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The instability of Poiseuille flow in a fluid-porous system is investigated. The system consists of a
fluid layer overlying porous media and is subjected to a horizontal plane Poiseuille flow. We use
Brinkman’s model instead of Darcy’s law to describe the porous layer. The eigenvalue problem is

solved by means of a Chebyshev collocation method. We study the influence of the depth ratio d̂ and
the Darcy number � on the instability of the system. We compare systematically the instability of
Brinkman’s model with the results of Darcy’s model. Our results show that no satisfactory
agreement between Brinkman’s model and Darcy’s model is obtained for the instability of a
fluid-porous system. We also examine the instability of Darcy’s model. A particular comparison with
early work is made. We find that a multivalued region may present in the �k ,Re� plane, which was
neglected in previous work. Here k is the dimensionless wavenumber and Re is the Reynolds
number. © 2008 American Institute of Physics. �DOI: 10.1063/1.3000643�

I. INTRODUCTION

Parallel flow occurs in a wide range of industrial pro-
cesses and natural phenomena. The instability of parallel
flows in particular Poiseuille flow has been extensively in-
vestigated for many years. Reynolds studied the instability of
Poiseuille flow of water in a pipe in experiments at the end
of the 19th century. Further theories of the instability of pipe
flow have been developed by many investigators.1,2 Thomas3

studied the problem of plane Poiseuille flow by solving an
eigenvalue problem for the Orr–Sommerfeld equation.
Grosch and Salwen4 studied the instability of steady and
time-dependent plane Poiseuille flow using a set of orthogo-
nal functions. Orszag5 proposed a so-called Chebyshev–Tau
method to solve numerically the Orr–Sommerfeld equation.
His results show that the expansions in Chebyshev polyno-
mials are better suited to the solution of eigenvalue problems
than expansions in other orthogonal functions.

Simultaneous flow through both a pure fluid and a po-
rous medium has numerous industrial applications. In previ-
ous works, much attention was given to the instability of
flow in a porous-fluid system concerned about the thermal
convection problem.6–8 Nevertheless, the instabilities of
Poiseuille flow in a porous-fluid system have, as yet, re-
ceived little theoretical or computational treatment. To our
knowledge, only Chang et al.9 have reported calculations of
the instability of Poiseuille flow in a porous-fluid system.

Studies of convection in porous medium can be divided
into two groups. The single-domain models use a Brinkman
formulation for both the liquid and the porous medium. The
multiple-domain models use independent sets of equations
for the fluid and the porous medium.

A classical description of a fluid-porous system consists
of the Navier–Stokes equations in the fluid and Darcy’s

equation in the porous medium. For Darcy’s model, clearly
defining relevant boundary conditions at the porous-fluid in-
terface remains an open question. In Darcy’s model, the vis-
cosity in the porous medium is completely neglected. In
many previous works, the tangential velocity component and
the tangential shear stress are considered to be discontinuous.
Beavers and Joseph10 proposed a relation to describe the in-
terfacial velocity given by

�u

�z
=

�

�K
�u − um� . �1�

In Eq. �1�, z is the direction perpendicular to the interface, u
and um are the horizontal velocities of the fluid and the po-
rous medium, respectively, K is the permeability, and � is the
Beavers–Joseph constant which is determined by experiment
and varies for different fluids and porous media. This bound-
ary condition was verified experimentally by Beavers and
Joseph for a Poiseuille flow over porous media.

A single-domain equation, i.e., the Brinkman equation,
has been widely used to describe the flows in the porous
layer. A concise derivation of the Brinkman equation can be
found in the work of Bars and Worster.11 In Brinkman’s
model, the “effective” viscosity is introduced to describe the
friction caused by macroscopic shear. Using this equation
implies that all fields are continuous through the whole
domain. This approach seems to eliminate the need for de-
fining complicated boundary conditions at the porous-fluid
interface.

