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ABSTRACT

Tension leg platform (TLP) is an important kind of working station for
deep ‘water ‘exploration and development .in ocean, whose dynamic
responses deserve a serious thought. It is shown that for severe sea state,
the effects of nonlinearities induced by large displacements of TLP may
be noteworthy, and then: employment of small displacements model
should be restrained. In such situation, large amplitude motion ‘model
may - be. an appropriate “alternative. The numerical éxperiments are
performed to study the differences of dynamic responses between the
two models. It is shown that for most cases, differences between results
of the two models are significant. The variances of the differences wvs.
the wave period are the most remarkable, and that of the differences vs.
wave heading angle are also apparent.

KEY WORDS: Tension leg platform (TLP); large amplitude motions;
nonlinear dypamic response; wave loads; numerical simulation.

INTRODUCTION

As'well known, ocean is an attractive region for mankind to exploit oil
and natural ‘gas resources, and the most promising areas include lots of
deep ‘water blocks. Tension leg platform (TLP) is a typical kind ‘of
compliant offshore working station, which has become a competitive
alternative for deep water exploration and development all ‘over the
world. Similarly, it is selected by petroleum industries in China as a
candidate for offshore oil exploitation ‘to meet the rapidly growing
domestic demand. -

TLP can move with 6 degrees of freedom, which are surge, sway and
yaw in the horizontal plane and heave, roll and pitch in the vertical
plane. The dynamic response of TLP is an important problem of
offshore mechanics, and there are many researches on it. Williams and
Rangappa (1994) developed an approximate semi-analytical technique
to calculate hydrodynamic loads, added mass and damping coefficients
for idealized TLP consisting of arrays of circular cylinder. Ahmad
{1996) conducted stochastic response analysis considering viscous
hydrodynamic force, variable added mass and large excursion. Ahmad,
Islam and Ali (1997) investigated TLP’s sensitivity to dynamic effects
of ‘the ‘wind. Yilmaz, Incecik ‘and Barltrop: (2001} calculated free
surface elevations for an array -of four cylinders. Chandrasekaran and
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Jain {2002a, b) developed a method to analyze the dynamic behavior of
triangular and square TLP; and they performed numerical studies. to
compare the dynamic responses of a triangnlar TLP with:that of a
square TLP.

To the best of the author’s knowledge, the existing investigations on
TLP ‘mostly ‘adopt the small displacements assumption explicitly or
implicitly, which treat the translational -displacements and -angular
displacements as small magnitude. In this sense, we call such method
as linear model. Therefore, the nonlinear. effects .induced by large
displacements are omitted. In.fact, in severe 'sea state, or -extreme
adverse state, the displacements of TLP may be distinctly large and
should not be taken for small ‘quantities. There “are very few
investigations ostensibly claim to - have - considered - arbitrary
displacements. However, it may not be the fact. Zeng et al (2006) have
explained the reason.

Zeng, Liu, ‘Shen and Wu (2006) developed a “theoretical model for
analyzing the nonlinear behavior 'of -a TLP with large amplitude
motions, in which multifold nonlinearities are taken into account, such
as nonlinear restoring forces, coupling of the six degrees of freedom,
instantaneous position, instantaneous wet surface, free surface effects
and viscous drag force. The nonlinear ‘dynamic analysis of ISSC TLP in
regular waves was: performed -in the ‘time domain. It was found that
nonlinear ‘responses - of - TLP - considering -effects -induced by large
amplitude motions differ from that of the linear model significantly. By
contrary to the small displacements linear model, we call this large
displacements method as nonlinear model.

This paper is-a .continuation of the paper by Zeng et al (2006). Herein
we ‘investigate the :variance trend “of ‘dynamic’ responses. differences
between the linear and nonlinear model as the wave conditions vary, by
using the method developed in ‘that paper (Zeng et al(2006)). The
motivation of this paper is to study quantificationally whether the linear
model may be appropriate to a certain extent even severe sea state is
considered. The wave height, wave period and wave heading angle are
the main variable parameters concerned. The numerical calculations are
performed for a typical TLP (ISSC TLP) consisting of four columns
and four pontoons.

