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ABSTRACT

This paper presents the Hill instability analysis of Tension Leg Platform (TLP) tether in deep sea. The 2-D nonlin-
ear beam model, which is undergoing coupled axial and transverse vibrations, is applied. The goveming equations are re-
duced to nonlinear Hill equation by use of the Galerkin’s method and the modes superposition principle. The Hill insta-
bility charted up to large parameters is obtained. An important parameter M is defined and can be expressed as the func-
tions of tether length, the platform surge and heave motion amplitudes. Some example studies are performed for various
environmental conditions. The results demonstrate that the nonlinear coupling between the axial and transverse vibrations
has a significant effect on the response of structure. It needs to be considered for the accurate dynamic analysis of long
TLP tether subjected to the combined platform surge and heave motions.
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1. Introduction

In recent years, the production and consumption of oil and other petroleum products have been
rapidly increasing, which has led to the scarcity of easily retrieved oil. As a result, oil producers are
motivated to go to deeper ocean to develop oil and other resources. This interest in deep water drilling
has led to the in-depth study and analysis of deep water structures, such as the Tension Leg Platform
(TLP) as shown in Fig. 1. The tether is one of the pivotal members of TLP, being pre-tensioned to
avoid going slack due to variations in the extreme ocean environment. In the past, the dynamic behav-
ior of slender cylindrical structure was extensively investigated (Patel and Seyed, 1995). Han and Be-
naroya (2000a, 2000b) studied the coupled axial and transverse vibrations of a TLP tether, derived
nonlinear coupled equations of motion and obtained the free and forced responses using the finite differ-
ence approach. They proved that the nonlinear coupling became more significant with the increasing
tether length. Similar equations of motion and boundary conditions were obtained by Yigit and Christo-
forou (1996), and the coupled vibration of the oil well drillstrings were investigated by use of the as-
sumed mode method.

* This research was financially supported by the National High Technology Research and Development Program of China
(863 Program, Grant No. 2006AA09Z350), the National Natural Science Foundation of China ( Grant No.
10702073) , and the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KJCX2-YW-L02)

1 Corresponding author. E-mail; zxh@ imech.ac.cn



534 XU Wan-hai et ../ China Ocean Engineering , 22(4), 2008, 533 - 546

Platform =

Fig. 1. Tension Leg Platform (TLP).
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In general, there are mainly two directional sources of dynamic excitations exerted on the TLP
tether. The first is motion induced by horizontal platform surge motion whereas the second source of dy-
namic excitation is due to changes in axial tension by platform heave motion. The first and second
sources are respectively called a forcing excitation and a parametric excitation. Much research works
has been carried out on each of these excitations applied separately to TLP tether. Jeffery and Patel
(1982) extensively researched the horizontal top end forcing excitation problem. Patel and Witz
(1991) introduced several kinds of forcing excitation problems of TLP tethers and risers. Hsu (1975)
firstly investigated parametric excitation problem of slender marine structure. Chatjigeorgiou and
Mavrakos (2002) studied the nonlinear dynamic response in the transverse direction of vertical marine
risers subjected to parametric excitation at the top of the structure, the dynamic model included both
elastic and bending effects, the analytical approach revealed that the dynamic lateral response was gov-
emed by effects originated from the coupling of modes in transverse direction. Chatjigeorgiou (2004)
considered the dynamic behavior of vertical slender structures for marine applications under parametric
excitation. The governing equations were treated by two different numerical schemes, the first was im-
plemented by Galerkin’ s method and the modes superposition principle; the second method applied
was a finite difference approximation scheme. Chatjigeorgiou and Mavrakos (2005) dealt with the in-
temal resonances originated from parametric excitation of a slender pipe conveying fluid, the reported
work focused on a specific case study, which corresponds to an excitation frequency equal to the double
of the structure’s first lateral natural frequency. Kuiper et al. (2007) considered the stability of a
straight deep-water riser connected to a heaving floating platform. They found that a vertical hammonic
motion of the platform can result in a loss of stability of the riser. Some research work has been investi-
gated the excitations by combined platform surge and heave motions. Thampi and Niedzwecki (1992)
examined the response of a non-linear marine riser to the combined excitations using Markov methods.
Patel and Park (1995) investigated the combined axial and transverse response of tethers of a tensioned
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buoyant platform using a semi-analytical method; the tether is modeled as a simply supported Euler-
Bemoulli beam under the action of the combined axial and lateral forces. Park and Jung (2002) re-
ported that the parametric excitation alters the response pattem of a long slender marine structure, a
linear beam model was taken and a finite element method was implemented in the time domain.

