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Abstract Problems involving coupled multiple space and
time scales offer a real challenge for conventional frame-
works of either particle or continuum mechanics. In this
paper, four cases studies (shear band formation in bulk
metallic glasses, spallation resulting from stress wave, inter-
action between a probe tip and sample, the simulation of
nanoindentation with molecular statistical thermodynamics)
are provided to illustrate the three levels of trans-scale pro-
blems (problems due to various physical mechanisms at
macro-level, problems due to micro-structural evolution at
macro/micro-level, problems due to the coupling of atoms/
molecules and a finite size body at micro/nano-level) and
their formulations. Accordingly, non-equilibrium statistical
mechanics, coupled trans-scale equations and simultaneous
solutions, and trans-scale algorithms based on atomic/
molecular interaction are suggested as the three possible
modes of trans-scale mechanics.
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1 Introduction

Mechanics, consisting of particle and continuum mechanics,
has played a significant role in the development of modern
engineering. However, with incredibly extending enginee-
ring practices, for instance from static to high rate loadings,
from macroscopic down to micro/nanoscopic technology and
so on, engineers encounter more and more phenomena invol-
ving coupled multiple space and time scales, with which
the conventional frameworks of either particle or continuum
mechanics can hardly cope. Actually, the mechanics commu-
nity owes engineers a lot for years on the unknown underlying
mechanisms governing the phenomena with multiple scales.
Take the problem of strength as an example, Tsien wrote
in his well-known book Physical Mechanics [1], “there is
another sort of problems, i.e., strength and plasticity theory,
for which even essential physical formulation is still not avai-
lable for engineering applications”. Though some progresses
have been made, till now physicists still share the same point
of view: “despite the tremendous development of solid-state
physics in this century, physicists have paid slight atten-
tion to how things break. In part, this neglect has occurred
because the subject seems too hard. Cracks form at the ato-
mic scale, extend to the macroscopic level, are irreversible,
and travel far from equilibrium” [2]. In fact, we can name a
lot of such phenomena in engineering, like how nanometer-
wide shear bands emerge from non-structured bulk metal-
lic glasses (BMG’s) [3]; why spallation resulting from stress
waves does not follow either energy or impulse criteria
macroscopically [4]; and how to efficiently simulate mecha-
nical behaviors of materials under practical engineering
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loading rates (usually lower than 106/s) based on the entity of
atoms (even in nano-technology) [5], etc. Obviously, all these
practical problems offer a real challenge but also a wonderful
opportunity for mechanics.

Now, let us have a close look at why trans-scale mechanics
might become such a paradigm to cope with these tricky
problems with coupled multiple space and time scales.

In ideal particle and continuum mechanics, there are object
scales only. However, gravity and viscosity spoil geometrical
similarity, implying a certain size effect. With brilliant fore-
sight, Italian physicist Galileo (1564–1642) noticed that the
combination of gravity and bone strength σc constitutes an
intrinsic length scale σc/ρg, which sets an upper limit to an
animal’s size [6]. The real pioneering work with tremendous
impact on modern industries (aviation) is Prandtl’s theory on
boundary layer [7]. To solve the d’Alembert’s paradox of a
body moving with no drag in fluid, Prandtl distinguished a
thin layer with velocity gradient owing to viscosity on the
moving body’s surface from the main stream. The thickness
of boundary layer can be evaluated by

δ ∼ √
νt ∼

√
ν

X

U
, (1)

where ν is kinetic viscosity, U is the velocity of the main
stream and X is the distance in flow direction. Since the
kinetic viscosity ν of air and water is in the range of (10−6–
10−5)m2/s, boundary layer will be mm thick, provided U
and X are cm/s and cm, respectively. Noticeably, this is an
emerging length scale, though still governed by macrosco-
pic parameters of media, like kinetic viscosity. By coupling
the thin boundary layer and the mainstream (much greater
than the boundary layer), engineers successfully solved the
problem of drag force with continuum mechanics and esta-
blished modern aviation.

On the other hand, it is well known that solids are usually
microscopically structured. The microstructure means the
crystalline structure and all imperfections, including their
size, shape, orientation, composition, spatial distribution, etc.
As for the type of imperfections, it can include point defects
(like vacancies and impurities), line defects (like edge and
screw dislocations) and planar defects (like grain bounda-
ries), second phase particles, etc. Among all these micro-
scopical factors, the influence of grain size on mechanical
properties draws special attention. The best known example
may be the Hall–Petch relation, proposed in 1950s, between
yield strength σY and the mean grain size d [8],

σY = σ0 + k√
d

, (2)

where σ0 and k are two constants [8,9]. Till now, although
50 years has past, there is not a commonly accepted theory,
which can satisfactorily explain the relation. Looking back

Fig. 1 An illustration of present mechanical formulations and the
mesoscopic world

to the very few successful pioneering works and lots of
remaining difficulties, we may have to ask ourselves if there
are some links still missed in the present framework of mecha-
nics. Perhaps, so far these missing links have been deeply
rooted in the hierarchy of microstructures via intrinsic scales
of length, time, energy, etc.

Figure 1 is a sketch illustrating how the present formula-
tions of mechanics work and where the missing links might
be. To understand the mechanisms governing mechanical
properties, one can go down to atomic/molecular entity, for
which Newton’s equations of particles are in force and corres-
ponding molecular dynamics (MD) algorithm works. When
scaling up to continuum, the field equations together with
constitutive relation are in force and corresponding finite ele-
ment (FE) method works well. However, in between, namely
on meso-scopical level, either conventional continuum mec-
hanics or traditional Newton’s equations of particles appears
unable to properly cope with the rich emerging patterns and
the critical roles of the intrinsic scales. Therefore, it seems
that new formulations and corresponding numerical algo-
rithms with trans-scale coupling are badly appealed for. To
meet the need, a number of works on the problems appear
recently worldwide, like multi-scale, trans-scale and meso-
mechanics [10,11].

However, we have to confess that either multi-scale, trans-
scale or mesomechanics is just a “provisional term” for the
time being. As soon as a solid framework, which can pro-
perly unveil the missing trans-scale links, is established, it
will have a more accurate name according to the nature of
the missing links, like the appearance of thermodynamics,
quantum mechanics, etc. So, the focus of trans-scale mecha-
nics should be put on the exploration of the new physical
essence of the missing links and relevant theoretical modes
or paradigms.

