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ABSTRACT: Damage-induced anisotropy of quasi-brittle materials is investigated
using component assembling model in this study. Damage-induced anisotropy is
one significant character of quasi-brittle materials coupled with nonlinearity
and strain softening. Formulation of such complicated phenomena is a difficult
problem till now. The present model is based on the component assembling
concept, where constitutive equations of materials are formed by means
of assembling two kinds of components’ response functions. These two kinds
of components, orientational and volumetric ones, are abstracted based on
pair-functional potentials and the Cauchy-Born rule. Moreover, macroscopic
damage of quasi-brittle materials can be reflected by stiffness changing of
orientational components, which represent grouped atomic bonds along discrete
directions. Simultaneously, anisotropic characters are captured by the naturally
directional property of the orientational component. Initial damage surface in the
axial-shear stress space is calculated and analyzed. Furthermore, the anisotropic
quasi-brittle damage behaviors of concrete under wuniaxial, proportional, and
nonproportional combined loading are analyzed to elucidate the utility and
limitations of the present damage model. The numerical results show good
agreement with the experimental data and predicted results of the classical
anisotropic damage models.
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INTRODUCTION

HE DAMAGE OF most quasi-brittle materials, such as certain ceramic,

concrete, or rocks has significant anisotropic characteristics generally
even if these materials are originally isotropic (Kachanov, 1992; Lemaitre,
1992; Murakami and Kamiya, 1997; Skrzypek and Gancarski, 1998). For
most brittle or quasi-brittle materials, the generation, nucleation, and
growth of the distributed and oriented microcracks are predominant in this
damage process to cause the distinct deterioration of material properties in
different directions, which can be observed experimentally (Litewka, 1986;
Litewka et al., 2003). This problem of damage with oriented microcracks is
generally called damage-induced anisotropy or anisotropic damage.
Anisotropic damage usually accompanied by nonlinearity and strain
softening is a complicated and difficult problem.

Continuum damage mechanics (CDM) and microscopic damage
mechanics have investigated such deteriorating phenomena from different
aspects. In CDM, the damaged quasi-brittle material may be treated as a
fictitious continuum with microcracks uniformly smeared within its volume.
Therefore, the associated damage induced anisotropy has been modeled at
the macroscopic level by means of vector damage variable (Krajcinovic and
Fonseka, 1981; Singh and Digby, 1989), second-order damage tensor
(Murakami and Kamiya, 1997, Halm and Dragon, 1998; Dragon et al.,
2000; Litewka and Debinski, 2003), fourth-order damage tensor (Chow and
Wang, 1987; Simo and Ju, 1987; Chaboche, 1993; Chaboche et al., 1995), or
even higher order damage tensor (Krajcinovic and Mastilovic, 1995).
Microscopic damage mechanics aims to solve this problem by relating the
microstructural state of the damaged material to its macroscopic response
(Horii and Nemat-Nasser, 1983; Krajcinovic, 1989; BaZant and Planas,
1998; Basista, 2003; Pensee and Kondo, 2003). In spite of the great progress
in this field, some limitations still exist in these phenomenological and
micromechanical damage models. First, the formulations of most
anisotropic damage models are too complex to be implemented in a
practicable and efficient manner with many material parameters to be
specified (Krajcinovic, 2000; Leukart and Ramm, 2003; Feng et al., 2004).
Second, in most models, microcracks are assumed to have fixed directions,
but they usually do not have the same orientation during damage process
even if the principal stress direction remains fixed. It is still a hard problem
as far as the directions of microcracks are concerned. Third, most of the
previous damage models feel hard to deal with problems of complex
loadings (Feng et al., 2004). Finally, with the improvements in computing
technology, an anisotropic damage model is expected to be not only
representing the underlying microstructures but relatively convenient in



Damage-induced Anisotropy of Quasi-brittle Materials 199

implementation into computing programs. Hitherto, the formulation
of mechanical behaviors of damaged quasi-brittle materials is still one
of the actual problems of mechanics of solids (Dragon, 2002; Pensee and
Kondo, 2003; Feng et al., 2004).