Nield and Bejan12 concluded that for many practical pur-
poses there is no need to include the Laplace term in the
Brinkman equation. We note that, in most of the studies, the
Darcy equation together with the Beavers–Joseph condition
was justified in the basic state. The mass flux was chosen as
the criterion. It seems that there is no problem when using
the Beavers–Joseph condition for steady Poiseuille flow.
Beavers and Joseph10 concluded that replacing the effect of
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the boundary layer with a slip velocity proportional to the
exterior velocity gradient is shown to be reasonable agree-
ment with experiment results. Nield and Bejan12 pointed out
that if it is important that a no-slip boundary condition be
satisfied, then the Laplacian term is required. In our problem,
we are interested in the instability of Poiseuille flow. Since
the boundary layer at the interface may influence the insta-
bility behavior of the system, the following question should
be asked. Even though the Beavers–Joseph condition is valid
for the basic Poiseuille flow, could we obtain the same insta-
bility behavior if replacing the effect of the boundary layer
with a slip velocity? If yes, it indicates that the Beavers–
Joseph condition is valid for both basic state and the per-
turbed state. If no, it shows that the influence of boundary
layer is important for the instability behavior and the no-slip
condition should be retained for instability problems.

In most of the works on the instability of a fluid-porous
system, the porous medium is described using Darcy’s
model. At present, only a few analytical and numerical re-
sults on the instability of a fluid-porous system are reported
in the framework of Brinkman’s model. To our knowledge,
Desaive and Lebon8 have used Brinkman’s model to inves-
tigate the instability of thermal convection in a fluid-porous
system. They reported that Brinkman’s model gives qualita-
tively the same results as Darcy’s law. Zhao and Chen13 in-
vestigated the stability of double-diffusive convection in su-
perposed fluid and porous layer using Brinkman’s model.
Hennenberg et al.14 developed a tentative study on the
Bénard–Marangoni problem using Brinkman’s model.

For the instability problem of a fluid-porous system sub-
jected to a plane Poiseuille flow, the following question
should be asked. If one can obtain good agreements between
Darcy’s model and Brinkman’s model? We suggest that the
viscosity should be taken into account when the effect of
viscosity is important, especially in the low permeability
case or for the system being subjected to a shear flow. So, in
this paper we chose Brinkman’s model instead of Darcy’s
law to describe the porous medium.

The aim of this study is threefold. First, we check care-
fully the results of Darcy’s model reported by previous
works. Special emphasis is given to the multivalued region
in the �k ,Re� plane, which has not been reported by previous
works. Second, we use an alternative model, i.e., Brinkman’s
model, to describe the instability problem for a fluid-porous
system. We focus on the influences of the depth ratio and the
Darcy number on the instability of the system. Finally, simi-
larities and differences between the characteristics of Brink-
man’s model and Darcy’s model are presented.

II. THE BRINKMAN EQUATION

The Brinkman equation is an alternative to the Darcy
equation and has been widely used to investigate the flows in
porous media. However, a careful look at previous publica-
tions shows no general agreement regarding its conditions of
applicability. Moreover, the forms of the Brinkman equation
in different works are not consistent. Brinkman15 obtained
via a self-consistent approach the momentum balance equa-
tion as

�ca
�u

�t
= − �p −

�

K
u + �e�

2u , �2�

where � is the density of the fluid, �e is the effective viscos-
ity, ca is the acceleration coefficient, u is the Darcy velocity,
p is the pressure, � is the fluid viscosity, and K is the per-
meability. Some early investigators12 considered that this
equation is not simply an extension of the phenomenological
Darcy law and is valid for a rather high porosity. Taking for
granted Boussinesq’s approximation, Desaive and Lebon8

used another form to investigate the thermal convection in a
fluid-porous system,

�

�

�u

�t
+

�

�2u · �u = − �p − �g�1 − �T�T − T0�� −
�

K
u

+ �e�
2u . �3�

Here � is the porosity, T is the temperature of the fluid in
porous media, T0 is the reference temperature, �T is the con-
stant coefficient of volumic expansion, and g is the accelera-
tion of gravity. This equation is analogous to the Navier–
Stokes equation and has the u ·�u term. For the Darcy
equation, this term is inconsistent with the slip boundary
condition. Moreover, there are further fundamental objec-
tions to this term.12 Hence, this term is generally dropped in
many works. Nield suggested that this term needs to be re-
tained in the case of highly porous media.

