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Lattice-type model can simulate in a straightforward manner heterogeneous brittle media. Mohr–Cou-
lomb failure criterion has recently been involved into the generalized beam (GB) lattice model, and as
a result, numerical experiments on concrete under various loading conditions can be conducted. The
GB lattice model is further used to investigate the reinforced fiber/particle composites instead of only
particle composites as the model did before. Numerical examples are given to show the effectiveness
of the modeling procedure, and influences of inclusions (particle, fiber and rebar) on the fracture pro-
cesses are also discussed.
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1. Introduction

When investigating fracture behaviors in heterogeneous media
such as concrete in the macro continuum level, there are mainly
two kinds of numerical modeling: discrete crack and smeared
crack models [1–3]. The discrete crack model is aimed at simulat-
ing the initiation and propagation of dominant cracks. When the
nodal stress at the node ahead of the crack tip introduced as a geo-
metric entity exceed the tensile strength, the node is split into two
nodes and the tip of the crack is assumed to propagate to the next
node. The successive adjustment in mesh topology is a prominent
difficulty in discrete crack model. In contrast, the smeared crack
model is based on the idea that in concrete, due to its heterogene-
ity and the presence of reinforcement, many small (micro-) cracks
nucleate and grow part of which link up to form dominant crack(s)
only in a later stage of the loading process. Since each individual
crack is not numerically resolved, the smeared crack model cap-
tures the degrading process through a constitutive relation, thus
smearing out the cracks over the continuum. The smearing opera-
tion is actually based on the basic assumption of micro-mechanics,
i.e., ‘‘the doctrine that all observable events must be explained as
macro events; that is to say, as averages or summations of certain
micro events” [4]. However, the validity of this doctrine may be-
come debatable if the disorder on a finer scale affects the response
on the coarse scale in a manner that is not related to ‘‘averages or
ll rights reserved.
summations”. In principle, this questionable issue also puzzles the
extended finite element method (X-FEM) proposed in [5,6].

In comparison to the above macro level models, the meso-level
lattice-type model can simulate the complete failure process
including nucleation and growth of micro cracks, formation, coali-
tion and propagation of macro cracks until the final breakdown of
the whole specimen [7–9]. Furthermore, this kind of models does
not need any remeshing procedure or any smearing operation.
Most important of all, lattice models describe the failure process
in a very realistic and physical-based manner: successive cracks
of matrix, aggregate and interface units, showing clearly the rela-
tion between microstructure and failure behavior. Of course, the
computational command will be higher. Fortunately, the limit
from the computational conditions has been and is being substan-
tially overcome by quick development of computer hardware.

In fact, lattice-type models have been successfully used in frac-
ture analyses for several decades. The GB lattice model proposed
recently was employed to simulate tensile failures by adopting
maximum tensile stress failure criterion at first [9]. Then it has
been improved to investigate compressive failures by using the
Mohr–Coulomb criterion [10]. The Mohr–Coulomb criterion is
widely accepted to describe elemental failing behavior under var-
ious loading conditions. Therefore, the GB lattice model improved
in [10] can simulate a wider range of fracture experiments in
principle.

Until now, the media investigated using lattice-type models are
mainly particle composites [7–10]. Nevertheless, fibers and rebar
are another two common kinds of inclusions in many engineering
composites such as concrete. Therefore, it is also an interesting
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Fig. 2. Kinematics and statics of a beam.
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topic to investigate fracture behaviors of composites containing
fibers and rebar, which is the aim in the present paper.

2. Modeling and algorithm

2.1. Generalized beam lattice model and its extension into reinforced
fiber/particle composites

To take into account the heterogeneity nature of concrete, the
GB lattice model has been developed [9]. Until now, the concerns
in the literature have been mainly focused on the inclusion of
aggregates, i.e., particles (Fig. 1a). Every GB element is composed
of three beams, which can be aggregate-phase, matrix-phase or
interface-phase independently (Fig. 1b). In the three-fragment GB
element, every fragment is regarded as a beam. These beams can
be taken as Euler-Bernoulli beams, Timoshenko beams or beams
proposed by [11]. No matter which beam theory is adopted, the
beam stiffness matrices can be expressed in the following common
form (Fig. 2):
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where, F12 = {Q1 N1 M1 Q2 N2 M2}T and u12 = {u1 v1 u1 u2 v2 u2}T

are the generalized force vector and the generalized displacement
vector, respectively.

