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bstract

On the basis of the Local Equilibrium Model (LEM), fine particles with large Richardson–Zaki exponent n show, under certain conditions
uring bed expansion and collapse, different dynamic behavior from particles with small n. For an expansion process there may be a concentration
iscontinuity propagating upward from the distributor, and, on the contrary, for a collapse process there may be a progressively broadening and

pward-propagating continuous transition zone instead of discontinuity. The predictions of the bed height variation and the discontinuity trace
ave been validated experimentally.

© 2007 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V.
All rights reserved.
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. Introduction

In liquid–solid fluidized systems, the particles are dispersed
uite uniformly and possess zero net velocity (up = 0) when the
uidizing velocity U exceeds the minimum fluidizing velocity
min and the system keeps in a steady-state. Various param-

ters in fluidized beds, e.g. voidage αf, fluid velocity uf, etc.,
an be determined according to the Richardson–Zaki expres-
ion U = uTαn

f (Richardson & Zaki, 1954). Slis, Willemse, and
ramers (1959) extended the Richardson–Zaki expression to the

ondition up �= 0:

(t) − up(t, x) = uTαn
f (t, x). (1)

ntroducing Eq. (1) into solid phase continuity equation
∂αp/∂t) + (∂(αpup)/∂x) = 0, Slis et al. (1959) obtained the fol-
owing propagation equation and the expression for velocity V
f the concentration wave:

∂αp

∂t
+ V (αp)

∂αp

∂x
= 0, (2)

n−1 n
= U(t) + uT[nαf − (n + 1)αf ]. (3)

They used the above two equations to develop a study on
he transient process (expansion or collapse) in liquid–solid
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uidized beds. Any disturbance in fluidizing velocity (e.g.
rom U to U + �U) can result in the variation of the flu-
dized state, traveling upward along the bed from the distributor.
he transient process (transition from one state to another)
omes to an end when all disturbances reach the bed surface,
nd therefrom a new fluidized state is achieved. Propagation
elocity of any slight disturbance (infinitesimal |�U|) is the
ame (see Eq. (3)) in any fluidized state, whether �U > 0
slight expansion) or �U < 0 (slight collapse). For finite dis-
urbance (which can be imagined as a series of infinitesimal
isturbances with various voidages), the wave velocity V is
ot constant but a function of local voidage αf, and it results
n chasing and interaction of waves, showing the non-linear
eature of Eq. (2) and providing a source of different propa-
ation properties between expansion and collapse with finite
ntensity. Slis et al. (1959) utilized Eqs. (1)–(3) to calculate
he variation of bed height with time during the process of
xpansion or collapse and the result is well in agreement with
xperiments.

After Slis et al. (1959), a number of authors (Fan, Schmitz, &
iller, 1963; Thelen & Ramirez, 1997; Thelen & Ramirez, 1999;

an der Wielen, Sjauw Koen Fa, Potters, & Luyben, 1997) pre-
ented models of bed-height dynamics of liquid–solid fluidized

ed. Jin (2003), Liu and Jin (2003) and Jin and Liu (2005) also
educed a generalized Richardson–Zaki expression of Eq. (1)
nd continuous wave equations of Eqs. (2) and (3) from their
ocal Equilibrium Model (LEM), which was adapted from the

Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
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Nomenclature

dp particle diameter (m)
D inner diameter of bed (m)
h bed height (m)
h0 bed height at packed state (m)
n Richardson–Zaki exponent
t time (s)
tb time the transition zone just arrives at bed surface

(s)
te time the transition zone entirely pass through bed

surface (s)
uf actual velocity of fluid phase (m/s)
up actual velocity of solid phase (m/s)
uT particle settling velocity (m/s)
U fluidizing velocity (m/s)
Umin minimum fluidizing velocity (m/s)
V velocity of the concentration wave (m/s)
Vmax maximum concentration wave velocity (m/s)
VS velocity of concentration shock (m/s)
x height coordinate (m)
xS displacement of concentration shock (m)

Greek letters
αf voidage (fluid volume fraction)
αf,cr voidage corresponding to maximal wave velocity
αf,mid voidage determined by Eq. (8) or (9)
αp particle volume fraction (particle concentration)
αp,c packed particle volume fraction
ρf fluid density (kg/m3)
ρp material density of particle (kg/m3)

Subscripts
B after discontinuity
F before discontinuity
h bed surface
1 correspond to U1
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In a process of expansion or collapse, between the uniform
upper zone (dense phase when expanding or dilute phase when
collapsing) and uniform lower zone, there is always a transi-
tion zone with the voidage monotonically changing along the
2 correspond to U2

wo-Fluid Model by ignoring the inertia difference between the
wo phases, and discussed the application scope of the approx-
mation. Using LEM, we can study the transient process in a
ed with arbitrarily changing velocity U(t) (e.g. rectangular or
inusoidal) including the propagation and interaction of various
inds of concentration waves (e.g. shockwave and continuous
ave). The periodic changes of bed height h(t) and voidage dis-

ribution αf(t, x) in a bed predicted by LEM agreed well with
xperiments (Jin, 2003; Liu & Jin, 2003), proving that LEM is
dequately applicable to the study of transient processes in the
uidized state.