In the following, we will use some case studies to illustrate
three levels of trans-scale problems and their formulations.
These are the problems:
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• due to various physical mechanisms (basically at macro-
level)—like the shear band formation in bulk metallic
glasses (BMG);

• due to micro-structural evolution (basically at macro/
micro-level)—like the spallation resulting from stress
wave;

• due to the coupling of atoms/molecules and a finite size
body (basically at micro/nano-level)—like the interac-
tion between a probe tip and sample and the simulation
of nanoindentation with molecular statistical thermody-
namics.

Incidentally, in this paper the prefix nano- stands for the
nanometer and atomic/molecular level, micro- for the micro-
meter and microstructural level and macro- for the level
beyond millimeters, respectively. We wish, these case stu-
dies may highlight certain potential paradigms of trans-scale
mechanics.

2 Case studies

Case 1: Shear band formation in bulk metallic glasses (BMG)
Metallic glasses with non-crystalline microstructures

exhibit outstanding mechanical properties, such as high elas-
tic limit, high fracture strength, etc. Recently, bulk metal-
lic glasses (BMG’s), centimeters or greater in size, have
been successively synthesized. This presents many opportu-
nities for engineering applications. However, the fundamen-
tal understanding of the deformation processes of BMG’s is
still lacking, for instance, the shear banding in BMG’s.

In practice, localized shear bands are particularly impor-
tant for metallic glasses, because they were observed under
various loadings and may limit the application of bulk metal-
lic glasses as structural materials. For a long time, there have
been two types of mechanism proposed to explain the for-
mation of shear bands in metallic glasses: the creation of
free volume and the thermally assisted softening. Early in
1970s, Spaepen et al. indicated that shear-induced dilatation
can reach dynamic equilibrium with no temperature rise [12,
13]. However, with their MD simulations Falk and Shi [14]
demonstrated that “strain localization occurs in this system
despite the lack of a measurable decrease in density”, since
“density fluctuations and small system size prevent us from
directly detecting density changes smaller than approxima-
tely 3%” [14]. Recently, Wang et al. [15] found in their MD
simulations of metallic glass that the number density of atoms
shifts to less condensed state under shear loading. Accordin-
gly, shear instability owing to either free volume creation [16,
17] or coupled thermal softening and free volume creation
was analyzed [18]. Experimentally, Bruck et al. [19] repor-
ted that “no adiabatic heating occurs before yielding” in

Fig. 2 SEM micrograph showing the width of shear band about ten
nm in BMG’s [25]

Zr-BMG; however, they observed that “temperature increases
due to adiabatic heating occur after the onset inhomogeneous
deformation.” Recently Lewandowski and Greer [20] obser-
ved the temperature rise up to a 1000◦. However, they indi-
cated that “the temperature rise does not seem to control the
shear band thickness”. More significantly, TEM and SEM
allow the measurements of shear band dimensions and the
width of shear bands was typically about ten nm, as Fig. 2
shows [21–25]. But, till now the mechanism governing the
emergence of nanometers wide shear bands in BMG’s still
remains open. Because of the nano meters feature in shear
banding, this appeal for a trans-scale study of the pheno-
menon. So, the QUESTION for trans-scale study is: how
nanometer-wide shear bands emerge in BMG’s with non-
crystalline microstructures?

The present trans-scale approach to the shear band forma-
tion in bulk metallic glasses is actually at macroscopic level,
namely to translate the free volume creation at atomic level
into a macroscopic version by introducing the free volume
fraction ξ and its creation and diffusion [18,26]

∂ξ

∂t
= D

∂2ξ

∂y2 + G(ξ, θ, τ ), (3)

where t is time, y is the axis vertical to shearing, D is the
diffusivity of free volume and G is the combined rate of
free volume generation and annihilation, respectively. Then,
we can combine the evolution of free volume fraction ξ ,
Eq. (3), with continuum mechanics equations (momentum
and energy conservation),

ρ
∂2γ

∂t2 = ∂2τ

∂y2 , (4)

∂θ

∂t
= κ

∂2θ

∂y2 + K τ

ρCv

∂γ

∂t
, (5)
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Table 1 Typical parameters and variables of BMG’s [26]

Parameters and Symbol Value Reference
variables

Density ρ 5.9×103kg m−3 [27]

Specific heat C p 532 J kg−1 K−1, at θg [27]

Viscosity (kinetic) ν ∼10−3m2 s−1 at 1,000K [27,28]

�10−3m2 s−1, θ < θg

Thermal diffusivity κ 3.5×10−6m2 s−1 [27]

Free volume D <10−16m2 s−1 [28]
diffusivity

Free volume creation G ∼(10−3 to 10−2)s−1 [17]

Free volume ξ ∼10−2 [17,29]

Strain at yielding γ 10−2 [27,29]

Strain rate static γ̇ ∼ <10−3s−1 to 103s−1 [27,29]
dynamic

and the constitutive relation

τ = τ(γ, γ̇ , θ, ξ), (6)

where ρ is the density, γ the shear strain, γ̇ the shear strain
rate, τ the shear stress, θ the temperature, κ the thermal
diffusivity, Cv the specific heat, K the Taylor–Quinney coef-
ficient, respectively. Thus, the corresponding system of equa-
tions forms a complete framework governing the simple shear
involving both thermal softening and diffusion as well as free
volume creation and diffusion. Apart from the conventio-
nal continuum equations, the trans-scale consideration in the
case is merely to take the free volume creation and diffusion,
a phenomenon at atomic level, into account macroscopically.

The important points are that the parameters and variables
involved in the trans-scale formulation imply several time and
length scales [26]. The time scales are:

relaxation time tRQ = R

Q
,

external time tex = γ

γ̇
,

compound free volume creation time scale tG = 1

Gξ

,

where Q = (∂τ/∂γ ) is strain hardening, R = (∂τ/∂γ̇ )

is strain rate hardening and Gξ = (∂G/∂ξ) is compound
creation of free volume, respectively. By definition, tRQ ∼
tex are in the order of 101s or 10−5s under quasi-static or
dynamic loadings, respectively. But, tG = 1

Gξ
is different

and closely related to the instability growth.
On the other hand, with a fixed time scale, for instance the

relaxation time tRQ , we can define three length scales, corres-
ponding to 3 different diffusions (viscosity, heat and mass).
They are l2

ν = νR
Q � l2

κ = κ R
Q � l2

D = DR
Q , since generally

the kinetic viscosity ν > heat diffusion κ > free volume
diffusion D. Table 1 lists some typical values of relevant

parameters and variables of BMG’s. Keeping these scales in
mind, now we turn to the analysis of shear banding.