For the Euler-Bernoulli beam:
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Fig. 1. A GB lattice for particle composites: (a) projection of particle structure onto
the lattice and (b) sketch-map of composition of an aggregate-interface-matrix
element.
For the Timoshenko beam:

M11 ¼
12EðbÞI

ð1þ bÞh3 ; M34 ¼
6EðbÞI

ð1þ bÞh2 ; M22 ¼
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h
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where, E(b) is the Young’s Modulus; t(b), h and l are respectively the
thickness, the span and the height of the Timoshenko beam; A = t(b)l
is the cross-section area; I = t(b)l3/12 is the moment of inertia;
b = aE(b)l2/G(b)h2 is the dimensionless parameter in Timoshenko
beam theory; G(b) = E(b)/2(1 + m(b)) is the modulus of rigidity, where
m(b) is the Poisson’s ratio.

For the beam studied in [11]:
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where E(b)0 = E(b)/[1 � (m(b))2].
The relationship between the lattice and its continuum equiva-

lent is obtained based on the equivalence of strain energy stored in
a unit cell of a lattice with its continuum counterpart. The calibra-
tion results for a triangular GB lattice are listed as follows.

For the Euler-Bernoulli beam:
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Note that the Poisson’s ratio for Euler-Bernoulli beams is always
zero.

For the Timoshenko beam:
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For the beam studied in [11]:

EðbÞ ¼ E; mðbÞ ¼ m ð7Þ

The stiffness matrix of a GB element is expressed as functions of
material and geometry parameters of its three beams. Take the
element shown in Fig. 3 as an example, let R be the matrix relat-
ing the displacement vector uij ¼ fui vi ui uj vj uj gT and
uIJ ¼ fuI vI uI uJ vJ uJ gT:

uIJ ¼ Ruij ð8Þ

Then the stiffness matrix of the GB element K can be expressed
in the form



Fig. 3. A GB element composed of an aggregate beam, an interface beam and a
matrix beam: (a) the GB element; (b) the aggregate beam; (c) the interface beam
and (d) the matrix beam.

Fig. 4. Mohr–Coulomb strength surface with tension cut-off.
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where, the superscript of M declares the material property; In other
words, Mm, Ma and Mi are respectively the stiffness matrix of ma-
trix, aggregate and interface beams. Ma

I , Ma
II and Ma

III denote the
top-left, top-right and bottom-right 3 � 3 sub-matrix of Ma respec-
tively, and the same notation rule is also used to Mi and Mm. RI,
RII and RIII, respectively denote the top-left, top-right, bottom-right
3 � 3 sub-matrix of R.

It can be proved that the matrix K generally has the following
distribution of non-zero elements:

K ¼
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It can be found that K in (10) has more independent elements than
M in (1) for the reason that a GB element has a more complex inter-
structure shown as Fig. 3. For the sake of convenience, the following
matrix KN is defined as

KN ¼

0 0 0 0 0 0
K22 0 0 �K22 0

0 0 0 0
0 0 0

SYM K22 0
0

2
666666664

3
777777775

ð11Þ

If the computational effort is the main choke point in the simu-
lation, it is suggested to use the GB lattice in which every aggregate
is modeled by a single node [9]. Otherwise, if the size of the simu-
lated specimen is not very large and the main aim is to observe the
failure process in more details, another kind of GB lattice is pre-
ferred, in which a single aggregate covers dozens of nodes [10].
The simulations in this paper are mainly based on the latter. Fur-
thermore, every GB element is composed of three beams of the
same span and the same depth, which are all described by the
Timoshenko beam theory.

Mohr–Coulomb theory is a mathematical model describing the
response of materials such as rock, rubble piles or concrete to shear
stress as well as normal stress. Most of the classical engineering
materials somehow follow this rule in at least a portion of
their shear failure envelope. The criterion can be expressed in the
form

jsj < c � r tan / ð12Þ
where c is the cohesive strength and / is the friction angle; s and r
are the shear stress and the normal stress respectively.