Based on the pair-functional potentials and the Cauchy-Born rule,
Deng et al. (2006) promoted the component assembling model (CAM)
to exploit the material behaviors in a relatively simple way. The
total potential energy of the deformed material is calculated by
‘pair-functional’ potentials which are composed of pair potentials and
embedding potentials. Pair potentials are grouped according to discrete
directions of atomic bonds such that each group is represented by
a one-dimensional orientational component. Meanwhile, a volumetric
component is derived from the embedding potentials. Therefore, the
material can be treated as components assembly and its constitutive
equations are formed by means of assembling these two kinds of
components’ response functions. Thus, macroscopic behaviors of damaged
material can be reflected by the stiffness changing of these orientational
components. Simultaneously, the anisotropic behavior of damaged quasi-
brittle materials is captured by the naturally directional property of this one-
dimensional orientational component.

This article focuses on the study of the damage-induced anisotropy of
quasi-brittle materials using the component assembling model. In the
following section, the CAM for damage analysis is introduced from a
viewpoint different from that of Deng et al. (2006) and the reason for
anisotropic prediction is described. Verification of this model and the
description of damage-induced anisotropy should be preceded by wide and
detailed analyses. Therefore, numerical schemes for special cases are
discussed. Verifications by comparisons with experiment (Gopalaratnam
and Shah, 1985) and the classical anisotropic damage model promoted by
Murakami and Kamiya (1997) (MK model) are investigated and discussed
in detail. In the last section, a concise conclusion about the validation of the
present model is given.

COMPONENT ASSEMBLING MODEL FOR DAMAGE ANALYSIS

For quasi-brittle materials, at the atomic scale, damage is the continually
debonding process of atomic bonds. Whereas the damage process is the
continuous evolution of microcracks at the microscopic -scale, at the
macroscopic scale, the damaged material shows deterioration of overall
mechanical properties, as illustrated in Figure 1. As the orientation of
microcracks can be observed experimentally (Litewka, 1986; Litewka et al.,
2003), similarly, the fundamental process of debonding also has this
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Figure 1. Damage of quasi-brittle materials in multi-scales.

directional character. Therefore, it is reasonable to describe damage by
considering the physical and geometrical nature of the solid microstructures
from the crystal lattice. This concept has been exploited in previous works
(Woo and Li, 1993; Gao and Klein, 1998; Krajcinovic, 1998, 2002; Miller
et al., 1998) and is investigated in CAM.

Introduction to the Component Assembling Model

Considering that the solid material is composed of a huge number
of atoms, the potential energy can be approximately expressed in the form
of pair-functional potentials (Phillips, 2001) in Equation (1),

1 .
Eexact - Etot = EZ ¢(RI]) + Z F()Oi)- (1)
i i

The first term 1/2 Zy @(Rj;) describes interatomic pair potentials representing
the repulsive interactions among atomic nucleus and depends only on the
atomic spacing R;. The second term Y. F(p;) is the embedding potentials
describing the attractive interactions between the nucleus and electrons, which
is the function of the local electron density p;. When external work is applied,
atoms are displaced from their previous equilibrium positions and the electronic
density may vary too, so the total potential energy of this material is changed
consequently. The changed total potential energy per unit volume (also known
as strain energy density, U) can be calculated through the current and initial
configurations of all atoms in this unit volume in the form of

1
U= I—/[ Etotidef - EtOtIref] (2)
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where V is the current volume, and FEiglger and Eiotlyr denote the total
energy at the current and initial configurations, respectively. However,
direct calculation of the changed total potentials from pair-functional
potentials is a huge job to run over all pairs of interactive nuclei for pair
potentials and all nuclei for embedding potentials.

The CAM (Deng et al., 2006) provides a relatively effective tool to
reduce the huge degrees of freedom in this computation. Based on the
Cauchy-Born rule (Phillips, 2001; Steinmann et al., 2007) assuming that the
atoms in a material subject to a homogeneous deformation move according to
a single mapping from the undeformed to the deformed configuration, equally
distributed atoms in one direction follow the same deformation locus.
Therefore, the pair potentials 1/2 Zij d(Rj)can be reformulated alternatively:
the pair potentials of thousands of interactive nuclei are grouped according to
the finite directions of interatomic bonds, E, denotes the total pair potentials
along the direction #° in unit volume, thus the changed pair potentials Upa;,
can be rewritten as the summation of strain energy density E; stored at atomic
bonds groups instead of computations of all pairs of interactive nuclei

1
)
m Ry//n® Ry//n® -
—ZVK Z ¢<RU)) ~< Z ¢(R,,)) :l:ZES.
def ref. s=1

This atomic bonds group is called orientational component. As the pair
potentials along one direction have only two possibilities: increase or decrease,
for orientational component, it behaves under tension or compression only.
Therefore, orientational component is a typical one-dimensional component.