To perform a linear stability analysis, we impose a small
perturbation (τ ′, γ ′, θ ′, ξ ′) on the smoothly developing
homogeneous state (τ0, γ0, θ0, ξ0), which is a solution of
Eqs. (3)–(6), such that

{τ, γ, θ, ξ} = {τ0 + τ ′, γ0 + γ ′, θ0 + θ ′, ξ0 + ξ ′}, (7)

{τ ′, γ ′, θ ′, ξ ′} = {τ ∗, γ ∗, θ∗, ξ∗}eαt+iky . (8)

where {τ ∗, γ ∗, θ∗, ξ∗} are the magnitudes of the perturba-
tion, α is the rate of growth, and k is the wave number, res-
pectively. The stability of deformation is determined by the
sign of the real part of α. Substituting Eqs. (7) and (8) into
Eqs. (3)–(6), we can obtain the characteristic equation for α

[18],

a4α
4 + a3α

3 + a2α
2 + a1α + a0 = 0 (9)

with

a4 = 1, (10)

a3 = [β + ρCv(Dk2 − Gξ ) + ρCvGτ F]/ρCv, (11)

a2 = [k2ω + ρβ(Dk2 − Gξ ) + k2ρλGτ F

+K γ̇ ρGθ F]/ρ2Cv, (12)

a1 = k2[ω(Dk2 − Gξ ) + λQk2 − K τGθ F]/ρ2Cv, (13)

a0 = k4λQ(Dk2 − Gξ )/ρ
2Cv, (14)

where P = −(∂τ/∂θ) is thermal softening, F = −(∂τ/∂ξ),
Gθ = (∂G/∂θ), Gτ = (∂G/∂τ), β = K γ̇ P +λk2 + RCvk2

and ω = λRk2 + ρCv Q − K τ P , respectively.
Since the complete instability analysis is quite complica-

ted [26], here we just focus on the trans-scale effect of free
volume creation and diffusion on shear banding. Firstly, the
compound creation of free volume

Gξ = (∂G/∂ξ) > Dk2 (15)

plays a key role in the occurrence of shear instability. Secon-
dly, two simplified but informative expressions of quasi-
steady shear band width could be deduced from Eqs. (3) and
(5) [26]

δfree volume ∼
√

D
ξ∗

G∗ , (16)

δThermal ∼
√

κ
γ ∗

γ̇ ∗ , (17)

where * denotes the values within the shear band. From the
data listed in Table 1, δfree volume ∼ nm and δThermal ∼ µm,
respectively. After comparing to the boundary layer δ ∼√

νt ∼
√

ν X
U , one can notice that these three emergent band-

like structures are dominated by three different diffusions
(mass, heat and viscosity) and corresponding time scales.
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Now, to conclude this case study, we would like to stress
two points. The first is that nanometer-wide shear bands can
emerge in BMG’s owing to the combination of free volume
creation and diffusion; the second is the trans-scale effect of
the atomic events (free volume creation and diffusion) can be
formulated macroscopically in association with conventional
continuum mechanics.

Case 2: Damage evolution owing to microdamage nucleation
and growth—coupled macro- and micro-scopic length and
time scales

For most heterogeneous materials, such as alloys, cera-
mics, composites, rocks, etc. there are usually distributed
microcracks or microvoids rather than a single macroscopic
crack, as fracture mechanics has successfully dealt with. In
this case, there are many length and time scales involved,
relevant to the size of microdamage and its nucleation and
growth rates.

Roughly speaking, microdamage, i.e., microcracks and
microvoids, is formed at microscopic inhomogeneities. For
example, in polycrystalline metals withµm grains, the micro-
voids or cracks of about µm usually nucleate in the grain
boundaries or within the grains. The number density of such
microdamage observed on the surface of metals may be in the
range of (102–104/mm2) [30]. Generally speaking, there are
two basic and distinct processes of microdamage evolution:
nucleation and growth, and each has its own distinctive meso-
scopic kinetics. Since the observed macroscopic failure of
metals is resulting from these processes with different rates,
a trans-scale understanding of damage evolution becomes a
necessity.

Spallation resulting from stress wave reflection is such an
illustrative example of damage evolution with multiple space
and time scales. From experimental observations, a universal
criterion of time-integral for spallation has been used for a
long time [31]

( σ

σ ∗ − 1
)ν · �t = K , (18)

where σ and σ ∗ are stress and stress threshold, respectively,
�t is the load duration, ν and K are two parameters. This
criterion indicates that the critical stress to spallation is no
longer a material constant, but dependent on its loading dura-
tion. Furthermore, since the power exponent ν in the criterion
is usually neither 1 nor 2, the criterion is neither of momen-
tum nor energy balance macroscopically [32]. Then what is
the mechanism underlying the time-dependent failure.

Actually, this is a common difficulty in dealing with time-
dependent and multi-scale failure in solids. Meyers [33],
Grady and Kips [34] stressed that “we still need quantita-
tive/predictive models based on continuum measure of spal-
ling and nucleation-and-growth of microcracks” [33] and
“the continuum models based on the statistical nucleation

and growth of brittle and ductile fracture appear to be an
attractive approach” [34]. Above all, spallation is a typical
process with coupled multiple space and time scales. At least,
there are two length scales: the sample size at macroscopic
level and the microdamage size at mesoscopic level. On the
other hand, there are, at least, three time scales: the stress
wave loading duration macroscopically, the two microsco-
pic characteristic times: nucleation time and growth time of
microdamage. So, the QUESTION for the trans-scale study
is: what is the mechanism underlying spallation resulting
from microdamage nucleation and growth?

Now, we outline our trans-scale approach to spallation, in
terms of coupled macro- and microscopic formulation.

Based on the experimental measurements of microscopic
kinetics of microdamage in spallation [30,35,36], the two
microscopic rates of microdamage nucleation nN and growth
ċ are governed by its current and initial(nucleation) sizes
c and c0 of microdamage as well as macroscopically local
average stress σ [30,36]

nN = nN (c0; σ), (19)

V = ċ = V (c, c0; σ). (20)

According to the two variables of microdamage: the cur-
rent size c and the nucleation size c0, there are two number
densities of microdamage: n0(t, c, c0) is the number density
of microdamage with current size c and the nucleation size
c0 and n(t, c) is the number density of all microdamage with
current size c. The relation between the two number densities
is,

n(t, c) =
c∫

0

n0(t, c, c0)dc0. (21)

The evolution equation governing the microdamage num-
ber density n0(t, c, c0) is

∂n0

∂t
+ ∂(n0 · V )

∂c
= nN (c) · δ(c − c0), (22)

where δ(c − c0) is Dirac δ-function and has the same dimen-
sion as the reciprocal of microdamage size. The solution to
the equation under constant stress σ is [37]

n0(t, c, c0; σ) =
⎧⎨
⎩

nN (c0; σ)