Because materials such as concrete/rock have a very low tensile
strength ft as compared with their compressive strength and shear
strength, the Mohr–Coulomb strength surface with tension cut-off
[11] is adopted here (Fig. 4). Concrete’s compressive strength fc is
generally 10–20 times the value of its tensile strength, so fc = 10ft

is used in this paper. Furthermore, the failure surface in Fig. 4
can be expressed by the following three inequations:

r < ft ð13aÞ
jsj < c � r tan / ð13bÞ
r > �fc ð13cÞ

Then the implementation of the Mohr–Coulomb criterion
shown in Fig. 4 is introduced. It is notable that we find out the crit-
ical element by checking the stresses in beams of GB elements. The
normal stress can be expressed in the form [7]

r ¼ N
A
þ a
ðjMij; jMjjÞmax

W
ð14Þ

where, N is the normal force in the considered beam, Mi and Mj are
the bending moments at the nodes i and j of the beam, and
W = t(b)l2/6 is the section modulus. The coefficient a regulates what
part of the bending moment is considered. Lilliu and van Mier [12]
have shown that simulation results are also satisfactory in the case
of a = 0 though a is usually set to 0.005 [7–9]. Therefore, a is also set
to zero in this paper. Another advantage of a being zero lies in that
three beams in every GB element have the uniform normal stress
because both N and A are uniform throughout every GB element.

From (1), the shear force can be expressed in the form

Q1 ¼ �Q 2 ¼ M11ðu1 � u2Þ �M34ðu1 þu2Þ ð15Þ

In consideration of the equilibrium conditions at I andJ (Fig. 3),
it can be found that the shear force is also uniform throughout the
GB element. Therefore, the shear stress can be calculated as

jsj ¼ jQ 1j
A
¼ 1

A
jM11ðu1 � u2Þ �M34ðu1 þu2Þj ð16Þ

As a result, the efficiency of the numerical procedure is im-
proved. Furthermore, it makes the following assumption reason-
able: when some GB element becomes critical, it cracks into two
fragments of the same span, i.e., L/2, where L is the length of the
GB element. Therefore, if all six GB elements starting from node i
have failed, the isolated material domain around node i, called
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influence zone of node i has the geometry shown as Fig. 5a. The GB
lattice can be also taken as a network by gluing a large amount of
this kind of material domains, shown as Fig. 5b, where the short
line-segment crossing the middle of every GB element indicates
the potential crack path.

Then an important approximation is made: the material domain
around every node is circular and its diameter is L, which is the same
as the bonded-particle model (BPM) [14]. The advantages of the GB
lattice over the BPM will be discussed later. When calibrating the GB
lattice [9], it is assumed that the influence zone (unit cell) is hexag-
onal, which is p=2

ffiffiffi
3
p

times the area of the circle (Fig. 5c). This dif-
ference can be avoided easily when using the equivalence of
strain energy between the GB lattice and its continuum counterpart.
But this difference is neglected in this paper. On one hand, it does
not influence the results seriously. On the other hand, even though
the model is a very rough approximation of reality, this appears
throughout all kinds of lattice-type approaches [12].

The adoption of circular influence zones (unit cells) brings the
following two advantages at least:

� The contact detection becomes very simple. To judge if contact
happens in a cracked element, we only need to compare the initial
length of the element with the current distance between its two
nodes. Although only cases of small displacements are studied
here, the circular-influence-zone assumption can also simplify
the contact/separation detection when large displacements are
permitted.

� The direct calculation of the stiffness matrix of recurred ele-
ments, i.e., contact elements, becomes possible. If the crack path
in an element is arbitrary, the corresponding contact stiffness
can not be calculated directly in principle without any assump-
tion. There are mainly two kinds of assumptions: one takes the
influence zones as rigid bodies [14], while the other assumes
that the stress field throughout every special influence zone is
uniform [15]. As shown in Fig. 5d, when the cracked element ij
contacts, the stiffness matrix of the contact element can be cal-
culated directly because the properties of the two ‘‘half GB ele-
ments” are known. In this paper, we only study the simplest
case—smooth contact. Therefore, the contact element can only
bear compressive actions along the direction of element ij, and
the stiffness matrix can be expressed in the form

Kcontact ¼ ð1� DÞKN ð17Þ

where, D is the damage factor due to the deformation history. Of
course, the concept of the damage factor here is extremely rough
as compared with the one in the classical damage mechanics
which increases gradually with external loads [16]. However, D
Fig. 5. A GB lattice with circular nodal influence zones: (a) a single nodal influence zon
comparison of circular and hexagon influence zones and (d) sketch-map of contact.
in (17) also indicates the degradation of material properties, so
basically has the same physical meaning of the classical damage
factor.