In case of a harmonic parametric excitation, the amplitude of the imposed motion will define the
instability regions obtained through the Mathieu equation. TLP tethers at low tensions were studied by
Patel and Park (1991), and the Mathieu stability charts were derived at large parameters for TLP. It
was concluded that the mean tension in the tethers could be decreased to increase the payload over the
conventional design of TLP by use of the Mathieu stability charts. Wang and Zou (2006) introduced
hydrodynamic aspects of in-place TLP tether design analysis with emphases on TLP hull/tether/riser
coupled dynamic analysis and studied the tether Mathieu instability. Zhang et al. (2002) investigated
TLP tether Mathieu’ s instability under parametric excitation. After substituting boundary conditions
and including hydrodynamic damping, a beam equation (tether model) had been recast into a general
Mathieu’ s equation. It demonstrated the importance of the damping on suppressing Mathieu’s instabil-
ity. Chandrasekaran et al. (2006) presented the dynamic analysis of tethers and TLPs considering the
linearly varying tension along the tether length. The modal analysis considered a linear cable equation
for tether modeling subjected to the tension varying along its length, and a Mathieu stability analysis
was then performed for TLPs of different shapes and different water depth. It can be seen that increased
tether tension not only leaded to a stable platform but also improved the stability due to the increased
hydrodynamic load contributing to the added mass.

In case that the subject of investigation is the coupled axial and transverse vibrations of a TLP
tether, the instability regions will be calculated in terms of the Hill’s equation. The main aim of this
paper is to obtain the Hill instability charted up to the large parameters and investigate nonlinear dy-
namic response of tether in different instability regions.

This paper is structured as follows. Brief description of the nonlinear structural model is given in
the next section. In Section 3, the Hill instability chart is investigated by employing Hill s infinite de-
terminant and harmonic balance method. Then, some example studies are performed in different insta-
bility regions in Section 4. Finally, conclusions are drawn based on the presented results in the last

section.

2. Nonlinear Coupled Equations of Tether Vibration

The structure oscillates in both directions of the reference plane due to the externally imposed mo-
tions. Fig. 2 shows the idealized configuration under the combined excitation and gives the notation
being used. For convenience the effects of torsion and rotation are neglected, the governing equations
describing the coupled axial and transverse motions of TLP tether are written as follows (Han and Be-
naroya, 2000a, 2000b) :

v

oAu — (EA(u' + %0'2)) = fi3 (1)
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Fig. 2. Model structure configuration and
notation.
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It is noted that the prime notation is used for the derivative with respect to x, and dot notation
with respect to ¢, where p is the tether density, A the unstretched cross-sectional area, E the modu-
Ius of elasticity, and I the unstretched moment of inertia, u is the displacement of tether in x direc-
tion and v is in y direction, f; is the external forcing function in x direction and f, is in y direction.
With inclusion of gravity and buoyancy in the equation, f, can be writien as:

fe = piAg - pAg. (3)
The tether is considered to be completely immersed in the absence of current and waves, the transverse
force is formulated by Morison’s equation ( Chatjigeorgiou and Mavrakos, 2002, 2005) :

- 1 .-
fy = - CApfAfv - ECD‘O{DOv Ul . (4)

where, D, is the unstretched diameter; p;, the density of the surrounding fluid; g, the gravitational
acceleration; A;, the cross-section of the displaced volume; C,, the added mass coefficient; Cp, the
drag coefficient.