Recently, Bars and Worster derived the Brinkman equa-
tion based on the volume-averaging method. In their work,
they have not used the assumption that the porosity is large
and the form of the Brinkman equation in their work is dif-
ferent from those in some early works such as Eqs. �2� and
�3�. The Brinkman equation in their work is written in our
notation as

�

�

�u

�t
+ �

u

�
· �

u

�
= − �p −

�

K
u +

�e

�
�2u + �g . �4�

The effective viscosity is defined as

�� � ul� = �e � �ul� . �5�

Here � � denotes the volume average of a given quantity of
liquid per unit volume. The Darcy velocity u is defined as

u = �ul� . �6�

In their work, the effective viscosity �e is considered to
have the same value as �. The term ��e /���2u in Eq. �4� is
different from �e�

2u in Eq. �3�. When � is close to unity,
Eq. �4� is consistent with Eq. �3�.

We must point out that even though some early authors
concluded that Brinkman’s equation could be valid only
when the porosity is sufficiently large, ��0.85 or more,
Bars and Worster11 have not limited this equation to highly
porous media. In their work, they used this model for �
=0.2 to study corner flow in a fluid overlying a porous layer
with constant porosity and for �=0.5 to study the Poiseuille
flow overlying a porous layer. Desaive and Lebon8 used the
Brinkman model for �=0.3 to study the thermal convection
in a liquid overly a porous layer. Zhao and Chen13 studied
the double-diffusive convection in superposed fluid and po-
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rous layer for �=0.39 using the Brinkman equation. Their
results show that the Brinkman model and the Darcy model
predict the same general characteristics of the marginal
curves, and there are differences in the critical conditions.
Carefully conducted experiments are needed to determine
which model gives the more realistic results.

In this paper, we develop a tentative study on the insta-
bility of Poiseuille flow in a fluid overlying a porous layer
using the Brinkman model, even though we are fully aware
that previous publications show no general agreement re-
garding its conditions of applicability.

III. PROBLEM FORMULATION

We consider an incompressible fluid layer of thickness d
overlying a porous layer of thickness dm. The interface be-
tween the porous medium and the fluid is located at z=0. For
Poiseuille flow we assume a constant pressure gradient in the
x direction. For the instability of Poiseuille flow, Squire’s
theorem16 can reduce the three-dimensional controlling equa-
tions into an equivalent two-dimensional counterpart. So, in
this paper we only take into account the instability domi-
nated by two-dimensional disturbances.

A. Governing equations and boundary conditions

The controlling equations in the fluid are the continuity
and momentum equations,

�u

�x
+

�w

�z
= 0, �7�

�u

�t
+ u

�u

�x
+ w

�u

�z
= −

1

�

�p

�x
+ ��2u , �8�

�w

�t
+ u

�w

�x
+ w

�w

�z
= −

1

�

�p

�z
+ ��2w . �9�

In these equations, t is the time, u and w are the horizontal
and vertical components of velocity, p is the pressure, � is
the density of fluid, and � is the kinematic viscosity of fluid.

Although Darcy’s model is widely used to describe po-
rous medium, the friction caused by macroscopic shear is
neglected in this model. It should be noted that the influence
of viscous interaction is important at the porous-fluid inter-
face or when the porosity is large. So, we prefer to choose
the Brinkman model to describe the porous media. The
continuity momentum equations for the porous layer are
given by

�um

�x
+

�wm

�z
= 0, �10�

1

�

�um

�t
= −

1

�

�pm

�x
+

�e

��
�2um −

�l

K
um, �11�

1

�

�wm

�t
= −

1

�

�pm

�z
+

�e

��
�2wm −

�l

K
wm. �12�

In these equations, um and wm are the horizontal and vertical
components of the pore averaged velocity, pm is the pore

averaged pressure, � is the porosity, �e is the effective vis-
cosity, K is the permeability, and the subscript m denotes
porous medium. We should point out that the momentum
equation for the porous layer in our analysis is in the differ-
ent form to some early works in which the Laplacian term is
��e /���2um. This form of the Brinkman equation is the same
as that used in Refs. 13 and 11, in which �e=�. Most inves-
tigators suggested that um ·�um items should be dropped ex-
cept for the case of highly porous media, so in this paper, we
have dropped these items in Eqs. �11� and �12�.