The above can be taken as a systemic sum-up of the GB lattice
model.

Although lattice-type beam lattices have been mainly applied to
investigate properties of particle composites until now, the basic
construction of lattice modeling indicates that other kinds of inclu-
sion can be also projected on to the lattice except particles. Mean-
while, concretes employed in practical engineering do contain
many other inclusions, such as fiber and reinforcing rebar. There-
fore, lattice modeling of reinforced fiber/particle concrete is an
easy-doing but interesting task.

Fibers and rebar can be projected on to the matrix-phase lattice
directly. The parts overlain by these inclusions are assigned the
corresponding material properties. As shown in Fig. 6, the fibers
are distributed in three directions with 60� from each other. Of
course, fibers can also be placed on other directions, but we argue
that the fiber distribution in Fig. 6 leads basically to a macro isotro-
pic medium with the similar reason that a regular triangular lattice
corresponds to an isotropic continuum [8].

2.2. Event-driven method

There are mainly two kinds of numerical algorithms for simu-
lating fracture process in heterogeneous brittle media such as con-
crete: event-driven method [10,11] and load-stepping method
[13]. In the former, the load discretization is adjusted to capture
every elemental failure. While in the latter, the load discretization
is arbitrarily fixed, and we can deal with a great number of failure
events during a single load step.

Then the differences between these two methods are being dis-
cussed. As commonly accepted, event-driven method is more accu-
rate than load-stepping method. In the region passed through by
crack, the stress level decreases substantially, preventing other ele-
ments in the crack’s neighborhood from cracking. In other words,
cracked element makes the other elements near to it less possible
to fail any more. In the load-stepping method, more than one ele-
ment fails in a single step, with an ignorance of the relative se-
quence of their failures, which will lead to very unrealistic
results in some conditions. To show this problem more clearly, a
one-dimensional fracture example is given as follows. A brittle
bar is composed of six link elements as shown in Fig. 7a. These
six elements have the same section-area, length and Young’s
modulus, but different tensile strengths ft, i.e., 2: 2: 1: 1.001: 2:
2. A quasi-static displacement-controlled tensile experiment is
e isolated by surrounding failures; (b) potential failure positions of the lattice; (c)



Fig. 6. GB lattice modeling for reinforced fiber/particle composites.

Fig. 7. Tensile experiment on a bar: (a) sketch map of the experiment set-up; (b)
result for event-driven method and (c) result for load-stepping method when load
step is not small enough.
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conducted on the bar. It can be imagined that element No. 3 will
fail and then all other elements return to zero-stress state. When
using the event-driven method, element No. 3 has the biggest ratio
of stress to strength, Rf = r/ft, so it undergoes the fracture event.
The reasonable final state is shown as Fig. 7b. When using the
load-stepping method, the ratio of Rf = r/ft in element No.3 to that
in No.4 is 1.001: 1, indicating that critical stresses in these two ele-
ments are extremely close. Therefore, it is extremely possible for
these two elements to fail in the same step. If so, the final crack
pattern obtained by this method becomes Fig. 7c, which is much
different from the expected pattern in Fig. 7b and therefore obvi-
ously unreasonable. In principle, this question can be completely
overcome only by adopting a controlled-displacement step smaller
than ðf ð4Þt � f ð3Þt ÞL=EA, which is an extremely small value due to
f ð4Þt � f ð3Þt being very small, i.e., f ð3Þt =1000. The interesting thing here
is that the event-driven method obtains more realistic result but
meanwhile costs much less computational effort than the load-
stepping method. Of course, the advantage in computational effort
of the load-stepping method can become very important in the
presence of a great number of simultaneous failures [13].

In the present paper, the event-driven method is adopted and
the implementation in the GB lattice procedure is introduced as
follows. Fracture is simulated by successive occurrences of
‘‘events”, which may be failure of critical intact or partly failed ele-
ments, or contact/separation of former cracked elements. Then, the
essential of numerical simulation is to detect new event(s) cor-
rectly. The value of load increment in every step depends on the
appearance of new critical element(s). After a trial load increment
is applied, the normal stress r and the shear stress s acting in each
beam are compared with the fracture surface, the criterion for frac-
ture is

R ¼ r
rf
> 1 ð18Þ

where r = (r2 + s2)0.5 and rf is as defined in Fig. 4. Analogously, the
criterion for separation/contact of cracked elements is