Assuming both ends of the structure is hinged, the motions of the lower joint and the bending mo-
ments at both ends should be equal to zero. The foregoing requirements are expressed as follows:

u(0,¢) =0, »(0,t) =0, EW'(0,t) =0, ER'(L,t) =0. (5)

The motions at the top are assumed to be specific functions of time, thus
u(L,t) = u,(t) + up; (6)
v(L,t) = v,(1), )

where u is the pre-elongation of tether due to the pre-tension provided by platform buoyancy, a consti-
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tutive tension-strain relation ug= NoL/( EA) has to be added, which in the present contribution is as-
sumed to be a linear one. Note that N is the pre-tension of tether, L is the original length. u,(z)
and v,(¢) denote the imposed external excitations in the axial and transverse direction at the tether up-
per end. The initial position of the top end is set to be at the midpoint of the surge motion and in the
highest position of heave motion. In addition, the top end rotates in the clockwise direction by the
wave-induced surface platform motion. Therefore, u,(t) and v,(¢) can be written as:
u,(t) = Uycoswt, (8)
v,(t) = Vsinwt, (9)
where U, is the platform heave motion amplitude, V, is the platform surge motion amplitude, and w is
the angular frequency of the top end motion, which is the same as wave frequency.
The partial differential Eqs. (1) and (2) are reduced to ordinary nonlinear differential equations
by applying the Galerkin’s method and the modes superposition principle ( Chatjigeorgiou, 2004); the
solution of unknowns u and v can be expressed by:

u(x,t) = u() £ 4 WuE%mm—— (10)

aﬁw=mn%+ZMnm%£ (11)

where u,(t) is the amplitude of n-th order in axial direction and v,(¢) is in transverse direction.
Introducing u(x,¢) and v(x,¢) from Eqs. (10) and (11) into the system of Egs. (1) and
(2) and utilizing the orthogonality relation of modes, multiplying throughout by sin( nrx/L) and inte-
grating over the length of the tether, the govemning equations are transformed into an infinite set of non-
linear differential equations with respect to the time dependent generalized variables u, () and v, (t)

i (o) s EA(nLn) u(t )+EA(T) va(2) o (2) + (= )m;,,a(,)
=[1-v

m() e (242« 2 (7)o ) (202

pA + CApfAf

(12)

v,(t) + v,(t)

nx 2 p,(2)
+Ehl_Lﬂm @
pA + CApfAf " +

CppiDo J" l
" L(pA + CrpeA) 00 Q

n+l _2_
Dt == v,(t)

sinn—zﬁdx, (13)
where
Q = v,(¢) —;f- + zl: i"(t)sinﬂ%. (14)

Since the internal resonances which involve the elastic eigenfrequencies obtain extremely high val-
ues because the flexural rigidity EA is considerably higher than the bending stiffness EJ, it is safe to
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ignore the axial vibration, and the investigation will be restricted to the transverse motion only ( Chatji-
georgion and Mavrakos, 2002). It is convenient to introduce a dimensionless time variable, z, such
that:

dzv,, w? o,

27 = wt, then |5 a2 C 4 42 (15)
Substituting Eq. (15) into Eq. (13) gives the final equation:
&, L i
d:2 +[8 + er(r)] v, + cjoo 0 sin”T’”dx = (- D" Zi(o), (16)
where
V
EICTEY + No(F7) + EA(M)z(—“)2
5= L”L° . (17)
w? PA + CAPfAf ’
CDPrDo
€= L(pA + CA‘OfAf) (18)
r(7) = cos(27) — Mcos(47); (19)
Vi
M= (20)
Assuming N* = EAU,/L, N” being the time-varying axial force amplitude, then
' 4EA(PTY U, a(BEyN®
(21)

w’L(pA + CapiA) ~ o?(pA + CapiAD)”
Eq. (16) is the nonlinear Hill equation. It is shown that, in case of a harmonic parametric excitation,
or combined forcing and parametric excitation with linear bearn model, M =0. Then the nonlinear Hill
equation becomes Mathieu equation, which can be written as:

d*v, (8" ) I'“ I i BXZ 4 (—1)" 25
a2 * + €cos2T)v, + ¢ OQ Q|sin = =dx = (- nnv“(r) (22)
where
4 EIC + No(5)?
8 = (23)

w pA + CAPfAf

3. Instability Charts of Hill Equation

In actual conditions in deep sea, & and € may be not small parameters, therefore, the perturba-
tion method can not be adopted. In this paper, the Hill instability chart is gained by use of the Hill’s
infinite determinant and harmmonic balance method (Koo, 2003; Simakhina, 2003). The canonical
form of the Hill equations takes its form by excluding the nonlinear damping term of Eq. (16):