This paper studies expansion or collapse process of
iquid–solid fluidized bed under the condition that the fluidiz-

ng velocity stepwise increases from U1 to U2 or decreases
rom U2 to U1, where Umin < U1 < U2. αf1 and αf2 represent the
oidages corresponding to the fluidizing velocity U1 and U2,
logy 5 (2007) 363–375

espectively according to the Richardson–Zaki expression and
1 − αp,c) < αf1 < αf2 always holds.

. Influence of Richardson–Zaki exponent n on the
ritical voidage αf,cr

Based on Eq. (3), the wave velocity V reaches its maxi-
um, Vmax, when αf = (n − 1)/(n + 1), for given values of U, uT

nd n. Slis et al. (1959) and Jin (2003) used larger particles
glass beads with dp = 3 mm and 1.8 mm, respectively), hav-
ng smaller Richardson–Zaki exponents n (n ≈ 2.37 and 2.414,
espectively), and the maximum wave velocity appeared at the
ritical values of αf = αf,cr = 0.407 and 0.414 for the two kinds
f particles, respectively. Both are very close to the voidage cor-
esponding to the packed particle volume fraction αp,c (about
.6) (see Fig. 1). So expansion and collapse of the bed almost
lways met αf,cr < αf1 < αf2 and the wave velocity V was almost a
onotonically decreasing function of voidage αf in the fluidized

ed. In this case (larger particles), we always see a concen-
ration discontinuity propagating upward from the distributor
hen the bed collapses and a progressively broadening and
pward-propagating continuous transition zone (between the
pper dense phase and the lower dilute phase) when the bed
xpands.

When Richardson–Zaki exponent n is large (correspond-
ng to small particle diameter dp or smaller density difference
ρp − ρf)), the critical value of voidage αf,cr, corresponding to
he maximum wave velocity Vmax, is large. Therefore, fluidiza-
ion with αf < αf,cr may take place in the bed. In this case, the
ave velocity will increase as the voidage increases (see Fig. 1).

f αf1 and αf2 satisfy αf1 < αf2 < αf,cr or αf1 < αf,cr < αf2, the phe-
omena in expansion and collapse processes of these particles
re quite different from those for larger particles. For example,
e may see a concentration discontinuity not in the collapse
rocess but in the expansion process when αf1 < αf2 < αf,cr.
Fig. 1. Relation between voidage and relative wave velocity for various n.



rticuology 5 (2007) 363–375 365

b
t
c
n
t
t
t
c
t
(

s
a

V

w
p
a

3

p
t
α

i
a
p
l
n
i
w
p
t
a
t
α

i
d
a
(
E
e
i
b

3

t

F
a

t
v
i

3

a
p
d
i
t
p

3

a
t

D. Liu, Y. Fu / China Pa

ed height. The transition zone will get wider and wider when
he wave velocities in the transition zone increase monotoni-
ally from the bottom up, otherwise the transition zone will get
arrower and narrower and finally form a concentration discon-
inuity (concentration shockwave) when the wave velocities in
he zone decrease monotonically from the bottom up. Therefore,
he shockwave velocity Vs must be greater than the velocity of
ontinuous wave before the shockwave, V(t, αf,F), and less than
he velocity of continuous wave after the shockwave, V(t, αf,B)
see Eq. (5) below).

Through mass conservation of the solid phase across the
hockwave plane, the shockwave velocity Vs can be expressed
s (Jin, 2003; Jin & Liu, 2005; Liu & Jin, 2003):

Vs(t, αf,F, αf,B) = αp,Bup,B − αp,Fup,F

αp,B − αp,F

= U(t) + uT
αn

f,B(1 − αf,B) − αn
f,F(1 − αf,F)

αf,B − αf,F
, (4)

(t, αf,F) < Vs(t, αf,F, αf,B) < V (t, αf,B), (5)

here αp,F and αp,B, αf,F and αf,B, up,F and up,B represent the
article concentration, voidage and particle velocity before and
fter the shockwave, respectively.

. Partitioning of αf2–αf1 plane

For given values of Richardson–Zaki exponent n and packed
article volume fraction αp,c, the αf2–αf1 plane can be parti-
ioned, according to the numerical relation among αf1, αf2 and
f,cr, into four regions, i.e. region I through region IV, as shown

n Fig. 2. In each region, the relation between wave velocity V
nd voidage αf possesses a distinct character, as a result, the
roperties of the transition zone between uniform upper and
ower zones in a transient process are quite different. The ordi-
ate αf1 in Fig. 2 is the voidage of dense phase (i.e. the voidage
n upper zone when expanding, or the voidage in lower zone
hen collapsing), and the abscissa αf2 is the voidage of dilute
hase. The fluidizing velocities U1 and U2, normalized against
he particle settling velocity uT, are displayed as the right and top
xes, respectively in Fig. 2. The scales of these axes are specified
hrough the formula of Uk/uT = αn

f,k (k = 1 or 2). The voidage
f(t, x) at any time t and any height x within the transition zone

s always between αf1 and αf2, i.e. αf1 < αf(t, x) < αf2. The coor-
inates of points E, F, G, H, J and K with respect to the set of αf2
nd αf1 axes in Fig. 2 are (1, 1), (αf,cr, αf,cr), (1, αf,cr), ((1 − αp,c),
1 − αp,c)), (αf,cr, (1 − αp,c)) and (1, (1 − αp,c)), respectively.
xcept for region IV in αf2–αf1 plane, which will not be consid-
red in this study because the condition of (1 − αp,c) < αf1 < αf2
s not satisfied, the other three regions will be discussed in detail
elow.
.1. Region I characterized by (1 − αp,c) < αf,cr < αf1 < αf2