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDuÞ2 þ ðLþ DvÞ2

q
L

> 1ðcontact! separationÞ ð19Þ

R ¼ Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDuÞ2 þ ðLþ DvÞ2

q > 1ðseparation! contactÞ ð20Þ

where, Du = uj � ui and Dv = vj � vi are relative displacements be-
tween nodes i and j in element ij (Fig. 5d). As for the critical ele-
ment, the update of stiffness matrix and the release of internal
forces are introduced as follows:

(1) If (13a) is violated, {Qi Ni Mi Qj Nj Mj}T is released, and the
element stiffness matrix K is set to zero. It is notable that
this element is definitely under tensile state in the current
step. However, this element is possible to recur due to con-
tact in the following steps. Once contact happens, the
recurred stiffness matrix is
K
T
¼ ð1� D

T
ÞKN ð21Þ

where, the superscript ‘‘T” in K
T

and D
T

represents ‘‘Tension”.
Thus, D

T
denotes the damage factor due to the failure by vio-

lating (13a), i.e., maximum tensile stress criterion. KN has
been defined in (11).
(2) If (13b) is violated, there are two possible cases. In one case,
the normal stress r acting in the critical element is positive,
i.e., tensile stress, so the element is not possible to become
contact at the very beginning of stress redistribution. As a
result, {Qi Ni Mi Qj Nj Mj}T is released, and the element stiff-
ness matrix K is set to zero. In the other case, r is negative,
i.e., compressive stress, so the critical element becomes con-

tacting once violation happens. Then, fQi D
MC

Ni Mi Q j

D
MC

Nj MjgT is released, and the stiffness matrix is updated as
K
MC
¼ ð1� D

MC
ÞKN ð22Þ

where the superscript ‘‘MC” stands for ‘‘Mohr–Coulomb”. D
MC

denotes the damage factor due to the failure under the ac-
tions of both the shear stress and the normal stress, defined
as Mohr–Coulomb criterion in (13b).
(3) Three kinds of elements are possible to violate (13c): intact
elements, elements damaged by violating (13a) previously,
and elements damaged by violating (13b) previously. As
for intact elements, fQ i D

C
Ni Mi Qj D

C
Nj MjgT is released,

and the stiffness matrix is updated as
K
C
¼ ð1� D

C
ÞKN ð23Þ

where the superscript ‘‘C” represents ‘‘Compression”. As for

the second kind of elements, fQiðD
C
�D

T
ÞNi=ð1� D

T
Þ Mi Qj

ðD
C
�D

T
ÞNj= ð1� D

T
Þ MjgT is released, and the stiffness matrix

is set to K
C

. As for the third kind of elements,

fQi ðD
C
� D

MC
ÞNi=ð1� D

MC
Þ Mi QjðD

C
� D

MC
Þ Nj=ð1� D

MC
Þ MjgT is re-

leased, and the stiffness matrix is also set to K
C

.



Table 1
The micro elastic and strength properties of phases

E (Mpa) ft (Mpa) fc (Mpa) c (Mpa) / (�) D

Aggregate 70,000 10.0 100.0 15.0 45 0.95
Interface 25,000 1.25 12.5 1.875 45 0.95
Matrix 25,000 5.0 50.0 7.5 45 0.95

In the table, D ¼ D
T

D
MC
¼ D

C
[10], and aggregate stands for particle/fiber phase.
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It can be found that the above numerical algorithm is much
more complex than that for simulations of tensile failures [7–9],
due to the inclusion of separation/contact phenomena and the con-
sideration of shear stress, which is reasonable for investigating
more general failures instead of only tensile failures.

3. Numerical examples and discussions

Particle composites have been studied before by the GB lattice
model. The main extension made here is the inclusion of fibers
and rebar into numerical concrete, i.e., GB lattices. Therefore, more
attentions are put to analyses of influences of fibers and rebar. As a
result, numerical examples are provided in three levels: fiber com-
posites in Section 3.1, fiber/particle composites in Section 3.2 and
reinforced fiber/particle composites in Section 3.3. Six examples
called case 1–6 are provided, successively.
Fig. 8. Case 1, i.e., tensile experiment on fiber composites: (a) sketch map of the experime
a; (d) b and (e) c.
In these examples, the employed GB lattice has a total of 8082
nodes and 23861 elements, and a rectangular geometry of 9 by
66

ffiffiffi
3
p

=5 cm. All elements are
ffiffiffi
3
p

=10 cm long. The depth-to-span
ratio is set to 1.0 for all beams. The micro elastic and strength prop-
erties for all examples except case 3 are shown as Table 1.