Upper and lower boundaries are assumed to be rigid
walls, at z=d the boundary conditions are

u = w = 0, �13�

at z=−dm

um = wm = 0. �14�

Many types of interfacial conditions have been used in
previous works, however, the definition of boundary condi-
tions at the fluid-porous interface remains an open question.
Continuity of normal velocity is robust and generally ac-
cepted by most investigators. Until now, it is still an argu-
ment that the pressure or the total normal stress is continuous
across the interface. In Nield’s work,12 it is pointed out that
in practice, the viscous term may be small compared with the
pressure, so the continuity of total normal stress reduces to
the approximate continuity of pressure. Chen and Chen,6

Bars and Worster,11 and Chang et al.9 used the continuity of
pressure. Desaive and Lebon8 and Chang17,18 used the conti-
nuity of normal stress.

Since the Brinkman model introduces a viscous term
analogous to Navier–Stokes equation, we consider it is rea-
sonable that the tangential stress is continuous across the
interface, as used in some previous works.8,14

In this paper, we used the same boundary conditions as
in Desaive’s work.8 We should point out that in the case of
�e=�, the continuity of pressure is the consequence of the
continuity of total normal stress. At the porous-fluid inter-
face, interfacial conditions express the continuity of the tan-
gential and normal components of velocity and stress tensor,

u = um, w = wm, �15�

�
�u

�z
= �e

�um

�z
, �16�

p − 2�
�w

�z
= pm − 2�e

�wm

�z
. �17�

B. Unperturbed state solution of the system

We assume a constant pressure gradient in the
x-direction. For the fluid layer, we choose the scale of length
to be d, time to be d2 /�, velocity to be � /d, and pressure to
be �� /d2. For the porous layer, we choose dm, dm

2 /�, � /dm,
and �� /dm

2 for the corresponding scales. The dimensionless
controlling equations for the horizontal velocities of basic
state are
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d2Ū

dz2 =
dP̄

dx
, �18�

�

�

d2Ūm

dzm
2 − �−2Ūm =

1

d̂3

dP̄

dx
. �19�

At zm=−1,

Ūm = 0. �20�

At z=1,

Ū = 0. �21�

At z=zm=0,

Ū = d̂Ūm, �22�

dŪ

dz
= �d̂2dŪm

dzm
. �23�

In these equations, x and z are the dimensionless coordi-
nates for the fluid layer, xm and zm are the dimensionless

coordinates for the porous layer, and Ū and P̄ denote the
horizontal velocity and the pressure of basic state. Re is the
Reynolds number defined as Re=umaxd /�, � is the Darcy

number defined as �=�K /dm, d̂ is the depth ratio defined as

d̂=d /dm, and � is the dynamic viscosity ratio defined as �
=�e /�. Here umax denotes the maximum horizontal velocity
in the fluid. We set the dimensionless maximum velocity in
the fluid layer to be 1, so that the corresponding Reynolds

number umaxd /� is 1. If we use Ū�z� and Ūm�z� to denote the
velocities for Re=1, the velocity distributions in the liquid

and the porous layers are Re Ū�z� and Re Ūm�z�.
For Darcy’s model, the basic flow is uniform in porous

medium,9

um = −
K

�

dp

dx
. �24�

Because the basic flow will significantly influence the insta-
bility of the system, it is helpful and important to compare
the basic flow of Brinkman’s model with that of Darcy’s
model.

The basic velocity profiles of Darcy’s model for different
Darcy numbers are presented in Fig. 1. In the low permeabil-
ity case �=0.001, the velocity is symmetric in the fluid layer.
For �=0.01 and 0.1, the presence of discontinuity of hori-
zontal velocity at the interface significantly breaks the sym-
metry of velocity in the fluid layer. For Brinkman’s model,
the basic velocity profiles are shown in Fig. 2. For �
=0.001, the flow is confined in the fluid layer, and the veloc-
ity profile of Brinkman’s model shows no difference to that
of Darcy’s model. For �=0.01 and 0.1, in the fluid layer the
velocity fields of Brinkman’s model are more approximate to
symmetry than that of Darcy’s model.