Every point within the triangle EFG labeled region I meets
he condition of αf,cr < αf1 < αf(t, x) < αf2. Under this condition,

f
a
f
k

ig. 2. The αf2–αf1 plane divided according to relative magnitudes of αf1, αf2

nd αf,cr for given value of n.

he wave velocity V is a monotonically decreasing function of
oidage αf (as exemplified by the segment MN on curve LPMQN
n Fig. 1).

.1.1. Bed expansion
In this case, the wave velocity is increasing monotonically

long the height in the transition zone between upper dense
hase (αf = αf1) and lower dilute phase (αf = αf2) since voidages
ecrease monotonically along the height and the wave velocity
s a monotonically decreasing function of voidage. As a result,
he transition zone gets wider and wider. This is the expansion
rocess as we have already known.

.1.2. Bed collapse
In this case, the wave velocity is decreasing monotonically

long the height since voidages increase monotonically along
he height and the wave velocity is a monotonically decreasing

unction of voidage. As a result, the transition zone (even if with
certain width initially) gets narrower and narrower and finally

orms a concentration discontinuity. This is also the already well-
nown collapse process. According to Eq. (4), the velocity of
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he discontinuity plane is

S = U1 + uT
αn

f1(1 − αf1) − αn
f2(1 − αf2)

αf1 − αf2
. (6)

.2. Region II characterized by (1 − αp,c) < αf1 < αf2 < αf,cr

Every point in the triangle FHJ labeled region II meets the
ondition of (1 − αp,c) < αf1 < αf(t, x) < αf2 < αf,cr. Under this
ondition, the wave velocity is a monotonically increasing func-
ion of voidage (as exemplified by the segment LM on curve
PMQN in Fig. 1). It can be concluded from an analogous analy-
is that there is no concentration discontinuity but a progressively
roadening and upward-propagating continuous transition zone
hen collapsing. On the contrary, there is a concentration dis-

ontinuity between the upper dense phase and lower dilute phase
hen expanding. According to Eq. (4), the velocity of the dis-

ontinuity plane is

S = U2 + uT
αn

f2(1 − αf2) − αn
f1(1 − αf1)

αf2 − αf1
. (7)

.3. Region III characterized by (1 − αp,c) < αf1 < αf,cr < αf2

Every point in the rectangle FJKG labeled region III meets
he condition of (1 − αp,c) < αf1 < αf,cr < αf(t, x) < αf2. Under this
ondition, the wave velocity is not a monotonic function of
oidage. As exemplified by the segment PMQ on curve LPMQN
n Fig. 1 with αf|P = αf1 and αf|Q = αf2, wave velocity V increases

onotonically with αf in the range of αf1 < αf < αf,cr (see the
egment PM in Fig. 1) and decreases monotonically with αf
n the range of αf,cr < αf < αf2 (see the segment MQ in Fig. 1).
herefore, under this condition, waves in the transition zone
ay exhibit complex process of chasing and overlapping. The

ollowing analysis shows that there is always a concentration
iscontinuity in the transition zone, no matter in expansion or
ollapse. Besides, there may also exist a series of concentration
aves behind the discontinuity.

.3.1. Bed expansion
In this case, dilute phase αf2 is behind dense phase αf1. The

oidage in the transition zone decreases monotonically from the
ottom up, but the wave velocity does not change monotonically.
omewhere in the transition zone there may be a layer with the
astest wave velocity. When the wave with fastest propagating
elocity (referred to as wave M) overtakes the previous waves, a
iscontinuity forms. There must be some waves after the wave M
hich can overtake the discontinuity as well because the propa-
ating velocity of the discontinuity must be less than the fastest
ave velocity (see Eq. (5)), and thus less than the velocity of

ome waves behind the wave M. As a result, the discontinuity is
urther intensified. If αf2 is large enough, in the transition zone
here will be a wave (referred to as wave C with the correspond-
ng voidage named as αf,mid), behind which the waves cannot

atch the discontinuity because the velocity of these waves is
qual to or less than the velocity of the discontinuity. According
o the condition that the wave velocity corresponding to voidage
f,mid, i.e. V(αf,mid), equals the discontinuity velocity VS, αf,mid

i
α

r
b

logy 5 (2007) 363–375

hould satisfy the following relation:

U2 + uT[nαn−1
f,mid − (n + 1)αn

f,mid]

= U2 + uT
αn

f,mid(1 − αf,mid) − αn
f1(1 − αf1)

αf,mid − αf1
. (8)

he above equation shows that αf,mid is just a function of n and
f1 and can thus be written as αf,mid = f(n, αf1). And now, the
hole transition zone consists of a concentration discontinuity

bruptly from αf1 to αf,mid, followed by a continuous transition
rom αf,mid to αf2. If αf2 < αf,mid (that is, αf2 is not so large), then
he discontinuity encompasses all waves in the transition zone
rom αf1 to αf2 without continuous waves following it.