3.1. Tensile and compression experiments on fiber composites

3.1.1. Case 1: tensile experiment on fiber composites
The sketch map for the tensile experiment is shown in Fig. 8a.

The specimen contains 275 fibers. The load-displacement curve
and crack patterns at typical load-levels can be seen in Fig. 8b–e,
respectively.

In the tensile experiment, influences of the fibers’ inclusion on
the fracture process can be discussed as follows:

(1) The P-dcurve is divided into pre-peak regime and post-peak
regime by the peak load (Fig. 8b). Directly following the peak
load level, there is a steep drop in load, corresponding the
formation of the macro failure band shown as Fig. 8c.

(2) Fibers parallel to load direction, i.e., 0� fibers, do not improve
the tensile loading capacity of the specimen. The reason is
that elemental failures happen easily at ends of these fibers,
preventing fibers from enduring larger tensile actions (Fig.
8c).
nt set-up; (b) load-displacement curve; and crack patterns at typical load levels: (c)
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(3) Elements in the neighborhood of ±60� fibers are under ten-
sile state, and are the dominant sources of failures because
the interface phase between matrix and fibers is the weakest
amid the three-phase system composed of matrix, inclusion
(particle, fiber or rebar) and interface between them (Fib.
8d). The continuous interface zone surrounding the fiber
somewhat acts as weak structural lines (face in 3D). When
this kind of interface has failed, the degree of stress concen-
tration on both ends of the interfaces is generally much
highly than that in the case of particle composites because
fibers have much bigger length-to-width ratio than particles
(Fig. 6). Then it is expected that cracks extend more easily at
fiber’s ends. For this reason, matrix elements surrounding
fibers that block micro-cracks’ extensions may be more eas-
ily destroyed due to higher stress concentration.

(4) Crack-bridging happens frequently (Fig. 8c–e). ‘‘Bridges”
between crack faces can be fibers and/or narrow matrix
regions between fibers.
3.1.2. Case 2 and case 3: compressive experiments on fiber composites
The experiment set-up is shown as Fig. 9a. The specimen has

the same fiber distribution as case 1. Two cases are simulated: case
2 and case 3. In case 2, the material properties in Table 1 are em-
ployed. Their unique difference lies in that the fiber strength in
case 3 is four times of that in case 2.

Compressive failure is more complex than tensile failure be-
cause the former includes more micro-level failure mechanisms:
Fig. 9. Case 2 and case 3, i.e., compressive experiment on fiber composites: (a) sketch
typical load levels: (c) a in case 2; (d) a in case 3 and (e) b in case 3.
compression-induced tensile failure, failure due to compression,
and failure due to combination of normal and shear stresses [10].

In the present simulations, fibers have three kinds of directions:
0� and ±60� relative to loading direction. In the pre-peak regime
(Fig. 9b), many local cracks appear around 0� fibers due to com-
pression-induced tensile failure mechanism. These local cracks
grow and join each other until the extension comes across ±60� fi-
bers. ±60� fibers have two possible influences: blocking the cracks
along 0� fibers from extending in the original direction and trans-
ferring the extension to ±60�; remaining the extension of cracks
along 0� fibers because of ±60� fiber breakage.

The fiber strength has an important influence on fracture pro-
cesses. Case 3’s specimen has higher fiber strength, so fiber break-
age is more difficult to happen. As a result, crack extensions are
blocked more easily by fibers: there is roughly a single macro fail-
ure band in case 2 (Fig. 9c), but several macro failure bands occur
in case 3 during the post-peak regime (Fig. 9d and e). Furthermore,
the peak load increases with the fiber strength increasing (Fig. 9b).

3.2. Case 4: compression experiment on fiber/particle composites

The boundary conditions are the same as Fig. 9a. 170 fibers and
70 particles are distributed in the specimen. The results about the
fracture process are shown in Fig. 10.