C. Perturbation equations

With the um ·�um items dropped, the dimensionless lin-
earized perturbation equations are

�u

�x
+

�w

�z
= 0, �25�

�u

�t
+ Re�Ū

�u

�x
+

dŪ

dz
w� = −

�p

�x
+ �2u , �26�
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z
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FIG. 1. The basic states of normalized horizontal velocities in both fluid and
porous layers for various Darcy numbers �=0.001, 0.01, and 0.1 using Dar-

cy’s model. The other parameters are �=0.3, d̂=1.0, and �=0.1.
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FIG. 2. The basic states of normalized horizontal velocities in both fluid and
porous layers for various Darcy numbers �=0.001, 0.01, and 0.1 using

Brinkman’s model. The other parameters are �=0.3, d̂=1.0, and �=1.0.
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�w

�t
+ Re Ū

�w

�x
= −

�p

�z
+ �2w , �27�

�um

�xm
+

�wm

�zm
= 0, �28�

1

�

�um

�tm
= −

�pm

�xm
+

�

�
�m

2 um − �−2um, �29�

1

�

�wm

�tm
= −

�pm

�zm
+

�

�
�m

2 wm − �−2wm. �30�

At z=1,

u = 0, w = 0. �31�

At zm=−1,

um = 0, wm = 0. �32�

At z=zm=0,

u = d̂um, w = d̂wm, �33�

�u

�z
+

�w

�x
= d̂2�� �um

�zm
+

�wm

�xm
� , �34�

p − 2
�w

�z
= d̂2�pm − 2�

�wm

�zm
� . �35�

We introduce the normal modes

�u,w,p� = �U�z�,W�z�,P�z��exp�	t + ikx� , �36�

�um,wm,pm� = �Um�zm�,Wm�zm�,Pm�zm��


exp�	mtm + ikmxm� . �37�

Here U�z�, W�z�, P�z�, Um�zm�, Wm�zm�, and Pm�zm� are the
amplitudes of u, w, p, um, wm, and pm. 	 and 	m are the time
growth rates of the fluid layer and the porous layer and k and
km are the dimensionless wavenumbers of both layers. Note

that k= d̂km and 	= d̂2	m.
The normal mode equations of the amplitudes are

ikU + DW = 0, �38�

	U + Re�ikŪU + Ū�W� = − ikP + �D2 − k2�U , �39�

	W + ik Re ŪW = − DP + �D2 − k2�W , �40�

ikmUm + DmWm = 0, �41�

1

�
	mUm = − ikmPm +

�

�
�Dm

2 − km
2 �Um − �−2Um, �42�

1

�
	mWm = − DmPm +

�

�
�Dm

2 − km
2 �Wm − �−2Wm. �43�

At z=1,

U = 0, W = 0. �44�

At zm=−1,

Um = 0, Wm = 0. �45�

At z=zm=0,

U = d̂Um, W = d̂Wm. �46�

DU + ikW = d̂2��DmUm + ikmWm� , �47�

P − 2DW = d̂2�Pm − 2�DmWm� . �48�

Here D and Dm are the differential operators defined as d /dz
and d /dzm. Equations �38�–�43� together with the boundary
conditions �44�–�48� determine an eigenvalue problem in the
form of

F�	,Re,k, d̂,�,�,�� = 0. �49�

IV. NUMERICAL METHOD

The spectral method can yield great accuracy for the
convective instability problems. A wide variety of spectral
schemes applied to fluid dynamics have been reviewed in the
work by Canuto et al.19 We implement a Chebyshev collo-
cation method to solve this eigenvalue problem. We first
transform the domains of each layer �0,1� and �0,−1� to the
Chebyshev domain �−1,1� by introducing �=2z−1 and �m

=−2zm−1. The variables U, W, P, Um, Wm, and Pm are ex-
panded as Chebyshev series

U = �
n=0

N

ŨnTn���, W = �
n=0

N

W̃nTn���, P = �
n=0

N

P̃nTn��� ,

�50�

Um = �
n=0

N

Ũn
mTn��m�, Wm = �

n=0

N

W̃n
mTn��m� ,

�51�

Pm = �
n=0

N

P̃n
mTn��m� .

Here Tn are the Chebyshev polynomials defined as

Tn�x� = cos k�, � = arccos x, x � �− 1,1� . �52�

A particularly convenient choice for the collocation points
xj is

xj = cos

j

N
. �53�

Equations �38�–�43� together with corresponding boundary
conditions are an eighth order eigenproblem. Using the
Chebyshev series �50� and �51�, the system of equations is
required to solve for 6�N+1� unknowns. The details of im-
posing boundary conditions in the spectral method for collo-
cation method are described in the work of Tuckeman.20 For
Eqs. �39�, �40�, �42�, and �43�, each is applied at N−1 inter-
nal collocation points, and at two boundary points these
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equations are replaced by boundary conditions. We should
point out that the continuity equations �38� and �41� are ap-
plied at all collocation points; in other words, the divergence
of velocity is zero at both the inner and the boundary points.
This gives rise to a 6�N+1�
6�N+1� matrix eigenvalue
problem of the form

