity, Qc(x)
is the maximum Q that can be eroded at x.

3 MODEL OF THE PROBLEM

The mass conservation equations are as follows:
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in which ρ is the density of water. A general equation
may be obtained by eq. (3)

εu + (1 − ε)us = U (t) (4)

in which U (t) is the total mass of fluid and grains at a
transect. The momentum equations are:
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in which p is the pore pressure.
Here k is assumed as following

k(ε, q) = k0 f (q, ε) = k0(−αq + βε) (6)

in which α,β are parameters and 1 < β << α, which
indicates that changes in q overweighs that of ε.

The mass conservation equation (4) yield assuming
both u and us are zero at x = 0.

εu + (1 − ε)us = U (t) = 0 (7)

Taking T as characteristic time. ut the characteristic
velocity and L the characteristic length of the problem.
We make eq. (1) non-dimensional. Letting

ū = u

ut
, τ = t

T
, ξ = x

Tut
(8)

Instituting equ. (1), (2), (4), (7) (8) into eqs. (3), we
may obtain
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For Tg/ut >> 1, the inertia terms are negligible,
the last equation of eq. (5) becomes
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The initial conditions are:

ε(ξ , 0) = ε0(ξ), q(ξ , 0) = 0. (12)

4 NUMERICAL RESULTS

Numerical simulation is carried out based on eq. (8).
The parameters adopted in simulation are as follows:
�t = 9 × 10−4, �ζ = 5 × 10−3, β = 46∼56, κ =
50.0, a = 0.08, ρs = 2400 kg/m3, ρw =
1000 kg/m3, u∗ = 0.04, k0 = 4 × 10−6 m/s, α = 1.

The boundary conditions:

1. The initial porosity distribution is ε0(x) = ε̄0(1−a
tanh((x − 0.5L)/2) · κ), in which ε̄0 = 0.4,
L = 1, 0 ≤ x ≤ 1, L is the length of sand column.
There is an assumption that u keeps zero once it
drops to zero.

2. The distribution of initial porosity is the same as
that in condition 1, there is no assumption.

Figure 1 shows that if we assume that once the sand
column at some point is jammed, they keep this state
forever, then the sand above the jammed position will
be prevented to drop cross the jammed point and so
the porosity becomes smaller and smaller, while the
sand below the point will settle gradually and makes
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Figure 1. The evolution of cracks in the condition 1.
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Figure 2. The evolution of cracks in condition 2.

the crack extends gradually. But if we do not adopt the
assumption as in Figure 1, the crack will form first and
then disappear gradually (Figure 2). The results show
that the forming conditions of stable water film are:
(1) the porosity of the upper part of the sand column
must be smaller than that of the lower. (2) The keeping
of the jamming state to prevent the free dropping of
the grain or the skin friction.

5 A SIMPLIFIED EVALUATION METHOD

A simplified method is presented here for analyze the
evolution of cracks fast and practically. Florin and
Ivanov (1961) pointed out that when the settling par-
ticles reach solid material, such as the unliquefied
underlying sand, or the container base in a experi-
ment, they accumulate to form a solidified zone which
increases in thickness with time. A solidification front
therefore moves upward until it reaches the surface, or
overlying unliquefied material. Scott et al. (1986) had
analyzed the development of the solidification.

Assuming that the whole mass reaches its terminal
velocity, k, which is the permeability, instantaneously
at the end of liquefaction, Florin have given an expres-
sion for the constant velocity ż, of the solidification
front:

ż = ρ

ρw

1 − n1

n0 − n1
k (13)

in which ρ ′ = ρs − ρw is the buoyant unit weight of
the liquefied sand n0 is the porosity of the liquefied
sand, n1 is the porosity of the solidified sand.

From eq. (13), we can obtained the duration of liq-
uefaction and subsequent excess pore pressure decline
for any point in the sand column.
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in which h is the height of any point in the sand column.
The final settlement of the top surface of the sand

layer is

�L = n0 − n1

1 − n0
H (15)

in which H is the maximum height of sand layer.
The rate of settlement is

ṡa = γ ′k
γw

(16)

The settlement at any time is

sa = γ ′k
γw

t (17)

The settlement velocity ve of the elements above
the water film is determined by the combined perme-
ability kes of the middle layer and the upper layer as
(Kokusho, 2002)
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The upward seepage flow and the settlement of
grains have the following Velocities:

v = kesie; u = − nv

1 − n
(19)

ie is the average hydraulic gradient, n is the porosity.
The deform of the skeleton by the geostatic stress

in the solidification zone after the solidification may
be expressed as[5]

s2 = 1
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in which ms is the compressible modulus. The total
deformation is:

�s = �L +�s2 (21)

Instituting eqs. (15) and (20) into eq. (21), consi-
dering that the initial height is equal to maximum
height of the liquefied zone and the solidified zone
and the water layer above the sand surface:
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(�z +�s)+ ρ ′g
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because h = h0 + L + s, which yields �h =
(�L +�s).
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Eq. (16) may be written as
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According to eqs. (22) and (23), the increase
velocity of the solidification thickness:
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Then we can obtain the duration of any location that
the solidification front arrives at as follows:
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Side friction may be expressed if it should be
considered

σs = μK0σz (26)

The effect of the changes of porosity on the perme-
ability k is considered as a linear relation:

k = k0[1 − α(n0 − n)] (27)

in which k0 is the initial porosity, α is a parameter, n0
is the initial porosity.

By considering eqs. (26) and (27) in the pore pres-
sure gradient and considering the consolidation of the
solidification zone, we can compute the development
of cracks at these conditions.

6 COMPARISON WITH EXPERIMENTAL
RESULTS

It is shown that the results computed by numerical
method and the simplified method are close to the
experimental results (Figure 3, parameters used in
computing is the same given in literature 7). The sim-
plified method presented in this paper may be used to
compute the evolution of the water film.

7 CONCLUSIONS

Numerical simulations show that there are stable water
films only in the conditions that: (1) the porosity of the
upper part of the sand column must be smaller than that
of the lower. (2) The keeping of the jamming state.
A simplified method for evaluating the thickness of
water film is presented. It is shown that the simplified
method are agree with the experimental results.

Figure 3. The comparison of the results computed by
simplified method with the experiment of Kokusho.
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