The major assumptions we adopt are listed as followings

1) - The amplitude of motions of TLP may be large, not confined to
. small quantities.
ii) - The component cylinders of hull are assumed sufficient slender,

and then the wave diffraction effects have been neglected. (For




extreme or swell sea state we considered in this paper, the low
frequency components are dominant, and then the wavelengths
are large enough). In addition, the hydrodynamic interactions
between cylinders are omitted.

iii) ~ Wave forces are evaluated by Morison’s type equation, with the
instantaneous displaced -position and the - instantaneous wet
surface considered.

iv) - The free surface effects are taken into account following the
stretching method Chakrabarti (1987) proposed.

PRIMARY FORMULAS

A typical TLP consisting of four columns and pontoons is shown in
Figs. 1(a) (b) (c). Three right-hand Cartesian coordinate systems oxyz,
OXYZ, G&nd are used. The oxyz is space fixed coordinate system,

plane oxy coincides with the undisturbed calm water surface, and the
positive z-axis is pointing upwards. This coordinate system is used to
define wave. The OXYZ is also space fixed coordinate system, which
has its origin located at the center of gravity (C.G.) of the undisturbed
TLP. Three axes of coordinate system OXYZ are in parallel with those
of oxyz. The GEnd is body fixed coordinate system, which coincides
with the OXYZ when the TLP is stationary. The motions of TLP are
denoted by the displacements X;, X, X3, Xy, Xs and X; of GEnd " with
respect to OXYZ. Xj, X3, X; are the coordinates of G in OXYZ, which
denote  the translation (surge, sway and heave) of TLP. X,, X, X
represent the three angular motions, which are the Eulerian angles of
.GE&nd with reference to OXYZ.

For nonlinear model, X;, X3, X3, X4, X5 and X5 may be large quantities,
while - for linear model they are small. Then the transformation of
coordinates can be written as follows

X X, oty L6
Y= X, |+| 8, Iy |7 (1a)
4 X, L fy, L \G

Where #; (i, /= 1, 2, 3) are functions of X;, X5 and X, i.e.
,=1(X, X5, X,)

For ‘nonlinear model, #; are nonlinear functions of Xj, X5 and X,
whereas for linear model they are linear functions of angular motions if
X4, X5 and X are small quantities. The detailed formulas for #; are given
in Zeng et al (2006).

The motion equations of six components X; of TLP are

M0 00 0 0YX F(X,X.,X)

6. M 0 0 0 0|X% F(X,X,X)

0.0 M 0 0 0)X | F(X,,X,,X,) 0))
900 0L 006 | | FX,X,X)-(-1)o0,

0 0 0 -0 ]2 0 d)z Fs(Xi’Xi’Xi)_(IJ_Is)mswl
0°0 0 00 L)lo) \FX,.X.X)-(1,-1)oo,

in which M is the body mass of TLP in air, % (i=1, 2, 3) are the
moments of inertia with respect to the principal axes through C.G.; F;
are the components of external force (i=1, 2, 3) and moment (i=4, 5, 6)
vectors, respectively; «; (i=1, 2, 3) are the components of angular
velocity, ‘dot over: variable means time derivative. w; are nonlinear
functions of Xy, X5 and X, for large rotations (nonlinear model) and
linear functions for small rotations (linear model).

TLP endures tension of tethers, hydrodynamic and hydrostatic forces
acting on columns-and pontoons and the self-gravities. After doing
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vector sums of those forces, we can obtain the principal vector F of
external forces acting on TLP

F =F, +F,+F—~Mgk=Fi+F,j+Fk ?3)
(D) |
i 1
A
1—2a > 7 77
(a) (®) ©

Fig. 1 Sketch of TLP and the coordinate systems

where 7,7, k are base vectors of system OXYZ; g is the acceleration

due to gravity. Similarly, we can get the resultant moment M by
summing external moment vectors together:
MzMG.v+MGB+MGz21;:451"'17552"’1;:323 *

where & , &, , €, are .base vectors of system G&End . For large
amplitude motions, ‘F; (=1, 2,...,6) are nonlinear functions of the

- responses - of TLP as -shown in Eq. 2. The detailed formulas for

calculating the components of external forces and moments in Eq. 3
and Eq. 4 are given by Zeng et al (2006).. As long as the formulas for
calculating F; are obtained, we can perform calculations of Eq. 2. We
solve Eq. 2 by using-a fourth-order Runge-Kutta numerical time
integration procedure.