Based on the Cauchy-Born rule, strain of the orientational component
along a specified unit direction #° has kinematic relations with macroscopic
strain &; as follows:

3)

2 =mney. “)
The sustained stress /* along this direction can be expressed by:
P =K AQ . (5)

Thus strain energy density stored in one orientational component can be
expressed in the form of

E = %KSAQS()LS)Z (6)
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where KSAQS = (1/2V) Z Ryf fre [¢" RZ ¢'Ry] is the stiffness of this
orientational component denved from pair-functional potentials (Deng
et al., 2006), R;; indicates the initial atomic bond length parallel direction »°,
AS2® is the solid angle occupied by this direction, and K°*AQ® represents the
dependency of the pair potentials to the changing of all atomic bonds’ length
parallel to this direction in unit volume. Thus, from Equations (3), (4), and
(6), E; can be reformulated as:

R’I//" Rt///"
K Z ¢<Ru>> -( Z ¢(R,,)) }
def ef (7)

1 1

=5K SAQE (A = EKSAQSSUSkaS-n;I’l]S‘J’l?.

The microstructure and its evolution relating the interatomic bonds are
embodied on this energy changing in orientational components. Therefore,
the change of the pair potentials can be obtained by the summation of all
orientational components’ strain energy density,

m n

Upair = ZE Z (K AQ )eyermymmn;. ®)

Similarly, for the embedding potentials Y, F(p;) that are dependent on the
local electron density, based on the Cauchy-Born rule, their changes are
related to volumetric change. Because of homogeneous deformation, the
relations between the volumetric strain ey and the changed embedding
potentials Uempedding are set up in the form of

ev = &i = &;8; ®

I 1
Uembedding = ? |:<Z F(ﬁl)) - (Z F(ﬂl)) :! =% ®(8V)2 ®81j8k15y6k1
=1 def i=1 ref.
(10)

where © = 1/VY_.(F"p? + F'p;) is the bulk modulus (Deng et al., 2006),
representing the dependency of embedding potentials on the change of the local
electron density, and §; is the Dirac delta function. Therefore, a volumetric
component is abstracted to characterize the variation of the embedding
potentials. The born hydrostatic stress p of volumetric component is written as:

P = O¢y. (11)
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Thus the strain energy density of deformed material U is calculated from
the components assembly instead of running over all pairs of interactive
nuclei for pair potentials and all nuclei for embedding potentials:

1
U= 'I_/{Etotldef"Etotlref] = Upair + Uembedding
.y | (12)
= KSAQS)nS W E 6K + 3 Osjiewdidr.

s=1

Once the strain energy density of solid materials is given, the constitutive
equations can be derived consequently as:

aU n n
O == Z (K°AQ Y njenin; + Operdy = Z mim; +pdy  (13)
J s=1 s=1
32 U m
Cip = 5 = = > (KAQ)Emnn; + Odudy. (14)
508k 5o

After the above discussion, the bridge between macroscopic material
responses and components’ behaviors are connected as shown in Figure 2.
As observed in Equations (12)-(14), the strain energy density, macroscopic
stress, and the constitutive equations can always be reformulated as

Component assembling model

Macro strain
g
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A e,

Component stress
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Macro stress
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|

Figure 2. Bridge between component- and macro-levels in CAM.
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the assembling of the response functions of components. These two kinds
of components possess simple constitutive relations as expressed in Equations
(5) and (11), but the CAM is able to put complicated mechanism into simple
components’ response. The key idea of the CAM that emerges is to deconstruct
the complicated phenomena into simple components’ response functions and
reconstruct to reflect real material’s behaviors by simple assembly.

For homogeneous materials, if enough orientational components spread all over
the space, the summations form in Equation (14) is rewritten in the integral form,

AQ = sin pd®dyp (15)

/2 e
Cijrr = / / K*mimsnyn; sin pdpd® + 068,y (16)
o Jo

The integral of Equation (16) can be transformed to discrete summation
for numerical computing, and the finite selected directions turn into
orientational components’ directions in Figure 3 as expressed in the form
M
Ciwt = Y KnnSmnidQ + 088 (17)
s=1

where M denotes the number of finite selected directions.