AX = 	BX . �54�

We have checked the convergence of our numerical results.
For example, in the high porosity case �=0.8, �=0.1, �=1,

d̂=0.2, Re=20000.0, and k=1.0, for N=30, 40, 50, 60, and
70, the wave velocities c=	 / ik Re corresponding to the lead-
ing eigenvalue 	 are listed in Table I. cr and ci are the real
part and the imaginary part of c. It is found that N=40 is
enough to obtain satisfactory results.

V. RESULTS AND DISCUSSION

A. Classical results of Poiseuille flow

We first check our calculation procedure and program by
comparing our results of classical plane Poiseuille flow with
the results of previous works.3,5 A critical comparison be-
tween various methods for the solution of plane Poiseuille
flow is conveniently made for the most unstable mode with
k=1, Re=10000. Orszag used a Chebyshev tau method to
solve the Orr–Sommerfeld instability equation. His result is
c=0.237 526 49+ i0.003 739 67. Here c is the wave velocity.
We used a Chebyshev collocation method to solve directly
the linearized Navier–Stokes equations instead of the Orr–
Sommerfeld equation. Our result is c=0.237 844 89
+ i0.003 753 167. Our result is in good agreement with
Orszag’s result.

B. Results of Darcy’s model

Chang et al.9 first investigated the instability of Poi-
seuille flow in a fluid-porous system. We will check our cal-
culation by comparing our results of Darcy’s model with the
results in Ref. 9. In this process, we have uncovered some
aspects heretofore overlooked in Chang’s work.

Figure 3 presents the marginal curves of the Reynolds
number for various depth ratios. Chang et al.9 reported three
instability modes in detail for lower permeability case �

=0.001. For d̂=0.11, the marginal curve displays a bimodal
structure and the dominant mode of instability is found in the
long wave region. This instability mode is called the porous
mode and is characterized by a convection penetrating into

the porous medium. For d̂=0.12, the instability switches
from a long wave mode to a short wave mode. When this
short wave mode prevails, most disturbances of the flow are
confined in the fluid layer and the real part of the perturbed
streamfunction is an odd symmetric function with respect to
the centerline of the fluid layer. So, it is called the odd-fluid-

layer mode. For d̂=0.121, a so-called even-fluid-layer branch
occurs in the moderate wave region. The convection of even-
fluid-layer mode is largely controlled by the fluid layer and
the real part of the streamfunction is approximately symmet-
ric with respect to the centerline of the fluid layer.

The results of the present study �solid lines� are in good
agreement with the result of Chang et al. �dot-dashed lines�
except in the region between the middle branch and the right
branch. In the result of Chang et al. �dot-dashed lines�, a
straight line connects these two branches. In the present
study, the middle branches are multivalued. The multivalued
property is neglected in the work of Chang et al., so the
straight lines connecting the middle and the right branches
are incorrect. It is possible that Chang et al. simply con-
nected the branches and unaware of the possibility of mul-
tiple critical value. Fortunately, in general, the minima on the
neutral curves are out of the multivalued regions, so un-
awareness of them will not give incorrect results.

The influence of the Darcy number on the instability was
first described by Chang et al. for Darcy’s model. Chang
et al. computed the marginal curves for �=5
10−4, 8

10−4, 1
10−3, 2
10−3, 3
10−3, and 4
10−3 in the re-
gion of Re�20 000. Their results show that for the smaller
permeability ���0.001� case the even-fluid-layer �medium
wave� mode is dominant, whereas for the larger permeability
���0.002� case the porous �long wave� mode occurs. How-
ever, we find that some aspects are overlooked in the results
of Chang et al. Here we want to complement the result of

TABLE I. The wave velocities corresponding to the leading eigenvalues of
the time growth rate for N=30, 40, 50, 60, and 70 for several assigned

values of �=0.8, �=0.1, �=1 and d̂=0.2, Re=20 000.0, and k=1.0.