Therefore, as shown in Fig. 2(a), the whole region
II can be divided into two subregions, subregion IIIc
nd subregion IIIb. Subregion IIIb covers the range of
1 − αp,c) < αf1 < αf,cr < αf2 < f(n, αf1). When voidages of αf1
nd αf2 fall into this range, the transition zone degenerates
nto a discontinuity only. Subregion IIIc spans the range of
1 − αp,c) < αf1 < αf,cr < f(n, αf1) < αf2. When voidages of αf1 and
f2 fall into this range, the transition zone consists of a discon-

inuity followed by a series of continuous waves.

.3.2. Bed collapse
In this case, dense phase αf1 is behind dilute phase αf2. The

oidage in the transition zone increases monotonically from the
ottom up, but the wave velocity does not change monotonically.
ll the waves before the wave M (with the fastest wave velocity)

nd some waves after it are packed into a discontinuity. If αf1 is
mall enough, there will be a wave (referred to as wave C with
he corresponding voidage named as αf,mid), behind which the
aves cannot catch the discontinuity. According to the condition

hat the wave velocity corresponding to voidage αf,mid equals
he discontinuity velocity, αf,mid should satisfy the following
elation:

U1 + uT[nαn−1
f,mid − (n + 1)αn

f,mid]

= U1 + uT
αn

f,mid(1 − αf,mid) − αn
f2(1 − αf2)

αf,mid − αf2
. (9)

he above equation shows that αf,mid can be written as
f,mid = f(n, αf2). And now, the whole transition zone consists
f a discontinuity from αf2 to αf,mid followed by a continuous
ransition from αf,mid to αf1. If αf1 > αf,mid (that is, αf1 is not so
mall), then the discontinuity encompasses all waves in the tran-
ition zone from αf2 to αf1 without continuous waves following
t.

Therefore, as shown in Fig. 2(b), the whole region III can
lso be divided into two subregions, subregion IIIc and sub-
egion IIIb. Subregion IIIb covers the range of (1 − αp,c) < f(n,
f2) < αf1 < αf,cr < αf2. When voidages of αf2 and αf1 fall into

his range, the transition zone degenerates into a discontinu-

ty only. Subregion IIIc spans the range of (1 − αp,c) < αf1 < f(n,
f2) < αf,cr < αf2. When voidages of αf1 and αf2 fall into this
ange, the transition zone consists of a discontinuity followed
y a series of continuous waves.
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d
phase velocity at bed surface are defined as αf,h(t) = αf(t,
ig. 3. The αf2–αf1 plane divided according to the characteristics of transition
one for n = 4.0.

Plane αf2–αf1 can now be re-divided into four regions, i.e.
, B, C and D, according to whether the transition zone has a
iscontinuity (shockwave) or continuous waves (see Fig. 3(a)
nd (b)). For the parameter combination (αf2, αf1) in Region
, there are a series of continuous waves in the transition

one without shockwave. For Region B, there is a shock-
ave only in the transition zone without continuous waves.
or Region C, there is a shockwave followed by a series of
ontinuous waves in the transition zone. Corresponding to the
egions A, B and C, the transition zones are named types A,
and C.
For expansion processes, Region A, C and D are just the

egion I, subregion IIIc and region IV, respectively, as mentioned
bove, and Region B consists of the region II and subregion IIIb
see Fig. 3(a)). For collapse processes, Region A, C and D are
ust the region II, subregion IIIc and region IV, respectively,
nd Region B consists of the region I and subregion IIIb (see
ig. 3(b)).

For n = 2.414, the regions in plane αf2–αf1 are shown in

ig. 4(a, expansion) and (b, collapse). It can be seen obviously
rom Fig. 4(a) and (b) that almost only Region A for expansion
nd Region B for collapse are likely to occur.

x
o
t

ig. 4. The αf2–αf1 plane divided according to the characteristics of transition
one for n = 2.414.

. Variation of the bed height h(t) and bed surface
elocity dh/dt

Suppose tb is the time when the front of transition zone just
rrives at bed surface, before which (0 < t < tb) the bed surface
oes up (when expanding) or down (when collapsing) with a
onstant velocity ±(U2 − U1), and te is the time when the tail of
ransition zone passes through bed surface, after which (t > te)
he bed height stops varying and the transient process comes to
he end. If the transition zone degenerates into a discontinuity,
hen tb = te.