2

Figure 3. 3D spatial distribution of orientational components in unit hemisphere in CAM.
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For homogeneous and isotropic elastic material, the stiffness K* for each
orientational component is the same and kept constant, and the bulk modulus
© can also be treated as a constant under small deformation. Therefore,
integrating Equation (16) on the upper half of a unit sphere yields,

2 2
Cit = (TS-K + ®)5fj5k1 + EK(aikajI + k). (18)

Compared with traditional continuum mechanics, K and ® are determined
respectively according to the Young’s modulus E and Poisson’s ratio v.

15E
~ dn(1 1)
o__ W-DE
2(1 +v)(1 —2v)

(19)

Component Assembling Model for Damage Analysis

For simplicity and exploiting the capability of the CAM primarily, the
parameter @ of volumetric component is assumed to be unchanged during
the damage process. Thereby, the damage process on the orientational
component only is investigated.

For quasi-brittle damage, two levels, component level and macroscopic level,
are encompassed in CAM. At the component level, its stiffness X*° varies with
the oriented process of atomic debonding, as the orientational component is
directionally grouped atomic bonds. The more the atomic bonds are broken,
the more the decrease in stiffness. Therefore, a scalar parameter D° is
introduced to represent the deterioration of orientational component as:

D=1-2t (20)

where Kj and K3 denote the initial and instantaneous stiffness of the
orientational component, respectively. This damage variable D® can vary in
the range [0, 1]. Each orientational component has a specific damage factor
D’ to characterize its current damage state. Consequently, the sustained
stress f of a typical component varies according to the damage factor D®

f5 =K% = (1 = D)K. @1
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Substituting Equation (21) into the constitutive Equation (17), one can
obtain the constitutive equations for quasi-brittle damage:

M M
o = Zfsnf.n; + péy = {Z (1 = D )Kymnimen; + @8U5k1}8k1. (22)
s=1 s=1

The fourth-order stiffness tensor C with damage can be expressed as:
~ M
Cp=3 {0~ DKy | + @88 (23)
s=1

In order to be compared with other macroscopic damage models, at the
macroscopic level, a fourth-order damage tensor D is directly derived based
on the components status to predict the deterioration of overall material
properties.

. [,
Tkl 4 i
D=1 Sfy]'kl - [(é’)_l];: )

(i,j,k, ! are not summed)

where S is the virgin compliance tensor and S* is the current compliance
tensor. § has the form

S=C. (25)

From Equations (23) and (24), damage-induced anisotropy is embodied
because of different damage states of each orientational component.
Mechanical properties in different orientations may vary for the directional
property of microcracking in solid materials. Anisotropy is exactly the
macroscopic response to this directional dependency. Macroscopically,
damage-induced anisotropy is very complicated as far as microcracks are
concerned. However, at component level in CAM, this problem is simplified
substantially. In the present damage model, damage is depicted by the
stiffness variation of the orientational component only. For initial -
homogeneous and isotropic materials, the stiffness and evolution law are
the same for each orientational component. However, with respect to the load
direction, each component holds different damage conditions independently
in different orientations. Therefore, damage-induced anisotropy is reflected by
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different damage states of orientational components during this damage
process. Thus, this complicated question of oriented microcracks is simplified
conveniently in the present damage model.

NUMERICAL IMPLEMENTATION

For numerical implementation of the CAM, concrete constitutive forms
of the orientational component should be specified primarily. For this
component, one bilinear strain—stress curve is employed in this study as
shown in Figure 4. A. is the threshold strain for initial damage, A, is the
ultimate strain, and its initial stiffness K is determined in Equation (19).
Once component’s strain A exceeds A., damage begins. As discussed before, it
is admitted that every orientational component follows the same strain—
stress curve for initial isotropic materials.

Case of Uniaxial Tension

In the case of the uniaxial tension analysis, for simplicity, it is
assumed that the tensional and compressional characters of orientational
component are the same. Therefore, only four material parameters A, 4, Eo,
and vy are involved as independent variables in this damage model for
uniaxial tension.

A rectangular coordinate system (x, x5, x3) is employed, where x| is taken
as the direction of load. &, is positive, while &5, and &j; which are

1.0 =

0.6 - KS
04
02k

0.0

-02 |-

04 F

Normalized stress f/fmax

06 F
-08 p

-1.0

Strain 4
Figure 4. Stress versus strain (f — }) curve for the orientational component.
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perpendicular to the loading direction x, are negative. The elastic stress is
given as:

[ea}} 0 0
bl=] 0 0 0, o;>0. (26)
0 0 0

The state of strain has the form:

g, 0 0
[1=] 0 &, 0 @7
0 0 &%

The constitutive equations can be expressed as:

o1 = élmé‘fl + 61122852 + 61133853 (28)
o0 = Copie$, + Comely + Carz3e53 =0 (29)
o33 = Ca31165, + Cines, + 5’3333833 =0 (30)

C is the stiffness tensor with damage as expressed in Equation (23).