N cr ci

30 0.184 636
1000 0.330 819
10−02

40 0.184 826
1000 0.316 574
10−02

50 0.184 774
1000 0.312 234
10−02

60 0.184 782
1000 0.312 887
10−02

60 0.184 777
1000 0.312 828
10−02
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FIG. 3. The marginal curves of the Reynolds number vs the wavenumber
for different depth ratios: results of the present study �solid line� and the
result of Chang et al. �solid dashed line�. The other parameters are �=0.3,
�=0.001, and �=0.1.
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Chang et al. by examining the instability for a more wide
range of Darcy number. In Fig. 4�a�, we present the marginal
curves for �=5
10−4, 8
10−4, 1
10−3, and 2
10−3. The
marginal curves in Fig. 4�a� are in good agreement with the
result of Chang et al. except for the multivalued region. In
Fig. 4�b�, we present the marginal curves for �=3
10−3, 4

10−3, 5
10−3, 8
10−3, 1
10−2, and 1.2
10−2. In Fig.
4�b�, all curves display a bimodal structure. For �=3
10−3,
the long wave mode is dominant. With the increase in �, the
right branch becomes more unstable and the left branch be-
comes more stable. For �=1.2
10−2, the short wave mode
becomes dominant. These results indicate that the influence
of � on the instability mode is somewhat complicated. In the
small permeability case the even-fluid-layer mode is domi-
nant, and with the increase in � the long wave mode becomes

more unstable. With even larger �, a new branch enters in the
short wave region and becomes the dominant mode. We note
that the right branch for ��0.002 was overlooked by Chang
et al., therefore their result indicates that the long wave mode
occurs for large �.

C. Comparison with results of Darcy’s law

In the limit �→0, if we omit the nonlinear item, the
Brinkman equation reduces to the Darcy equation

1

�

�u

�t
= −

1

�
� p −

�

K
u . �55�

Note that the Darcy equation is a first order equation, and the
Brinkman equation is a second order equation. The control-
ling equations for a fluid-porous system is sixth order for
Darcy’s model and eighth order for Brinkman’s model. At
the bottom, because the viscosity is overlooked in Darcy’s
model, the bottom boundary has to be regarded as a slip wall.
For the Darcy approach, the continuities of the horizontal
velocity and the horizontal stress are substituted by the Bea-
vers and Joseph condition, i.e., Eq. �1�, at the interface. Ac-
cording to Eq. �1�, a larger � corresponds to a larger velocity
gradient or shear stress. For a smaller �, the shear stress at
the interface is smaller. The dimensionless number � has
various values for each particular system, and it will signifi-
cantly influence the instability of the system. Chang et al.9

investigated the effects of � on the instability of the system.
We first present the marginal curves of Darcy’s model for
different � and then compare them with the result of Brink-
man’s model.

1. The instability of onset of convection

In Fig. 5, for �=0.08, the marginal curve is bimodal. For
�=0.1, the marginal curve gets more unstable and a new
branch presents in the moderate wave region. Such a new
branch corresponds to the even-fluid-layer mode in the work
of Chang et al.9 With the increase in �, the even-fluid-layer
mode becomes dominant. In this figure, the marginal curve
of Brinkman’s model displays a bimodal structure. The
dominant mode of instability is found for k=2.25 with Re
=2802.8. The minimum in the long wave branch is found for
k=0.5 with Re=10 987.1.

In order to understand the physics of the two instability
mode of Brinkman’s model, we present the eigenfunction W
in Fig. 6. Figure 6�a� shows the eigenfunction W correspond-
ing to the most unstable mode in the long wave branch. In
this figure, the flow penetrates into the porous layer and a
reverse flow presents near the fluid-porous interface. This
long wave mode of Brinkman’s model is qualitatively the
same as that of Darcy’s model. In Fig. 6�b�, the eigenfunc-
tion W is nearly symmetric with respect to the centerline of
the fluid layer. This result confirms that the right branch of
Brinkman’s mode is the even-fluid-layer branch.

In Fig. 5, it is shown that Brinkman’s model predicts
quantitatively the same result with Darcy’s model in the long
wave limit. As we know, the viscosity mainly operates in the
short wave region, therefore, the marginal curves of these
two models show no difference in the long wave limit. When
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FIG. 4. The marginal curves of the Reynolds number vs the wavenumber

for different Darcy numbers. The other parameters are �=0.3, d̂=0.13, and
�=0.1.
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the long wave mode instability occurs, the convection occurs
in both the fluid and the porous medium. For Brinkman’s
model, boundary layers exist near the interface and the bot-
tom wall. However, the presence of boundary layer almost
has no influence on the long wave mode instability.