2
i[5+ e)]n =0, (24)

It is known that when & in Eq. (24) belongs to a certain countable set of characteristic values,
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Eq. (24) is satisfied by one of the following periodic solutions (Patel and Park, 1991):

v (1) = E ay,cos2nt (Even solution of period =) (25

n=0

v,(7) = 2 azzc08(2n + 1)t (Even solution of period 27) (26)
n=0

v, (1) = E by,sin2nr (0dd solution of period ) 27

n=0
v,(7) = E byp1sin(2n + 1)7 (0dd solution of peried 27) (28)
n=0

Substituting Eqs. (25) ~ (28) into Eq. (24) and the coefficients of cos(2nzr), cos(2n +1) 7,
sin(2nz), sin(2n + 1) r are equaled to zero for n =0, 1, 2---, then recurrence relations are ob-
tained. With some manipulation, these recurrence relations can be expressed into infinite and terminat-

ed continued fractions.

5 £ _%'—’ 0 0 0
£ eM
e 5-4 -5 0 0
M e £ &M
-5 2 0-16 5 -2
=0 (29)
eM e 2 £ eM
-5 3 0-4=-2) 2 -2
M € 2 £
0 -3 5 6-4(n-1) 2
0 0 0 -5—2"-’ £ 8 - 4n?
eM e &M
e—4+2 ) -5 0 0 0
£ £ M
> s$-16 — -5 0 0
&M £ £ &M
) ;7 0-3% 5 )
= 0 (30)
M e £ M
-5 5 8 ~4n 27 > )
M £ €
0 o o - 5 8 - 4n?




540
£ & M M
p-lsy =-5 -5 0 0
e _M £ M
22 9% 5 -5 0
M £ £ eM
-3 ;7 9-B 5 o
M e 2 £
-5 2 d-Q12n-95 5
M £ 2
0 -7 2 d-02n-3)
0 0 0 -%’ 0
€ & M M
d-1-5 =+ -5 0 0
£ M € M
2t 9% g -5 0
M £ £ M
-5 ; 0B 5 o
M e ey £
-5 3 d-(2n-5) 5
M £ 2
0 -5 ; 8-(2n-3)
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v o

§-Qn-1)?

3-Qn-1)?

=0 (31

=0 (32)

The first important result obtained from the conducted analysis is the Hill instability regions for
the coupled axial and transverse vibration of a TLP tether. Only a finite number of terms in Eqs. (25)
~(28) is taken, and n is set to be 10. Fig. 3 demonstrates the first five instability regions obtained
through Eq. (24) with M =0, M =0.1085, and M =0.3014, for the tether properties listed in

Table 1.
Table 1 Values of the system parameters used in calculations (Patel and Park, 1995)
Length (m) 300 Outer diameter (m) 0.812
Dry mass (kg/nr’) 726.3 Added mass coefficient 1.0
Flexural rigidity (Nn?) 14.57x 10° Axial rigidity (N) 1.88x 10'°
Inner diameter (m) 0.762 Drag coefficient 0.8
Surge amplitude (m) 3.0 Top tension (N) 13.0x 10°
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Fig. 3. Hill instability charted up to large parameters (shade regions are unstable) .
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According to Fig. 3, it seems that higher-order regions of instability are more sensitive to M than
lower-order ones. Increasing M value, the first and second instability regions become a little narrower.
And the third, fourth and fifth instability regions become broader. All the instability regions are dis-
placed towards the left of the figure. Fig. 3(a) shows the instability chart of Hill equation (24) when
M =0, which is also called the Mathieu instability chart or the Ince-Strutt chart. It is clear that the
instability of a tether is not only related to the platform heave motion, but also might be caused by the

platform surge motion.