According to Equations (28)—(30), three > unknown quantities &5, £5,, and €4,

can be solved and the stiffness tensor C is determined simultaneously.
Therefore, the apparent Poisson’s ratio ¥ can be obtained in the form

Vpp = — == (31
€11

- &%

Vi3 = —%. (32)
&1

Macroscopic damage tensor is defined as the variation of compliance tensor
§ as expressed in Equation (24). Thus, the damage variablesDi111, Dy,
D3333 and the effective Young’s modulus E; can be reformulated
consequently:

(€] . -

Dun=1-
1111 ét _1] E()
1111
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Figure 5. Flow chart of inversion process from strain space to stress space.
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(34

(35)

(36)

where E is the effective Young’s modulus along the load direction and E, is
the initial Young’s modulus. Within this study, 2560 orientational
components and 1 volumetric component are incorporated.

Case of Inverse Process from Strain Space to Stress Space

The present damage model is formulated in strain space. However,
one needs to discuss questions in stress space in some cases, such as
non-proportional loading problem. Therefore, an inverse process is
needed for the present model. The detailed algorithm of implementation
is listed in Figure 5, where the state at the start of a loading increment is
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denoted as n and the end state as n+ 1. For given macroscopic strain ¢”,
corresponding compliance tensor " can be determiggd, where compliance
tensor $” is the inverse tensor of stiffness tensor C . For next iteration,
S+ is assigned value of the compliance tensor S”. Thus, for a given
stress increment Ae”"', corresponding strain increment Ag'*lis approxi-
mately obtained using the compliance tensor S”*!. This iteration
continues until the end.

NUMERICAL EXAMPLES

In this section, four numerical examples are provided to evaluate the
accuracy of the present model and its ability to predict the damage-induced
anisotropy. These numerical simulations include the prediction of initial
damage surface, uniaxial tension, and non-proportional loading problems.
The numerical results are compared with experimental data and the
predicted results of the MK model, respectively.

Initial Damage Surface in Stress Plane (641, 612)

The initial damage surface can be easily obtained through orientational
components’ assembly where the complex six-dimensional strain—stress
space is decomposed into one-dimensional component space in CAM as
expressed in Equations (22) and (23). For each orientational component, it
has only two conditions, tension or compression. Therefore, initial criteria
for damage are promoted for tension and compression components,
respectively:

max{A’,;s=1,...m} = 2}, in tension
(37

min{A’,s=1,...m} =47, incompression
where A7 and 1] are threshold values for tension and compression
components, respectively. For a specific proportional loading path,
once the strain of an orientational component A° reaches its threshold,
damage begins. Therefore, -initial damage surface comes into being
in stress subspace after running over all proportional loading paths
accordingly.

In stress subspace (011, 012), €11, €29, £33 and &, are the only four non-zero
components of strain. Substituting these non-zero strain components
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into Equation (4), the strain of orientational component in direction »° can
be expressed as:

2
7 = Z00)? = () = )]+ 2+ . (38)

For each loading path, there is a specific corresponding direction where
the strain (tension/compression) of orientational component varies fastest, that
is to say, there is a specific orientational component to reach threshold value first
for each loading path. Then, according to initial criteria for damage as expressed
in Equation (37), initial damage surface is advantageously drawn up in stress
subspace (011, 012) after running over all loading paths as shown in Figure 6.
As observed in Figure 6, the predicted initial damage surface by
the present model with four material parameters, £=21.4 GPa, Poisson’s
ratio v=0.2, /QL = 0.0004, and 4, = —0.001, is consistent with the predicted
results by the MK model with nine parameters. Intersecting points of initial
damage surface and stress axes are the same for these two models, and initial
damage surface in the first and fourth quadrants fits close. However,
there exist salients in the second and third quadrants for the present model.
The reason is that in the right hand of the salient, initial damage surface
is controlled by components in tension, yet, in the left hand of the salient,

20 . T : - :
B Murakami & Kamiya (1997)
Present model 1
- 10 B
g
= J
ja
]
2 0
2
®
&
@
<
w
T _
-20 L i P ) . i i
-20 -10 0 10 . 20

Axial stress oy (MPa)
Figure 6. Initial damage surface (Poisson’s ratioc =0.2).
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damage surface is decided by components in compression. Therefore, the
convex corner is formed by juncture because threshold values for tension
and compression components are different.