Firstly, the strain distribution is analyzed. In the pre-peak
regime, many failure events whose sizes are much smaller than
the specimen size happen mainly around fibers and particles
map of the experiment set-up; (b) load-displacement curve; and crack patterns at
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(Fig. 10b and c). From Fig. 10d, the strain field in the microstructure
level is extremely unhomogeneous at the peak load level a. Mean-
while, however, it can be found that there is no macro strain local-
ization. After the steep drop of load directly following the peak, an
obvious strain localization band appears and deformations in other
regions outside the band decrease to a much lower level (Fig. 10e
and f).

Before appearance of the localization band, the macro strain
field can be regarded as uniform, even though the deformation in
micro level is chaotic due to the micro-structural disorder. Failures
at different positions nucleate and grow approximately indepen-
dently. When the content of fiber/particle is fixed, the macro re-
sponse is not very sensitive to the fiber/particle distribution. This
indicates that the material is translationally invariant, therefore
continuum damage mechanics can be a proper alternative to de-
scribe the pre-peak response [4]. More numerical investigations
have shown the slopes of load-displacement curves are approxi-
mately common for specimens with different fiber/particle distri-
butions, even though the corresponding numerical results have
not been provided here for the sake of pithiness. However, crack
patterns in the post-peak regime are strongly related to the inclu-
sions’ distribution, which dominates the position and propagation
of the macro crack band.

Fracture history in the specimen can be observed from the view
point of acoustic emission (AE), which is an important technique in
real physics experiments. Fig. 10b shows the numerical AE curve. It
Fig. 10. Case 4, i.e., compressive experiment on fiber/particle composites: (a) load-displa
contours at typical load levels: (c) and (d) for a and (e) and (f) for b.
can be found a majority of cracked elements fail during the steep
drop directly following the peak load, and most of them localize
in the macro crack band (Fig. 10e).

3.3. Case 5 and case 6: three-point bending experiments on reinforced
fiber/particle composites

The experiment set-up is shown in Fig. 11a. In case 5, the spec-
imen contained two pieces of rebar. The rebar’s elastic property is
the same as that of fiber/particle, while its strength is set so large
that the rebar only deforms elastically and does not fail during the
whole process. This operation seems reasonable because the rebar
failure in realistic reinforce concrete is also hardly found. In case 6,
the specimen is the fiber/particle composites without rebar. The
aim here is to highlight the influence of rebar inclusion on fracture
process by comparing case 5 with case 6:

(1) There is a much more complex pre-peak regime in case 5, as
shown in Fig. 11b. In the pre-peak regime, the load increases
approximately monotonously with displacement in case 6,
but the P-dcurve in case 5 is anything but smooth, containing
dozens of considerable steep drops.

(2) At the peak-load level, there are several macro cracks amid
regions without rebar in case 5 (Fig. 11c), but no macro crack
occurs in case 6 (Fig. 11f). In other words, the crack pattern in
case 5 is more diffused that case 6. Furthermore, case 5 has a
cement curve; (b) numerical acoustic emission curve; and crack patterns and strain



Fig. 11. Case 5 and case 6, i.e., three-point bending experiment on reinforced and non-reinforced fiber/particle composites, respectively: (a) sketch map of the experiment
set-up; (b) load-displacement curve; and crack patterns at typical load levels: (c) a in case 5; (d) b in case 5; (e) c in case 5; (f) a in case 6; (g) b in case 6 and (h) c in case 6.
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much higher peak load, indicating that rebar’s inclusion can
greatly improve the bearing capacity of load.

(3) The crack patterns are separated by the rebar into several parts
in case 5 (Fig. 11c–e). When cracks come across rebar, its
extension is prohibited. While in case 6, the crack nearly grows
along a single path (Fig. 11f–h). As a result, the ductility can
also be improved by adding rebar into the composites (Fig. 11b).
4. Conclusions

The GB lattice model was extended into fracture analyses of
reinforced fiber/particle composites. The inclusions in this kind of
materials, i.e., fiber, particle and rebar are projected on to ma-
trix-phase lattice directly. Therefore, the micro-level failure pro-
cess can be observed more explicitly when compared with macro
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continuum models. In other words, the present model is suitable
for analyses of micro-level failure mechanics.

In order to investigate the influence of fiber, particle and rebar
on fracture behaviors, experiments were conducted on three kinds
of composites respectively: fiber composites, fiber/particle com-
posites and reinforced fiber/particle composites. Two new kinds
of representation of fracture processes are given: strain contour
and numerical acoustic emission curves, to highlight the physics
phenomena as well as load-displacement curves and crack
patterns.
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