.1. Expansion process
U|t<0 = U1, U|t>0 = U2, h|t≤0 = h1, h|t≥te = h2)

Applying Eq. (1) to bed surface (x = h(t)), we obtain
h/dt = up,h(t) = U2 − uTαn

f,h(t) where the voidage and solid
)|x=h and up,h(t) = up(t, x)|x=h, respectively. In the interval
f 0 < t < tb, dh/dt = up,h = U2 − U1 because αf,h(t) = αf1. When
> te, dh/dt = up,h = 0 because αf,h(t) = αf2. In the interval of
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b < t < te when the transition zone of type A passes through the
ed surface, the voidage αf,h(t) changes continuously from αf1
o αf2 and so the solid phase velocity up,h(t), i.e. the bed surface
elocity dh/dt, changes continuously from (U2 − U1) to zero and
he bed height curve h(t) is smooth. When the transition zone of
ype B passes through the bed surface, the voidage αf,h(t) jumps
rom αf1 to αf2, and so the solid phase velocity up,h(t) drops
rom (U2 − U1) to zero and the curve h(t) has a sharp break at
= tb = te. When the transition zone of type C pass through the
ed surface, the voidage αf,h(t) first jumps from αf1 to αf,mid at
he time t = tb, when the discontinuity passes through the bed
urface, and then changes from αf,mid to αf2 continuously when
he continuous waves following the discontinuity pass through
he bed surface sequentially. Correspondingly, the solid phase
elocity up,h(t) first drops from (U2 − U1) to (U2 − uTαn

f,mid) at
= tb and then changes from (U2 − uTαn

f,mid) to zero continu-
usly. So the curve h(t) has a moderate break at t = tb and then
hanges to the terminal value h2 smoothly. For the expansion
rocess, αf,mid = f(n, αf1).

The expressions of tb and te are summarized in Table 1, the
ormulas calculating the bed surface velocity and bed height are
xpressed by Eq. (10) (for Region B, the condition (tb < t < te)
oes not exist), and the typical bed height curves calculated by
q. (10) for n = 4.0 are shown in Fig. 5.

⎧⎨
⎩

αf,h(t) = αf1

up,h(t) = U2 − U1

h(t) = h1 + (U2 − U1)t

(0 < t ≤ tb)

⎧⎨
⎩

up,h(αf,h) = U2 − uTαn
f,h

h(αf,h) = {U2 + uT[nαn−1
f,h − (n + 1)αn

f,h]}t(αf,h)

t(αf,h) = [h1(1 − αf1)]/[nuTαn−1
f,h (1 − αf,h)2]

(tb < t < te)

⎧⎨
⎩

αf,h(t) = αf2

up,h(t) = 0

h(t) = h2 = h1(1 − αf1)/(1 − αf2)

(te ≤ t)

(10)

.2. Collapse process
U|t<0 = U2, U|t>0 = U1, h|t≤0 = h2, h|t≥te = h1)

Applying Eq. (1) to bed surface, we obtain
h/dt = up,h(t) = U1 − uTαn

f,h(t). In the interval of 0 < t < tb,
h/dt = up,h = −(U2 − U1) because αf,h(t) = αf2. When t > te,
h/dt = up,h = 0 because αf,h(t) = αf1. The voidage αf in the
ransition zone of type A changes continuously from αf2 to
f1, so the bed height curve h(t) is smooth. The transition zone
f type B degenerates into a discontinuity, so the curve h(t)
as a sharp break. The transition zone of type C consists of
discontinuity followed by a series of continuous waves, so

he curve h(t) has a moderate break at t = tb and then changes
o the terminal value h1 smoothly. For the expansion process,
f,mid = f(n, αf2).
The expressions of tb and te are summarized in Table 2, the
ormulas calculating the bed surface velocity and bed height in
ollapse process are expressed by Eq. (11) (for Region B, the
ondition (tb < t < te) does not exist), and the typical bed height

c
t
s
s
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urves using Eq. (11) for n = 4.0 are shown in Fig. 6.

⎧⎨
⎩

αf,h(t) = αf2

up,h(t) = −(U2 − U1)

h(t) = h2 − (U2 − U1)t

(0 < t ≤ tb)

⎧⎨
⎩

up,h(αf,h) = U1 − uTαn
f,h

h(αf,h) = {U1 + uT[nαn−1
f,h − (n + 1)αn

f,h]}t(αf,h)

t(αf,h) = [h2(1 − αf2)]/[nuTαn−1
f,h (1 − αf,h)2]

(tb < t < te)

⎧⎨
⎩

αf,h(t) = αf1

up,h(t) = 0

h(t) = h1

(te ≤ t)

(11)

. Experimental validation

Experiments were carried out to validate the above theoretical
nalysis.

.1. Experimental setup and procedure

Fig. 7 shows the experimental setup, including a 2.4 mm-id
nd 1.2 m-high glass column fluidized by water introduced at
ts bottom through a 0.012 m calming section packed with glass
eads, and a high-resistance sieve plate to insure essentially one-
imensional flow in the bed. To conduct experiments with fine
articles in a narrow fluidized bed, high-pressure (15 ± 0.5 MPa)
itrogen is used to press cooled boiled water from storage
hrough control and measurement system into the fluidized bed.
o eliminate the influence of adhering bubbles, particles need

o be soaked in cooled boiled water with continuous stirring,
nd then dried and kept under vacuum for 24 h before use. The
ow rate is measured by means of an indirect method. Since the
articles are very fine and the flow rate needed is very small,
t is critical to guarantee a prompt response of fluidized bed to
he step change of fluidizing velocity in the experiments. There-
ore a horizontal bubble gauge with the same diameter as the
uidized bed is connected directly to the outlet of fluidized bed,
ith an air bubble injected inside. The movement of the bubble