4, Case Studies

Some case studies are carried out to analyze the dynamic response characteristics in different in-
stability regions. The tether is excited by the combined platform surge and heave motion, and it is
modeled as a linear beam and a nonlinear beam respectively. Input data for case studies are listed in
Table 1, which is the same as the reference presented by Patel and Park (1995). The ratio of time-
varying axial force amplitude to pretension N /Ny is set to be 1.0, according to which the platform
heave motion amplitude can be obtained. Two different M values of O and 0. 1085 are chosen for case
studies. The relation between instability region number and excited periods is shown in Table 2. First-
ly, the results obtained by linear and nonlinear model are compared with each other in the un-damped
case. Then the effect of damping is investigated. Only the leading four modes are adopted for the
transverse nonlinear vibration analysis of the tether, because the leading four modes can not only sim-
plify the computation but are also an adequate approximation.

Table 2 Relation of instability region number and excited periods
Linear beam model Nonlinear beam model
Excited period (s)
8 Instability region é Instability region
8.5 8.3 Third stability 9.2 Mid third
11.4 15 Fourth stability 16.6 Mid fourth
15.3 2 Fifth stability 29.9 Mid fifth

Fig. 4 shows the response magnitudes at mid-point of the tether. The corresponding results have
been obtained with Cp =0. Assuming the period of platform motion is limited in the range of 6 ~ 30
seconds, so we did not calculate the dynamics response in the first and the second instability regions
herein. A comparison is made between the results obtained by nonlinear beam model and those ob-
tained by linear one, which is the same as Patel’s model (Patel and Park, 1995). It can be seen that
the dynamic response results are unstable in the instability regions by use of nonlinear model, while the
results obtained by Patel’s model (Patel and Park, 1995) are stable. The reason is that, if the cou-
pled axial and transverse vibrations of the tether are considered, the instability regions of Hill equation
(16) and the Mathieu equation (22) are different. It can be clearly observed in Table 2 and Fig. 3,
indicating that the interaction between axial and transverse is significant.
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Fig. 4. The response magnitudes at the mid-point of the tether in different instability regions, without damping.
(a) M=0, 8" =8.3, (b) M=0.1085, §=9.2, (¢) M=0, 8" =15, (d) M=0.1085, 8 =
16.6, (e) M=0, 8" =27, (f) M=0.1085, §=29.9.

While constructing the Hill instability chart and calculating the tether dynamic response in differ-
ent instability regions, the damping temm is not considered. In reality, the nonlinear hydrodynamic
damping plays an important role in limiting tether oscillations. This feature is studied below. Fig. 5
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plots the response magnitudes at the mid-point of the tether including the effect of damping. It is noted
that even if a tether is in an unstable condition, the response will be stable and the amplitude will be

limited.
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Fig. 5. The response magnitudes at the mid-point of the tether in different instability regions, with damping. (a)
M=0, 8" =8.3, (b) M=0.1085, §=9.2, (¢) M=0, §" =15, (d) M=0.1085, & =16.6,
(e) M=0, 8" =27, () M=0.1085, $=29.9.
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The above results show that the dynamic response predicted by nonlinear model is different from
that of linear beam model, and it is more realistic than linear beam mode! for accurate dynamic analysis
of TLP tether subjected to the combined platform surge and heave motions.

5. Conclusions

The analysis presented in this paper demonstrate the significant effects of the nonlinear coupling
between the axial and transverse vibrations of TLP tether. It is not frequently considered in convention-
al design studies, if the nonlinear beam model is used. The governing equation of the tether is not
Mathieu equation anymore, it becomes Hill equation. The Hill stability charted up to large parameters
is obtained by the Hill’s infinite determinant and harmonic balance method, which is definitely differ-
ent from Ince-Strutt chart when M has a large value. The Hill instability chart prescribed in this paper
should be used to guide the design work of TLP tether. The case studies prove the significance of con-
sidering nonlinear coupling once more.

However, some assumptions are made for the simplification in above investigation, thus further
work needs to be carried out to ignore these assumptions, such as the consideration of coupling between

platform and tether dynamics. The study is not limited only in 2D space anymore.
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