NUMERICAL STUDIES

It is an important problem that to what extent the differences between
the results of linear and nonlinear model (i.e. small displacements
model and large displacements model) can be ignored. If we can find
the bound in which the results given by linear model are adequate, the
employment of the linear model can simplify the analysis process. If it
is on the contrary, although employing nonlinear model makes the
problem very complex, it is worthwhile.

We perform numerical studies on the dynamic responses of a typical
TLP (ISSC TLP), by employing both the linear and nonlinear model.
The primary properties of ISSC TLP are shown in Table 1.

Table 1. Primary properties of 1ISSC TLP (Eatock Taylor and Jefferys,
1986)

Description Value
Spacing between column centres (m) 86.25
Column radius (m) 844
Pontoon width (m) 7.5
Pontoon height (m) 10.5
Draft (m) 35.0
Displacement (kg) 54.5x10°
Mass (kg) 40.5x10°
Length of tendons {(m) 415.0
Roll moment of inertia (kg m°) 82.37x10°
Pitch moment of inertia (kg m°) 82.37x1¢°
Yaw moment of inertia (kg m>) 98.07x10°
Vertical position of C.G. above keel (m) 38.0

The object we compare between the linear and nonlinear model in this




paper is the response variation range, which is defined here as the
distance between the crest and the trough of certain steady state
responses. The responses concerned are the 6 degrees of freedom and
the stresses of the four tethers of TLP. In the following sections, the
differences between the respective solutions of response variation range
by ‘linear and nonlinear model are shown. Hereinafter, with the
exception of special declaration, the data in text, tables and figures
describe the differences in response variation ranges between the
nonlinear and linear models, i.e. the data shown represent

nonlinear solutions — linear solutions
x 100%

difference = - -
linear solutions

In this paper, we focus our attention on the regular wave case, which
can give a hint and lay the foundation for the irregular wave case. The
solutions of the steady state responses of ISSC TLP in regular waves by
both linear and nonlinear models are shown in Figs. 2~11. The wave
height is 8 meters, the wave period is 14 seconds and-the wave heading
angle is 22.5 degrees respectively. It can be found that except surge and
sway, nonlinearities exert a distinct influence on the steady state
responses of TLP. The differences in surge and sway between the two
models, which are -2.3% and -2.4% respectively, are not unacceptable.
Nevertheless the differences in heave, roll, pitch and stresses of the four
tethers ‘are -69.9%, -65.2%, -24.1%, -62.3%, -57.1%, -58.8%, -59.4%
respectively, which are fairly obvious. In addition, we can easily find

high order components (low or high frequency components) differences

in heave, surge, sway and yaw. We can see that the heave results of
nonlinear model reveal high-frequency components, whereas the linear
counterparts do not. Surge, sway and yaw show differences in drift
components. Moreover, for the wave condition we show here, the phase
of nonlinear solutions of heave, roll, pitch and stresses of the four
tethers are shifted from the linear counterparts by about 180 degrees
(heave, roll and pitch) and 150 degrees (stresses of tethers) respectively.
Investigating other solutions further, we find that such phase shifts can
change over from 0 to 180 degrees as the wave periods vary. The phase
shifts and high order components can be attributed to the quadratic,
cubic. and higher order terms in the motion equations introduced by
both the complicated nonlinear coupling among six degrees of freedom
and the loads-responses interactions: induced by finite displacements.
Quantificational and detailed investigations on variation trend of high
order components differences and phase shifts are beyond this paper,
which will be dealt in future.
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Fig. 2 Steady state response of surge
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For the TLP we study, the main parameters related to sea state are wave
height, wave period and wave heading angle. Then we shall investigate
the relationship of differences of response variation range vs. wave

- height, wave period and wave heading angle respectively.

Differences of Response Variation Range vs. Wave Height

For-the sake of examining the differences of response variation range
between the linear model and nonlinear model vs. wave height, we
perform numerical - calculations ‘employing both models for several
wave conditions. The wave heading angle is 22.5 degrees, the ‘wave
periods are 11-and 13 seconds respectively and the wave heights are 6,
8, 10-and 12 meters respectively. The results of 6 degrees of freedom
and stresses of four. tethers given by the two models are compared.
Then the differences are shown in Table 2 and 3. It can be found that
for different wave height, the variations of differences between the two
models are indistinctive. That is to say, the differences are insensitive
to - wave -height. Therefore, we can select a certain wave height
(combining with different wave periods ‘and heading  angles to
constitute some wave conditions) as representative of others. to carry
out subsequent analysis.