s recorded by a digital camcorder is used to monitor the actual
uidizing velocity in the fluidized bed. The bed height and the

ransient distribution of the particle concentration are recorded
ontinuously by a digital camcorder. A ruler is placed parallel
ith the column axis to guarantee an accuracy of bed height
easurement within ±1 mm.
When the inner diameter gets smaller, the drag force on the

ed wall will become more prominent. Would Eq. (1), derived
y ignoring the drag force on the sidewall, be still valid for a
ed with an inner diameter as small as 2.4 mm? The answer is
ositive. Although the inner diameter of the bed is only 2.4 mm,
t is not so small relative to the particle diameter we used. Many
eported experiments have shown that Eq. (1) is valid under the
ondition of D:dp = 16:1.

In a vertical column with an inner diameter of D, between two

ross-sections at a separation of �z, the drag force of the fluid on
he sidewall Ff,w equals �zπDτf,w, where the shear stress on the
idewall τf,w ∝ μfU/D and U is the superficial velocity in this
ection, as a result, the drag force Ff,w ∝ �zπμfU. The gravity
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Fig. 5. Variation of solid phase velocity up,h and concentration αp,h at bed surface and bed height h with elapsed time t in expansion: (a) Region A; (b) Region B; (c)
Region C.
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Fig. 6. Variation of solid phase velocity up,h and concentration αp,h at the bed surface and bed height h with elapsed time t in collapse: (a) Region B; (b) Region A;
(c) Region C.
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Table 1
Summary of expressions for tb and te during expansion

Domain of αf1 and αf2 Expressions for tb and te

Region B
(1 − αp,c) < αf1 < αf,cr and αf1 < αf2 < f(n, αf1) tb = te = h2/VS = [(αf2 − αf1)h1/uT]/[(1 − αf2)(αn

f2 − αn
f1)]

Region A
αf,cr < αf2 < 1 and αf1 < αf2 < 1 tb = h1/[V (αf1) − (U2 − U1)] = (h1/uT)/[nαn−1

f1 (1 − αf1)],

te = h2/V (αf2) = [(1 − αf1)h1/uT]/[nαn−1
f2 (1 − αf2)2]

Region C
(1 − αp,c) < αf1 < αf,cr and f(n, αf1) < αf2 < 1 tb = h1/[V (αf,mid) − (U2 − U1)] = (h1/uT)/[αn

f1 + nαn−1
f,mid − (n + 1)αn

f,mid],

te = h2/V (αf2) = [(1 − αf1)h1/uT]/[nαn−1
f2 (1 − αf2)2]

Table 2
Summary of expressions for tb and te during collapse process

Domain of αf2 and αf1 Expressions for tb and te

Region B
αf,cr < αf2 < 1 and max{f(n, αf2), (1 − αp,c)}< αf1 < αf2 tb = te = h1/VS = [(αf2 − αf1)h2/uT]/[(1 − αf1)(αn

f2 − αn
f1)]

Region A
(1 − αp,c) < αf2 < αf,cr and (1 − αp,c) < αf1 < αf2 tb = h2/[V (αf2) + (U2 − U1)] = (h2/uT)/[nαn−1

f2 (1 − αf2)],

te = h1/V (αf1) = [(1 − αf2)(h2/uT)]/[nαn−1
f1 (1 − αf1)2]

Region C

2/[V

1/V (

f
p

r
q
i
fl
t
r
g
t

i
v
ρ

d
t
d
d
1

F
v
1

αf,cr < αf2 < 1 and (1 − αp,c) < αf1 < max{f(n, αf2), (1 − αp,c)} tb = h

te = h

orce of the mixture equals �z(π/4)D2(αfρf + αpρp)g and the
ressure drop is equal to �z(π/4)D2dp/dz.

In single-phase pipe flow with a given flow velocity U, the
atio of the drag force on sidewall to the gravity force increases
uickly when the inner diameter of pipe D decreases (the ratio
s proportional to D−2). However, it is completely different in
uidized bed. The drag force on sidewall is comparable with

he gravity force under the condition that the voidage αf in bed,

ather than the superficial velocity U, remains constant. For a
iven αf, the superficial velocity U is proportional to the par-
icle settling velocity uT (Richardson–Zaki expression) and uT

m
T
d

ig. 7. Experimental setup for fine-particle fluidization: 1, nitrogen cylinder; 2, start
alve; 7, solenoid valve; 8, precision flow control valve; 9, check valve; 10, cut-off va
6, air bubble; 17, glass pipe; 18, ruler; 19, tube.
(αf,mid) + (U2 − U1)] = (h2/uT)/[αn
f2 + nαn−1

f,mid − (n + 1)αn
f,mid],

αf1) = [(1 − αf2)(h2/uT)]/[nαn−1
f1 (1 − αf1)2]

s approximately proportional to ρpd
2
pg/μf, so the superficial

elocity U and drag force on sidewall Ff,w are proportional to
pd

2
pg/μf and �zρpd

2
pg, respectively. As a result, the ratio of

rag force to gravity force is proportional to d2
p/D2. Therefore

he effect of the drag force on sidewall does not rise with the
ecrease of the diameter of column D as long as the ratio D2/d2

p
oes not decrease. Actually, in Slis’ experiments (Slis et al.,
959), D = 30 mm, d = 3 mm, D:d = 10, and in Jin’s experi-
p p
ents (Jin & Liu, 2005), D = 30 mm, dp = 1.8 mm, D:dp = 16.6.
heir experiments showed that it was reasonable to ignore the
rag force on the sidewall.