V (c, c0; σ)
, 0 < c < c f (t),

0, otherwise,
(23)

where c f is the moving front of microdamage and defined
by

t =
c f (t)∫
c0

dc

V (c, c0; σ)
. (24)
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Fig. 3 The basic and unsteady solution of microdamage number
density [37]

Therefore, the basic solution to the evolution of microda-
mage number density n under constant stress σ is [37]

n(t, c; σ) =
⎧⎨
⎩

∫ c
0

nN (c0;σ)
V (c,c0;σ)

dc0, c < c f,0,∫ c
c0 f

nN (c0;σ)
V (c,c0;σ)

dc0, c > c f,0,
(25)

t =
c∫

c0 f

dc

V (c, c0; σ)
, (26)

where c f,0 = c f (t, c0 = 0). This basic and unsteady solu-
tion of microdamage number density reveals two fundamen-
tal features of microdamage evolution: the saturation in the
range of small microdamage size and an onward movement
of microdamage front to larger size, see Fig. 3 [37].

Now, we turn to the unified set of equations combining
continuum mechanics and microdamage evolution. For this
sake, we should examine the evolution of microdamage
number density in a continuum element at macroscopic coor-
dinates x. The coupled field equation of microdamage evo-
lution is [38]

∂n

∂t
+ ∂(n · A)

∂c
+ ∂(n · v)

∂x
= nN , (27)

where A is the average growth rate of microdamge with cur-
rent size c,

A(t, c; σ) =
∫ c

0 V (c, c0; σ) · n0dc0

n(t, c; σ)
. (28)

Note that the two spaces, namely the microdamage space c
and continuum space x are coupled with each other in the
unified formulation

However, for engineering applications, what one would
like to see is the effect of microdamage on macroscopic
behavior of materials, rather than the microdamage itself.

So, we should convert the number density of microdamage
into continuum damage D, for instance by

D(t, x) =
∞∫

0

n(t, x, c) · τ · dc, (29)

where τ is the failure volume of an individual microdamage
with size c.

Then, the above unified set of equations combining conti-
nuum mechanics and microdamage evolution can be transfor-
med into a form suitable to engineering applications, but still
containing enough information of microdamage evolution.
The one dimensional version of such an associated system
of equations is (for simplicity, energy equation is omitted for
the time being)

∂ D

∂T
+ D

ρ

ρ0

∂v

∂Y
= f, (30)

∂ρ

∂T
+ ρ2

ρ0

∂v

∂Y
= 0, (31)

∂v

∂T
− ρ−1

0
∂σ

∂Y
= 0, (32)

σs = σs(ε), (33)

σ = σs(ε)

1 − D
, (34)

where f is the dynamic function of damage (DFD),

f =
∞∫

0

nN (c; σ) · τ · dc

+
∞∫

0

n(t, Y, c; σ) · A(t, c; σ) · τ ′ · dc, (35)

which includes all necessary information of the effects of
microdamage nucleation and growth on continuum damage
evolution, τ ′ = dτ/dc and σs is true stress.

Obviously, the DFD function f is a convenient and infor-
mative agent bridging microscopic kinetics of microdamage
and continuum damage. Additionally, the field equation of
damage evolution (30) is different from the conventional
continuum damage mechanics, in which there is not any
microscopic kinetics of microdamage introduced explicitly.

Now let us take a close examination on the mechanisms
underlying the trans-scale coupling in damage evolution. In
most practical cases, the microstructural length scale, like the
typical microdamge size c∗, is much less than the macrosco-
pic sample size L ,

R = c∗

L
� 1. (36)

Now, why such a small microstructural length scale can affect
macroscopic behaviors?
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As a matter of fact, there are several competing macrosco-
pic and microscopic time scales and they form the coupled
trans-scale effects of multiple length and time scales. When
the governing equations are rewritten in dimensionless form,
two trans-scale dimensionless numbers appear, one can be
called as the imposed Deborah number De∗ = ac∗

LV ∗ and the

other is the intrinsic Deborah number D∗ = n∗
N c∗5

V ∗ , where a is
the acoustic speed, c∗, V ∗ and n∗

N are characteristic micro-
damage size, growth rate and nucleation rate, respectively
[39,40].

The imposed Deborah number De∗ appears preceding the
DFD function in the dimensionless damage evolution equa-
tion and hence characterizes the continuum damage evolution
rate,

∂ D̄

∂ T̄
+ D̄

1 + ε

∂v̄

∂ X̄
≈ De∗−1 f̄ . (37)

Actually, De∗ is the ratio between the characteristic growth
time of microdamage t∗V = c∗

V ∗ and the stress wave duration

in the sample ti = L
a , namely De∗ = ac∗

LV ∗ = tV
ti

. In par-
ticular, the ratio of length scales at micro-and macro-levels
R = c∗/L does not independently appear in the governing
equations but is included in the imposed Deborah number
De∗ as a combination of two ratios: the size scale ratio
R = c∗/L and the ratio of two velocities V ∗/a. Hence,
the imposed Deborah number De∗ represents the trans-scale
competition between the macroscopically imposed wave loa-
ding and the intrinsic microdamage growth. In the case of
spallation, De∗<1 and this means that microdamage has
enough time to grow during the macroscopic wave loading
and the microdamage growth predominates spallation.

On the other hand, the intrinsic Deborah number D∗ is the
ratio between the characteristic growth time t∗V = c∗

V ∗ and the
characteristic nucleation time of microdamage tN = 1

n∗
N c∗4 ,

namely D∗ = tV
tN

= n∗
N c∗5

V ∗ . Provided damage localization
can be formulated by the condition [37],

∂ f

∂ D
≥ f

D
. (38)

One can find that the intrinsic Deborah number D∗ appears
preceding the critical damage for damage localization and
represents the critical damage, Fig. 4.

Dlocalization

= D∗ ·
∫ ∞

0 τ̄ (c̄ f )n̄N (c̄0)dc̄0 · ∫ ∞
0

τ̄ (c̄ f )n̄N (c̄0)

V (c̄0,c̄ f )
dc̄0∫ ∞

0 τ̄ ′(c̄ f )n̄N (c̄0)dc̄0

= D∗ · O(1). (39)

In fact, it is found in simulations that the critical damage to
localization in spallation is about (10−3–10−2), i.e., in the
order of D∗ [37,41]. Finally, this small D∗ indicates that the

Fig. 4 The intrinsic Deborah number D∗ represents the critical
damage to localization [42]

Fig. 5 The intrinsic Deborah number D∗ represents the energy dissi-
pation due to microdamage compared to the bulk plastic work [42]

energy dissipation due to microdamage is negligible compa-
red to the bulk plastic work. This explains why spallation can
not be formulated by macroscopic energy criterion but must
be treated with trans-scale analysis, Fig. 5 [40,42].