Table 2. Differences between linear and nonlinear model (Wave period
is 11 seconds; the wave heading angle is 22.5 degrees.)

Wave height (m) 6 8 10 12
Surge (%) -3.4 -3.7 -4.3 -4.6
Sway (%) 2.1 -2.5 -2.8 -3.1
Heave (%) -84.1 -84.4 -84.3 -84.4
Roll (%) -62.9 -63.8 -65.2 -66.4
Pitch (%) +35.5 +34.5 +34.6 +34.5
Yaw (%) -4.5 -4.6 -3.8 -2.3
Stress of tether 1 (%) +9.2 +8.6 +8.0 +7.6
Stress of tether 2 (%) -38.6 -38.2 =377 -37.3
Stress of tether 3 (%) +12.0 +11.9 +12.5 +12.6
Stress of tether 4 (%) 415 -42.1 -42.5 -43.2

Table 3. Differences between linear and nonlinear model (Wave period
is 13 seconds; the wave heading angle is 22.5 degrees.)

Wave height (m) 6 8 10 12

Surge (%) -2.6 -2.2 -2.4 2.4
Sway (%) -2.1 -23 -2.5 2.6
Heave (%) -80.3 -79.8 -79.3 =715
Roll (%) -76.1 -73.7 -70.8 -67.5
Pitch (%) -13.0 -13.3 -13.8 -14.2
Yaw (%) -4.9 -4.4 -3.9 -3.2
Stress of tether 1 (%) -59.7 -60.1 -60.5 -61.2
Stress of tether 2 (%) -56.8 -56.7 -56.2 -56.2
Stress of tether 3:(%) -56.9 -55.8 -55.3 -54.9
Stress of tether 4 (%) -58.9 -59.3 -59.8 -60.4




Differences of Response Variation Range vs. Wave Period

Comparing Table 2 and 3 correspondingly, we can see that differences
are sensitive to wave period. For instance, the differences of pitch and
differences of stress of tether 1 and 3 change over from positive to
negative number as the wave period varies from 11 to 13 seconds. Thus
the - variance relationships of differences vs. wave period  are
investigated in this section.

Following the same procedure as the last section, we perform numerical
calculations for both nonlinear and linear models. The wave height is 8
meters, the wave heading angels are 0, 22.5, 45 degrees respectively,
and the wave period are 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24,26, 28
seconds respectively. The differences vs. period curves are shown in
Figs. 12~21.

It is perceived from these figures that on the whole, the differences of 6
degrees of freedom and stresses of tethers change obviously as the
period varies, i.e. differences are sensitive to wave period. The
exceptions occur in sway, roll and yaw when wave heading angle is 0
degree. For 0 degree heading angle, steady state responses of sway, roll
and yaw given by both nonlinear and linear model are all 0, which can
be understood easily. The steady state responses of yaw given by both
models are also O when the heading angle is 45 degrees, because the
plan view gf ISSC TLP is square (i.e. a=b in Fig. 1(a)).
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Moreover, it is discovered from Figs. 12~21 that the quantities of

07 e wave angle U dogree differences in heave, roll, pitch and stresses of the four tethers are

60 o Xiiéjﬁ A comparatively large. Differences of surge, sway and yaw are relative
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We can see from Figs. 22~31 that in principle, the variation of wave
heading angle ‘also .influence the differences of responses, with the
exception of differences of heave. For differences of heave, differences
do not change clearly as the wave heading angle .varies, though the
value of heave differences are large.

. CONCLUSIONS

The -numerical studies of dynamic responses of TLP. with large
amplitude motions (nonlinear model) and with small displacements
(linear ‘model) “are performed, and ‘the results of ‘both ‘models ‘are
compared. The differences of 6 degrees of freedom and stresses of four
tethers between the two models are investigated.

The differences insteady 'state responses of heave, roll, pitch and
stresses - of four tethers ‘between nonlinear and  linear model .are




remarkable. The differences between the two models are sensitive to
wave period and wave heading angle; and insensitive to wave height
for the case we studied. Because the majority of differences of
responses are significant, it seems that employment of linear model
may induce unallowable errors. Then the nonlinear model may be a
better alternative. For the circumstances when the maximum stresses of
tethers are the main concerned parameters (the accuracy of evaluation
will directly influence the design of tethers), nonlinear model is
intensively recommended.
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