valve; 3, filter regulator; 4, start valve; 5, pressurized water reservoir; 6, cut-off
lve; 11, pressure gauge; 12, flowmeter; 13, fluidized bed; 14, DV/DC; 15, ruler;
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Table 3
Properties of the materials used in experiments

ρp (kg/m3) 2.6 × 103

ρf (kg/m3) 1.0 × 103

dp (mm) 0.15
αp,c 0.62
n
u

5

T
w
i

p
s
t
r
r
i
t
t
a
s
t
i

5

w
s
α

c
l
o
c
l

F

o
p
o
s
o
o

(
c
h
s

w
i
d

t
D
a
a
c
e
c

t
d
t
b
m
s
f
c
t
f
n
c
i

4.00

T (m/s) 0.0267

.2. Experimental materials

Glass beads were carefully sieved between two close meshes.
he particle density ρp was determined pycnometrically with
ater. Properties of the materials used in experiments are listed

n Table 3.
In order to determine the Richardson–Zaki exponent n and

article setting velocity uT, we performed a set of steady-
tate experiments at different fluidizing velocities Ui, recording
he corresponding bed height hi and calculating the cor-
esponding voidage αf,i based on the particle conservative
elationship h0αp,c = hi(1 − αf,i) (i = 1, 2, 3, . . .), where αp,c
s the packed particle concentration and h0 the bed height at
he packed state. We fitted these data (Ui and αf,i) against
he Richardson–Zaki expression Ui = uTαn

f,i and got n = 4.00
nd uT = 0.0267 m/s with a correlation coefficient of 0.9976, as
hown in Fig. 8. Results of steady-state experiments show that
he Richardson–Zaki expression is also tenable for fine-particles
n a narrow fluidized bed.

.3. Experimental results

Several experimental evidences about the following two facts
ill be provided in this section to validate the theoretical analy-

is described above. First, when the parameter combination (αf1,
f2) lies in region I in Fig. 2, the transient process of fine parti-
les with larger Richardson–Zaki exponent n behaves like that of
arger particles with smaller n, that is, there is a transition zone

f type A (a progressively broadening and upward-propagating
ontinuous transition zone) between upper dense phase and
ower dilute phase during bed expansion, and a transition zone

ig. 8. Fitting experimental data on variation of voidage with fluidizing velocity.

a
d
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f type B (a concentration discontinuity) between upper dilute
hase and lower dense phase during bed collapse. Second, under
ther conditions for fine particles, on the contrary, there is a tran-
ition zone of type B during bed expansion, and a transition zone
f type A during bed collapse. Our primary interest was focused
n the second fact.

A direct method to judge transition zone type is to observe
or measure) the zone width to see whether a concentration dis-
ontinuity exists or not. Another method is to observe the bed
eight curve h(t) to see whether it is a smooth curve or has a
harp break.

The fine particles used in our experiments are the glass beads
ith diameter dp = 0.15 mm (n = 4.0), and larger particles used

n the control experiments are the glass beads with diameter
p = 1.8 mm (n = 2.414).

Initially, a series of transient process experiments of fine par-
icles were carried out in a fluidized bed with inner diameter

= 10 mm, including expansion and collapse of type A and B,
nd using a camcorder to record the whole bed height variation,
nd the results were found in good agreement with the theoreti-
al predictions, though, neither a concentration discontinuity in
xpansion of type B, nor a discontinuity in collapse of type B
ould be seen.

During experiments, we observe the concentration according
o the intensity of the transmitted light. If there is an intensity
iscontinuity in the image, there will be a concentration discon-
inuity in the bed. But the light scattering caused by particles in
ed may obscure the view of concentration discontinuity, or even
ake the blurred discontinuity disappear from the view. Light

cattering is much stronger for fine particles than large ones
or the same thickness of two-phase medium and same particle
oncentration. This may explain the phenomena that no concen-
ration discontinuity was observed in transition zone of type B
or fine particle collapsing, though the concentration disconti-
uity appears clearly when using larger particles under the same
onditions. Following this clue, we conducted a series of exper-
ments in beds with smaller inner diameters, D = 6 mm, 4 mm
nd 2.4 mm, under the similar conditions. As the inner diameter
ecreased, the visibility of the concentration discontinuity was
mproved, and for D = 2.4 mm, the concentration discontinuity
ecame visible both in the collapse process of type B and in the
xpansion process of type B.