In one word, in the case study of spallation, there are three
physical processes with three time scales at two spatial levels
(sample size L and microdamage size c∗): the macroscopic
imposed time scale ti = L/a ∼ 10−6 s and two microscopic
time scales, growth time scale tV = c∗/V ∗ ∼ 10−6 s and the
nucleation time scale tN = (n∗

N c∗4)−1 ∼ 10−3 s, see Table 2.
They can form two independent Deborah numbers governing
the trans-scale coupling. This implies that the competition
of the three macro- and microscopic rates is the trans-scale
mechanism underlying spallation.

Case 3: Interaction between a probe tip and liquid surface—
mechanics involving atomic/molecular interaction

The probe sensing technique, like atomic force micro-
scope (AFM), nanoindentation, etc., has been widely used in
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Table 2 Parameters and time scales involved in spallation [42]

Quantity Symbol Dimension Magnitude

Macroscopic parameters Sample size L L 10−2m

Density ρ ML−3 103 kg/m3

Elastic wave speed a LT−1 103 m/s

Characteristic stress σY ML−1T−2 108 Pa

Impact velocity v f LT−1 102 m/s

Microdamage parameters Characteristic size c∗ L 4 × 10−6 m

Growth rate V ∗ LT−1 100 m/s

Nucleation rate n∗
N L−4 T−1 104 mm−3 µm−1 µs−1 to 1025 m−4 s−1

Time scales Wave duration ti T−1 10−6 s

Growth time tV T−1 10−6 s

Nucleation time tN T−1 10−3 s

Fig. 6 A schematic illustration of the deformation of a liquid surface
[44]

various fields. However, in practice, liquid film may appear
on the surface of sample. Owing to the flowability of liquid,
this film will no longer remain flat under its interaction with
probe and this will inversely affect the interaction between
the probe tip and the liquid, then the measured image of the
sample will be distorted [43]. In particular, at a critical gap
between the tip and the liquid dome, δc, the liquid will jump
up to connect to the tip and form a liquid bridge. Obviously,
this critical jump is governed by a trans-scale combination of
the tip size, gravity, surface tension and the atomic/molecular
interaction (mainly van der Waals force) between the tip and
liquid. So, the QUESTION for the trans-scale study is: what
is the mechanism underlying the shape and critical jump of
liquid surface under a probe tip?

Now, we turn to a simple but enlightening example: the
interaction between a sphere tip and a semi-infinite liquid,
owing to the atomic/molecular interaction. As shown in
Fig. 6, the shape of the liquid dome y(r) under a sphere
tip with radius R can be formulated by the equation [44],

γLV
d

dr

[
r

y′

(1 + y′2)1/2

]

+4AR3

3π

r

[(D − y)2 + r2 − R2]3 − ρgry = 0, (40)

where A ∼ 10−19J is Hamaker constant [45], γLV is the sur-
face tension between liquid and air, ρ is density, g is gravity,
respectively. There are three forces included: surface tension,
gravity and intermolecular force (via Hamaker constant A).
More significantly, these forces imply three very distinct
length scales, namely 3 orders between each two adjacent
length scales, see Table 3.

This trans-scale equation can be solved by employing the
matching method proposed by Prandtl. The shape of liquid
surface far from the probe is [44],

y(r) = −C K0

( r

λ

)
, (41)

where K0 is the modified Bessel function of the second
class and C is a constant. Clearly, the capillary length λ =√

γLV
ρg ∼mm characterizes the horizontal scale of the liquid

dome. However, the central height of the liquid surface is,

y0 = AR3

3πγLV

(
1
2 + ln 2λ√

(D−y0)2−R2
− Eu

)

[(D − y0)2 − R2]2 , (42)

where Eu ≈ 0.57721 is Euler’s constant. Obviously, the
height of the dome y0 is dominated by the combination of
van der Waals force (via Hamaker constant A) and surface
tension γ as well as the tip radius R, but nearly no business
with gravity. In particular, the critical dome height for the
surface jump up to contact the tip is

y0c ∼ δc ∼
(

R · A

γLV

)1/3

. (43)
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Table 3 Three length scales
involved in the interaction
between a probe tip and liquid
surface

Symbol and formula Magnitude Essence

Capillary length λ =
√

γLV
ρg ∼mm The combination of gravity

and surface tension

Tip radius R ∼µm

Nanoscopic lAγ =
√

A
γLV

∼nm The combination of van der Waals force

length scale (via Hamaker constant) and surface tension

The partition of the two length scales R and lAγ in the critical
height is neither arithmetic nor geometric average, but in a
way very similar to the well-known Tabor number µ in solid
contact:

µ =
(

R · � 2

E∗2ξ3
0

)1/3

=
(

R · � 2

E∗2

)1/3 /
ξ0, (44)

where E∗ is the reduced modulus, � is the work of adhesion,
ξ0 is interatomic equilibrium distance at tip-sample interface,
respectively. So, this partition may be quite universal in this
sort of trans-scale problems.

Now, we turn to a general intermolecular potential w of
two atoms with distance η

w(η) = −C/ηn, (45)

where n is the power-law index and governs the attractive
interaction between molecules. The fascinating trans-scale
aspect is that the ratio of the tip-dome gap δc and dome height
y0c at critical jump, namely δc/y0c is closely related to the
power index n,

δc

y0c
≈ (n − 4), when δc � R. (46)

Clearly, for van der Waals interaction n = 6, the critical gap-
height ratio is to 2, as previously obtained [46]. This means
that the intermolecular power index n persists its trans-scale
presentation under a micrometer tip [47,48].

To summary the trans-scale case study of the tip-liquid
interaction, two aspects are worth noticing. The first is that
the liquid dome height is dominated by two length scales,
the nanoscopic length scale and the tip radius as y0 ∼ δ ∼(

R · A
γLV

)1/3
, but is neither their arithmetic nor geometric

average. The second is that the power index of intermole-
cular interaction n presents itself very robust in the ratio
between the dome height and tip-dome gap at critical jump
under a micrometer tip. This trans-scale appearance of inter-
molecular interaction at a higher length level is worth further
thinking.