Further investigations of initial damage surface have been performed on
the effect of Poisson’s ratio. Under the conditions of A} = 0.0004,
/e = —0.001, and E=21.4GPa, 0.2, 0.3, and 0.4 are assigned to Poisson’s
ratio respectively. It can be seen from Figure 7 that intersecting points of
damage surface and axial stress o, axis remain unchanged with the
variation of Poisson’s ratio. That is to say, initial damage points for uniaxial
tension and uniaxial compression are independent of Poisson’s ratio.
However, the area enclosed by damage surface decreases with the increase of
Poisson’s ratio. This is mainly because the influence of the one axial loading
to lateral axis increases with the Poisson’s ratio. Therefore, components’
strain will increase accordingly. This means the component reaches its
threshold value more quickly. In this way, the area of initial damage surface
will shrink with the increase of Poisson’s ratio. Moreover, the salient angle
becomes smooth and eventually disappears with the increment of Poisson’s
ratio as indicated in Figure 7. This reason can be revealed from computed
results. In the case of Poisson’s ratio v=0.3, the convex angle moves
leftwards and becomes flat because the area controlled by compression

15 ¥ T T T v T T T v ¥ T T I T
e Poisson's ratio = 0.2
" = = = Poisson's ratio = 0.3
10 - = = «Poisson's ratio =0.4

Shear stress oy, (MPa)
[

R TR

g -
e e e e e e e o

10 =

_15 A L . ! : ! : ! ) . 1 L I R
-25 —20 -15 -10 -5 0 5 10 15

Axial stress oy (MPa)

Figure 7. Effect of the Poisson’s ratio to initial damage surface.
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components is reduced. Finally, when Poisson’s ratio is 0.4, the whole region
of initial damage surface is controlled by tension components only, then
convex angle is eliminated.

Uniaxial Tension

CASE I: COMPARISONS WITH EXPERIMENTAL DATA

The authors confirm the validity of the present model and numerical
implementation by experimental data first. In doing so, the predicted results
of the present model are compared with the test results under uniaxial
tension of unconfined concrete specimen, which was performed by
Gopalaratnam and Shah (1985).

The material constants for the present model are determined below:
Ey=31.8GPa, vy=0.18, 1.=0.0001, and 4,=0.00015.

Numerical results are compared with experimental data as illustrated in
Figure 8. There is an accurate estimate for the peak load and the pre-peak
phase. However, an overestimation of material tensile strength at the first
half of softening branch is observed and the stress is reduced to zero quickly.
This is mainly caused by the bilinear strain-stress curve for orientational

4.0 . '

Present model

M Experimental data (Gopalaratnam & Shah, 1985) Il
3.5

3.0

25

20

Stress o, (MPa)

L Damage states of p
u orientational components

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Strain £, x (10%)

Figure 8. Comparisons of numerical solutions against experimental results under uniaxial
tension and the damage states of orientational components.
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component shown in Figure 4. It could be improved by trilinear strain—stress
curve for orientational component. Under uniaxial loading, transverse
isotropy is developed due to oriented microcracks’ growth, which has
already been observed experimentally for concrete (Litewka et al., 2003).
This phenomenon of anisotropic damage growth can also be observed in the
damage diagram of orientational components in Figure 8 at the right-hand
side. Different colors on the hemisphere show components’ different damage
states. The above results confirm the validity of the present model and
damage-induced anisotropy primarily. In the following cases, anisotropic
behaviors will be examined preciously.

CASE 2: COMPARISON WITH MK MODEL

To further investigate the anisotropic characteristics of the present
damage model, the process of elastic deformation and brittle damage of
unconfined high-strength concrete are analyzed and compared with the
results by MK model. In this case, four material constants, E,=21.4 GPa,
vp=0.2, 4. =0.00045, and 1, = 0.0020, are employed in the present model.

The symbols and the solid line in Figure 9, respectively, show
the predicted results by the MK model and the present model for
the stress—strain relation of high strength concrete under uniaxial tension.