In all experiments, the bed was first maintained at a steady-
tate before a step change of fluidizing velocity was introduced.
nder steady-state condition, the voidage throughout the bed

s uniform. The bed experienced an expansion or collapse pro-
ess upon a step increase of fluidizing velocity from U1 to U2
r a step decrease from U2 to U1 was introduced, respectively,
here U1 < U2. The results of the bed height and concentration
iscontinuity displacement prove a good agreement between
he experimental data and model predictions, as shown in
igs. 9 and 10.

In the collapse process with the parameter combination (αf1,

f2) falling into Region B (see Fig. 3(b)), we see a concentration
iscontinuity in the bed (see Fig. 11(b)) and the bed height curve
(t) has a sharp break at t = tb ≈ 60 s (see Fig. 9(b)). In the expan-
ion process with the parameter combination (αf1, αf2) falling
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Fig. 9. Comparison between experiments and calculations of collapse processes in a fine particle fluidized bed: (a) αf1 and αf2 in Region A; (b) αf1 and αf2 in Region
B; (c) αf1 and αf2 in Region C.

Fig. 10. Comparison between experiments and calculations of expansion processes in a fine particle fluidized bed: (a) αf1 and αf2 in Region A; (b) αf1 and αf2 in
Region B; (c) αf1 and αf2 in Region C.
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Fig. 11. Transient distribution of concentration during collapse process in a fine
p
a
c

i
w
b
c
a

α

b
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p

Fig. 12. Transient distribution of concentration during expansion process in a
fi
a
e

R
F
(
e
p

article fluidized bed: (a) αf1 = 0.42 and αf2 = 0.59 in Region A; (b) αf1 = 0.60
nd αf2 = 0.83 in Region B. Note: (A) a snapshot taken at an instant of bed
ollapse; (B) digitized grey scale chart; (C) grey value profile along the bed.

nto Region A (see Fig. 3(a)), we see a transition zone in the bed
here the concentration changes slowly (see Fig. 12(a)) and the
ed height curve h(t) is smooth (see Fig. 10(a)). These are the
haracteristics of collapse and expansion processes as we have
lready known.

In the collapse process with the parameter combination (αf1,

f2) falling within Region A, we see a transition zone in the
ed where the concentration changes slowly (see Fig. 11(a))
nd the curve h(t) is smooth (see Fig. 9(a)). In the expansion
rocess with the parameter combination (αf1, αf2) falling within

e
t
a

ne particle fluidized bed: (a)αf1 = 0.62 andαf2 = 0.83 in Region A; (b)αf1 = 0.42
nd αf2 = 0.59 in Region B. Note: (A) a snapshot taken at an instant of bed
xpansion; (B) digitized grey scale chart; (C) grey value profile along the bed.

egion B, we see a concentration discontinuity in the bed (see
ig. 12(b)) and the curve h(t) has a sharp break at t = tb ≈ 44 s
see Fig. 10(b)). Such transient characteristics of collapse and
xpansion have not been seen in the fluidized bed with larger
articles.
If the parameter combination (αf1, αf2) falls within Region C
ither in collapse process or in expansion process, the composi-
ion of the transition zone is complicated and we cannot record
fine and clear snapshot, however h(t) data obtained in exper-
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the Stokes flow regime using two-phase flow theory. AIChE Journal, 45(4),
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ments agree well with the model predicted ones as shown in
igs. 9(c) and 10(c).

. Conclusions

1) Although bed expansion and collapse are converse pro-
cesses, their transient phenomena are quite different due
to the non-linear characteristic of Eq. (2), that is, the wave
velocity V is not constant but a function of voidage αf. The
voidage in the transition zone changes monotonically from
the bottom up, thus resulting in chasing and interaction of
waves. The function relation between V and αf is depen-
dent on the exponent n, and so both Vmax and αf,cr, the
voidage corresponding to the maximum wave velocity, are
dependent only on the exponent n.

2) If the parameters αf1 and αf2 in expansion or collapse
processes fall into the range of αf,cr < αf1 < αf2, we may
see a concentration discontinuity propagating upward from
the distributor when collapsing and a progressively broad-
ening and upward-propagating continuous transition zone
when expanding. These are the phenomena we have already
known. This paper reveals theoretically that the contrary
cases may occur for fine particles if the parameters αf1
and αf2 fall into the range of αf1 < αf2 < αf,cr. Our exper-
iments have proved that, for fine particles with 0.15 mm
diameter in a fluidized bed with inner diameter of 2.4 mm,
a concentration discontinuity may appear in an expan-
sion process and a continuous transition zone may appear
in a collapse process. If the parameters αf1 and αf2 fall
into the range of αf1 < αf,cr < αf2, we may see a concentra-
tion discontinuity followed by a succession of continuous
waves in expansion process and in collapse process as
well.
3) As the basis of theoretical analysis in this paper, LEM model
has proved capable of predicting dynamics in fluidized bed,
meaning that it catches the essential aspects of two-phase
flow in fluidized bed.

v

logy 5 (2007) 363–375 375

4) Whether the effect of drag force on bed wall can be ignored
in liquid–solid fluidization depends mainly on the ratio of
bed diameter to particle diameter rather than the bed diam-
eter itself. Bed height variations measured in the 2.4-mm-id
bed with 0.15 mm diameter glass beads agreed well with the
predictions of theoretical formula developed, in which the
drag force effect on wall had been neglected.
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