Case 4: Simulation of quasi-static deformation at finite tem-
perature based on atomic/molecular interaction—the varia-
tion of nanohardness with indentation depth

Table 4 Comparison of length and time scales in micro/nano enginee-
ring and molecular/atomic interaction

Length scale Time scale

Micro/nano engineering 10−6 m to 10−9 m Duration: s–min

Molecular interaction 10−10 m Period: t∗ ∼ 10−13 s

Now, molecular dynamics (MD) are the orthodox means
for simulating molecular-scale models of matter [49]. Its
essence is very simple: successive configurations of the ato-
mic system are generated by integrating Newton’s laws of
motion of all molecules in a concerned system, based on
molecular potential, like L–J potential,

w = 4ε0

[(r0

r

)12 −
(r0

r

)6
]

, (47)

where r0 ∼ 10−10m is the range of interaction and ε0 ∼
10−19J is the characteristic energy However, this essence
also sets a limit on MD applications. Since the integration
of Newton’s laws is of dynamics, the time step in the inte-
gration must be less than the oscillatory period of molecules

t∗, namely �t � t∗ ∼
√

(ε0/mr2
0 ) ∼ 10−13s, where m

is the molecule mass. For most engineering problems, like
nanoindentation, the process usually last over minutes, hence
appears to be quasi-static. So, there is a huge gap in time
scales between MD simulation and engineering practices.
On the other hand, even in nano-indentation, one still have to
deal with the huge amount of molecule in MD simulations,
for instance a micrometer cube would have 1012 atoms in
metals, see Table 4. Obviously, this huge gap in temporal and
spatial scales between practices and simulations offers MD a
real challenge, let alone the unaffordable time consumption
in large scale MD computations. In addition, MD simulations
are sensitively dependent on the unknown initial conditions
of atoms.

To illustrate the significance of the trans-scale analysis,
let us have a close look at nanoindentation.

Nanoindentation is a powerful tool in the investigation of
nano- and micro-scale mechanical properties of materials and
has been widely used in biology, materials and mechanical
engineering [50]. In recent years, nano-indentation tests have
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Fig. 7 Relation of
nanohardness vs. indentation
depth. a Experimental [54];
b MD simulation [55]

shown that the hardness at sub-micrometer scale is no lon-
ger a conventional constant but increases significantly with
decreasing indentation depth [51]. Take single crystal copper
as an example. A nearly doubled increase in nano-hardness
from micrometer down to a few 100 nanometers of indenta-
tion depth has been reported [52–54]. One would like to ask
what would be the limit of nano-hardness when the inden-
tation depth tends to zero. Unfortunately, since both load F
and contact area A tend to zero when the indentation depth
h approaches zero, the hardness can become any value by
definition, as shown below,

lim
h→0

H(h) = F(h)

A(h)
= 0

0
. (48)

In order to solve the tricky problem, some researchers turn to
MD simulations of nano-indentation to look for the answer
(for instance [55,56]). They found that the hardness starts
from zero at zero indentation depth, increases to a peak value
and then seems to increase with further increasing indentation
depth in a nanometer range, as shown in Fig. 7 [55].

So, when putting the experimental results and the MD
simulations together, one may anticipate that the variation of
nanohardness would be as follows: the hardness at micro-
meter depth remains a constant, then increases with decrea-
sing indentation depth and reaches a peak value somewhere,
finally decreases to zero when the indentation depth tends
to zero. However, the experimental and numerical results
forming the above picture of hardness variation have too
huge differences in time and length scales: the experimen-
tal one was performed in 100 nanometers indentation depth
and quasi-statically, whereas MD simulations were limited
to nanometer and sub-nanosecond. These huge temporal and
spatial differences make the above anticipation of nano-
hardness variation not so convincing. As a matter of fact, this
appeals for a unified trans-scale mechanics and algorithm to
bridge the huge gap of length and time scales from atomic
scales to practical measurement. So, the QUESTION for the
trans-scale study is: how to formulate a unified algorithm,
which can reveal the full variation of nano-hardness under
quasi-static loading at room temperature based on atomic
interaction?

Recently, Dupuy et al. [57] and Hu and Wang et al. [58,59],
briefly reported their quasi-static approaches to molecular
simulation at finite temperature. The approach of Finite-
Temperature Quasicontinuum [57], is based on their previous
quasicontinuum (QC) method with the concept of repatoms,
a zero-temperature minimization technique. The approaches
proposed by Hu and Wang et al. [58–60], the molecular sta-
tistical thermodynamics (MST)/cluster statistical thermody-
namics (CST), is based on the statistical thermodynamics
formulation of Helmholtz free energy of atoms and its mini-
mization.

As Born and Huang [61] pointed out that in many aspects
the behavior of an atomic system are identical to a system
of oscillators, for which the total of oscillations should be
equal to 3 times of the total atoms, i.e., 3N . That is to say,
the atoms could be treated as particles at their equilibrium
positions when the mechanical deformation of the atomic
lattice is examined, while the atoms should be treated as
oscillators with various frequencies when the contribution of
the thermal oscillations of atoms to deformation is examined.
The particle-oscillator duality of atoms is the basis of MST
method [58–60]. In accord with the concept of oscillators,
statistical thermodynamics gives the Helmholtz free energy
A of N atoms as the function of oscillatory frequency ωiξ

[61],

A = � + kT
N∑

i=1

3∑
ξ=1

ln

[
2 sinh

(
1

2

h̄ωiξ

kT

)]
, (49)

where � is the static lattice energy, T is temperature, h̄
is Planck’s constant, k is Boltzmann’s constant, ωiξ (ξ =
1, 2, 3) are the three oscillating frequencies of atom i , res-
pectively.

Now, the key to the application of the Helmholtz free
energy A to the simulation of deformation becomes how
to properly formulate the oscillating frequencies. Actually,
there have been some well-known theories on the issue.

Einstein assumed that all oscillators have the same fre-
quency, however, this can represent the isotropic oscillation
of independent atoms only. After considering the constraint
of atoms in lattice, Debye proposed that the 3N frequencies
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Fig. 8 Schematic diagram of
the MST/CST set-up for
nanoindentation simulation [60].
a MST/CST simulation of
nanoindentation; b Atomic
configuration of the cone
indenter in MST/CST
simulation

could be taken as the 3N lowest frequencies of a continuum,
which possesses the same elastic constants as the atomic lat-
tice. Debye’s theory has had great success in the explana-
tion of thermal properties of solids. However, it is found that
neither Debye nor Einstein approximation is able to reflect
severely localized deformation. As noted by Tsien [1] that
Debye’s theory is still not an accurate approximation, and
once there are differences between Debye’s approximation
and facts, one should resort to other formulations. As mentio-
ned above, the atomic oscillators have very high frequencies
and hence very short time scales, like 10−13 s. So, the key
to MST simulation of quasi-static deformation is to find a
proper agent to take the place of the high frequencies in the
expression of Helmholtz free energy.