15 e s e —

Stress o,, (MPa)

» Murakami & Kamiya (1997)
Present model

i ;. ] i I " i i { 1

0.00 0.02 0.04 0.06 0.08 0.10 0.12
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Figure 9. Predicted results of the stress—strain relation under uniaxial tension.
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As observed in Figure 9, the results of the present model show good
agreement with those predicted by the MK model.

Figures 10 and 11 are the predictions of the Young’s modulus—strain
relation and the apparent Poisson’s ratio—strain relation of the present
model compared with the results by the MK model. These results represent
the characteristic features of damaged quasi-brittle materials. The decrease
of the Young’s modulus due to the development of damage is clearly
illustrated in Figure 10. The change of apparent Poisson’s ratio is one aspect
of anisotropic damage characteristics where Poisson’s ratio decreases as the
strain grows under uniaxial tension. The results of the MK model show that
Poisson’s ratio decreases slowly under uniaxial tension, while in the present
model, Poisson’s ratio decreases rapidly which is more consistent with the
predicted results of Krajcinovic and Fonseka (1981). Moreover, the
apparent Poisson’s ratio ¥y = U3 also confirms the transformation from
initial isotropy to transverse isotropy under uniaxial tension.

It can be seen from Figures 12 and 13 that the damage component Dun
which represents the damage along loading direction is much larger than
other components sz and D3333 This result shows significant anisotropic
behavior of damage under uniaxial tension. In addition, it can be observed
from Figure 12 that Diyy; of the present model is much larger than D;; of
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Figure 10. Predicted results of Young’s modulus under uniaxial tension.
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Figure 11. Predicted results of Poisson’s ratio under uniaxial tension.
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Figure 12. Predicted results of D111 - strain refation under uniaxial tension.
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Figure 13. Predicted results of Dgggg-strain relation under uniaxial tension.

the MK model. The most possible reason is that the definitions of
macroscopic damage variables are different. In the MK model, damage
variables represent the reduction of net area; yet, damage component Dy,
is defined as the reduction of stiffness in the present model, i.e., the weak
nature of the Young’s modulus in the load direction.

Strain Path Dependence on Quasi-brittle Materials

The calculation of non-proportional loading is a hard problem for many
damage models. However, it is an important aspect of anisotropic
characteristics in quasi-brittle damage. Therefore, the elastic-brittle
damage responses under non-proportional stress paths are predicted, with
the same four material parameters determined in the above uniaxial tension
for unconfined high-strength concrete: £y=21.4 GPa, vy =0.2, i, =0.00045,
and A, =10.0020. Only four material parameters are employed in the present
model, and nine material parameters are needed in the MK model. In this
example, the according strain paths are calculated from three stress paths
using the inverse process and the numerical results are compared with those
of the MK model.

Figure 14 shows three stress paths. Figure 15 shows the calculated three
strain paths by the present model and the MK model corresponding to thesc
stress paths. Despite that each stress path in Figure 14 leads to the same stress
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Table 1 Predicted ultimate strain points of the
present model for three stress paths.

Stress path Axial strain Shear strain
Path 1 0.000504 0.001178
Path 2 0.000500 0.001172
Path 3 0.000495 0.001162

state P, the corresponding strain paths lead to slightly different strain states
for the present model as indicated in Figure 15 and Table 1. Furthermore,
each strain path shows significant non-linearity due to the different ways of
development of anisotropic damage. The above features are attributable to
the path dependence of the damage development (Murakami and Kamiya,
1997). It can be seen from Figure 15 that the predicted results of the present
model are in very good agreement with those of the MK model. Therefore,
CAM is capable of predicting anisotropic damage growth in rock-like
materials, without limitation to proportional loading.

CONCLUSIONS

Anisotropic characters of damaged quasi-brittle materials are exemplified
using component assembling model by the decrease of Poisson’s ratio in
uniaxial tension, strain path dependence in non-proportional loading,
unilateral nature of initial damage surface, and so on in this study.
Numerical results are compared with experimental data and those of
theoretical models and show good agreement. Therefore, these numerical
examples demonstrate that the present model is capable of predicting
complicated anisotropic behaviors because of the naturally directional
property of orientational component even though these components have
very simple constitutive relations. Moreover, only four material parameters
are enough to predict damage-induced anisotropy in the present model and
formulations of the present model are simple, which is very important for
numerical and engineering applications. Further investigations are needed to
exploit the utility of the CAM, and the more general cases of bi-axial and tri-
axial state of stress will be extensively investigated in future research.
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