According to lattice dynamics [61], the oscillating fre-
quencies ωiξ can be taken as the 3N eigenvalues obtained
from the diagonalization of the dynamical matrix D,

Dξη
i j = 1√

mi m j

∂2�

∂xiξ ∂x jη
, (50)

where mi is the mass of atom i , xiξ is the ξ th coordinate
of atom i . Hence, the coupling of the two representations
of atoms, i.e., particles and oscillators, makes it possible to
determine the equilibrium positions of atoms at finite tempe-
rature by minimizing Helmholtz free energy with respect to
the coordinates of all atoms,

δA(xi ) = 0. (51)

As a matter of fact, in MST simulations of quasi-static defor-
mation at finite temperature, the equilibrium configuration of
the atoms is determined by minimizing the Helmholtz free
energy under the condition of constant number of atoms (N ),
constant temperature (T ) and constant volume (V ). Thus, for
successive increments of boundary displacement, the succes-
sive corresponding equilibrium configurations of the atoms
can be obtained similarly, therefore, and form a series of

quasi-static deformation patterns. In this way, the gap bet-
ween quasi-static process and high oscillatory frequencies of
atoms is solved. The simulations of some typical 2D and 3D
deformations showed that MST method needs one tenth of
computation time used in MD simulations only. The trick of
the high efficiency in MST is due to the explicit formulation
of thermal contribution to Helmholtz free energy. In addi-
tion, at classical assumption (hν � kT ) the thermal energy
is just the function of temperature, and the dependence on the
atomic configuration appears in potential energy and entropy
only. This is what the real essence of mechanical deformation
is.

In order to bridge the gap between the size of practical
test-piece (usually greater than nanometers) and the atomic
length scale (10−1nm), coupled molecular/cluster statistical
thermodynamics (MST/CST) method was introduced [59].
One attractive feature of this method is its “seamlessness”,
in which the same underlying atomistic potential is adopted
in all regions, either individual atoms or clusters of atoms.
On the other hand, compared to MD simulations, their high
computational efficiency appears to be very promising.

Since the MST/CST method can bridge the huge gap of
both temporal and spatial scales, from 10−13s and 10−10m
of atomic interaction to the quasi-static process of a system
tens nanometers large, we apply the method to the quasi-
static nano-indentation test at room temperature, in order to
provide a panoramic picture of the variation of nano-hardness
with indentation depth.

In the simulation, a single crystal Cu test piece is inden-
ted by a cone diamond indenter at 300K (Fig. 8). The cone
indenter has a 60◦ cone angle and a spherical tip with radius
2nm, hence the indenter is actually a truncated cone with a 1
nm high spherical crown. The dimension of the single crys-
tal Cu test piece is 37.6 nm×37.6 nm×18.8 nm, containing
2,293,253 atoms, and its top surface is the (001) plane and
the other two side surfaces are (100) and (010) planes, res-
pectively. The top surface is traction free, and the bottom
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Fig. 9 The nanohardness versus the indentation depth curve obtained
from MST/CST simulation [60]

Table 5 Comparison of MST and MD methods

MST MD

Quasi-static Short duration: ≤ 10−9 s

High efficiency: One tenth Long computation : steps ∼ 10−15 s
of MD consumption

MST/CST: Unified MD/FE: Mismatch of potential
potential and constitutive relation

layer and the side surfaces of the sample are assumed to be
fixed. In the MST/CST simulations, there are a MST region
of 28.2 nm×28.2 nm×14.1 nm containing 936,975 atoms
and 740 clusters with 405 nodes, containing 1,356,278 atoms.
The loading step is 0.012 nm of indentation depth [60].

As an illustration, the simple L–J potential ϕC−Cu(r) =
C12
r12 − C6

r6 is adopted for both Cu–Cu and C–Cu atomic inter-

actions, but C12 = Cr12
0 and C6 = Cr6

0 (C = 1.9648eV
and r0 = 0.23276nm) for Cu–Cu interaction and C12 =
2989.1eV

◦
A12 and C6 = 41.548eV

◦
A6 for C–Cu atomic inter-

action [62].
For the simulations, the zero indentation depth is assumed

to be the position where the interaction force between the tip
and sample has just changed from attractive to repulsive.
The hardness versus the indentation depth curves are shown
in Fig. 9. It can be seen that there are three phases in the
hardness variation.

Phase 1: The hardness starts from zero at zero indenta-
tion depth and increases with increasing indentation depth.
In addition, the increase of hardness in this phase is in agree-
ment with elastic contact theory [63].

Phase 2: At about 0.5 nm indentation depth (still under the
indent of the spherical crown), plastic deformation appears
and both load and hardness oscillate till the peak hardness

at the indentation depth of 1.2 nm, where the truncated cone
has penetrates into the specimen.

Phase 3: Afterwards, the hardness decreases gradually till
about 4 nm indentation depth (roughly 4 times the crown
height) and dislocations seem to be saturated underneath the
indenter. Beyond this indentation depth, the hardness nearly
remains a constant with further indentation.

To summarize case study 4, the comparison of MD and
MST/CST simulations are listed in Table 5.

Then, we use Table 6 to summarize the trans-scale features
in all four case studies, to see if we could draw something in
common for the possible paradigm in trans-scale mechanics.

From Table 6, one may notice that for all these trans-
scale problems there are always some key trans-scale links,
which come from the trans-scale coupling and govern the
phenomena. So, a certain trans-scale paradigm in general
needs further exploring.

3 Possible modes of trans-scale mechanics

According to the previous works outlined in introduction and
the above-mentioned case studies, we intend to portrait some
possible modes of trans-scale mechanics as a spring board to
a more effective paradigm, even though future development
in this direction must significantly change the picture.

3.1 Possible mode 1: Non-equilibrium statistical mechanics

Looking back to the development of statistical mechanics,
it appears to be a trilogy. The first chapter of the trilogy
is simple average. The equation of state of ideal gas is an
excellent example.

PV = RT = N0kT, (52)

where N0 is Avogadro’s number. The implication of the equa-
tion is straightforward: the total thermal energy is the simple
sum of the contribution from all degrees of atoms indepen-
dently, namely N0kT . The second chapter is the introduction
of interaction between molecules. In this formulation, parti-
tion function plays a key role. Equilibrium thermodynamics
and statistical physics are the sophisticated formulation of the
paradigm. As a matter of fact, the principle of equal a priori
probability at equilibrium state is the key in this formulation.
This progress enables us to calculate all thermal properties of
materials at equilibrium state. Physical mechanics proposed
by Tsien [1] is a successful application of the paradigm to
engineering.

Now, we may have to go further from physical mecha-
nics to physical dynamics, as suggested by Kadanoff [64] to
understand the non-equilibrium behaviors of media resulting
from various kinetics at various levels. In these situations, the
distribution function may no longer remain stationary, but
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Table 6 Summary of trans-scale features in case studies

Case Trans-scale formulation Trans-scale link Physical implication

1. Nanometer shear band in
BMG’s

At macroscopic level δfree volume ∼
√

D
ξ∗

G∗ Nano-pattern emerging due to
diffusion and creation of free
volume

2. Spallation owing to microda-
mage evolution

Coupled micro/ macroscopic
levels

De∗ = ac∗

LV ∗ = tV
ti

D∗ = tV
tN

= n
∗
N c∗5

V ∗ Competition between macro-

3. Interaction of probe tip and
liquid surface

Coupled nano/micro/
macroscopic levels

y0c ∼ δc ∼
(

R · A

γLV

)1/3

Partition of nano/micro/
macroscopic length scales

4. MST/CST simulation of
nanoindentation

Coupled nano/microscopic
levels and coupled
algorithm of atomic
oscillation/quasi-static
deformation

Helmholtz free energy as a function
of the coordinates of atoms A = A(xi ),

i = 1, . . . , N

Statistical thermodynamics and
lattice dynamics

Fig. 10 Illustration of
distribution function at
equilibrium and
non-equilibrium states.
a Stationary at equilibrium state;
b Varying with time at
nonequilibrium state

becomes unsteady (as case study 2 shows), see Fig. 10. In
this mode, non-equilibrium statistical mechanics and thermo-
dynamics will play a significant role to connect nano/micro-
kinetics to macroscopic evolutionary behavior. In particular,
for evolution-induced catastrophes, such as earthquake, ava-
lanche etc., Kadanoff [64] proposed that we may have to
understand the non-equilibrium behaviors of media in this
manner.

3.2 Possible mode 2: Coupled trans-scale equations
and simultaneous solutions

In 1992, in his closing lecture at 18th ICTAM, Barenblatt
stated that in the mathematical models of such phenomena,
the macroscopic equations of mechanics and the kinetic equa-
tions of the microstructural transformations form a unified set
that should be solved simultaneously [65]. This approach can
be sketched in Fig. 11. Obviously, this is a far-reaching idea.
All case studies 1, 2 and 3 are on this track, but the trans-scale
effects in case 1 are condensed to macroscopic level, but case
2 at macro/micro level and case 3 at macro/micro/nano level.
However, generally speaking, to associate the macroscopic
equations of continuum mechanics with the kinetic equations
of microstructural transformations and to form a unified set is

by no means an easy job, let alone to solve it simultaneously.
The complexity shown in case study 2 might be the reflec-
tion of this issue. Hence, necessary evaluations and approxi-
mations must be introduced in the approach. In this aspect,
Barenblatt emphasized the significance of Deborah number
in these trans-scale problems. Perhaps, compared to the dis-
tinct spatial scale, the temporal scales may easily be ignored,
though they crucially govern the association and competition
of continuum mechanics and microstructural evolutions.

3.3 Possible mode 3: Trans-scale algorithms based
on atomic/molecular interaction

With the rapid progress in computational technology, apart
from the theoretical formulations of how the phenomena
are physically trans-scale coupled, the trans-scale algorithms
based on atomic interactions are also needed. As shown in
case studies 3 and 4, there are huge gaps between length
scales, greater than 103 orders in one dimension from atomic
to practical engineering objects, and between time scales,
greater than 106 orders from atomic oscillation to practical
engineering processes, especially for mechanical processes.
In this field, MD provided a very helpful guide but it is too
much time-consuming, even for unrealistic fast processes
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Fig. 11 An illustration of trans-scale coupling equations, as suggested
by Barenblatt [65]

(higher than 109/s) in a small system (tens namometers). To
accept this practical challenge, alternative trans-scale algo-
rithms based on atomic/molecular interactions should be ini-
tiated. Perhaps, case study 4 is a representative example and
both QC and MST/CST are encouraging steps in this direc-
tion. The crucial issues in this kind of algorithms might be
how to introduce proper statistical treatments to bridge the
huge gaps of spatial and temporal scales. Hence, novel and
effective combinations of algorithms and statistics based on
atomic/molecular interactions are anticipated.

In addition, it is worth noticing some further difficul-
ties in engineering, which challenge trans-scale mechanics
more severely. For instance, some macroscopic phenomena
are governed by critical atomistic event, such as the sudden
drops in stress–strain relations and rate-dependent behaviors
owing to the appearance of dislocations and sliding at ele-
vated temperature. In these cases, how to trace the minor
but critical atomistic events and their evolutions among the
enormous atoms may be a tricky and formidable job. The
other example might be the prediction of catastrophic failure
governed by non-linear trans-scale cascades. In this situation,
the difficulties may come from the coupling of deterministic
and stochastic processes, the coupling of heterogeneity and
non-linear dynamics, as well as the coupling between atomic
events and the variation of macroscopic variables.

In order to achieve relatively sophisticated or specific para-
digms of trans-scale mechanics and to meet the challenging
needs, to recall the statement on continuum mechanics made
by Einstein should be very enlightening.

Einstein wrote [66]: continuum “avoids the consideration
of a subdivision of matter down to ‘real’ material points, is
the mechanics of so-called continuous media. This mecha-
nics is characterized by the fiction that . . . dependent in a

continuous manner upon coordinates and time, and that the
part of the interactions not explicitly given can be conside-
red as surface forces (pressure forces) which again are conti-
nuous functions of location.” Then, for further progress of
mechanics, he suggested to coordinate atomistic entities to
material points. “This occurred in the kinetic theory of gases
and, in a general way, in statistical mechanics. . . . These
decisive progresses were paid for by the coordination of ato-
mistic entities to the material points.” However, compared
to gases, the media with nano/micro-structures or emergent
patterns are much more complicated and the coordination of
atomistic entities to continuum is by no means a straight-
forward avenue. However, we should also be encouraged by
the progresses made and the possible paradigms proposed
in recent years. All these may imply that different from the
direct coordination of atomistic entities to the material points
in gases, the coordination of atomistic entities to the material
points in the trans-scale mechanics would not be the one-
to-one correspondence in appearance, but something similar
in essential spirit. In this aspect, Chinese panorama philo-

sophy, (likeness in spirit) not (likeness in
form) may be a wise guide to the establishment of trans-scale
mechanics.
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