In the moderate wave region, the instability of Brink-
man’s model is obviously different to the case of smaller �.
When ��0.2, the curves of �=0.2, 0.3, 0.4, and 0.6 are
quantitatively similar to that of the Brinkman model. This
result indicates that the interfacial shear stress plays an im-
portant role in determining the instability. According to Eq.
�1�, the Beavers–Joseph condition, a larger � corresponds to
a larger interfacial stress or a smaller interfacial velocity dis-
continuity. It is easy to understand that um is small in a low
permeability porous medium. Let us consider the limit case
of u−um=0 at the interface. For Darcy’s model, a large �
and a small � can lead to a small u; for Brinkman’s model, a
small � ensures the velocity u to be small. When u→0 at the
interface, both the basic flow and the perturbed flow are sym-
metric with respect to the centerline of the fluid layer. For a
plane Poiseuille flow, the even symmetry of basic flow pre-
cludes the possibility of the disturbance of odd-fluid-layer
mode. So, in Fig. 5 for Darcy’s model, the even-fluid-layer
mode becomes dominant and the odd-fluid-layer mode dis-
appears with the increase in �; and for Brinkman’s model,
the odd-fluid-layer mode does not appear.

As shown in Fig. 5, the instability characteristics of �
=0.4 are very close to that of the Brinkman model in all the
wavenumber ranges. For ��0.2, the instability characteris-
tics of the Darcy model are close to that of the Brinkman
model in the long wave and medium wave ranges. For �
�0.4 or �0.4, in the short wave range the viscous effect of
the Darcy model is overestimated or underestimated in com-
parison with the Brinkman model.

2. The secondary instability

For the plane Poiseuille flow in a fluid-porous system,
the problem of secondary instability has received little atten-
tion in published literature. Moreover, analytical and numeri-
cal works are very limited. Here we aim to study the second-
ary instability within the scope of linear analysis.

First we will describe the characteristics of temporally
growing disturbances of Poiseuille flow for Darcy’s model.
Figure 7 gives curves of constant real part of the time growth
rate Re�	� of the most unstable mode for Darcy’s model. It
can be seen that in the marginal curve of Re�	�=0, the even-
fluid-layer mode �middle branch� is dominant. The critical
Reynolds number for the onset of convection is Re=6314
with critical wavenumber k=1.83. With the increase in the
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FIG. 5. The marginal curves of the Reynolds number vs the wavenumber
using Brinkman’s model in comparison with Darcy’s model. The other pa-

rameters are �=0.3, d̂=0.13, �=1.0, �=0.001, and �=0.08, 0.1, 0.2, 0.3,
0.4, and 0.6.
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FIG. 6. The amplitude of the vertical velocity W for Brinkman’s model. �a�
k=0.7; �b� k=2.4. The solid lines represent the real parts and the dashed
lines represent the imaginary parts. The other parameters are �=0.3, �

=0.001, �=1.0, and d̂=0.13.
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Reynolds number, the system becomes more unstable. When
the Reynolds number reaches Re=7700, the short wave
mode �right branch� reaches the marginal condition Re�	�
=0. When 6314�Re�7700, only the even-fluid-layer mode
is excited. When Re=7900, both the short wave and the
even-fluid-layer mode are excited with the time growth rate
Re�	�=31.5. In the case of 7700�Re�7900, both the even-
fluid-layer mode and the short wave mode are excited; how-
ever, the latter mode is suppressed by the former mode.
When Re�7900, the short wave mode becomes more un-
stable and suppresses the even-fluid-mode. As discussed
above, even-fluid-layer mode occurs on the onset of convec-
tion, and with the increase in Reynolds number, the second-
ary instability is dominated by the short wave �odd-fluid-
layer� mode.

Figure 8 gives curves of constant real part of the time
growth rate Re�	� of the most unstable mode for Brinkman’s
model. It is shown that the even-fluid-layer mode is favored
whatever the values of the Reynolds number. In comparison
with Darcy’s model, no secondary instability has been found
for Brinkman’s model within the scope of linear analysis. We
should note that the secondary instability may be found in
the nonlinear evolution. However, the full nonlinear stability
analysis or numerical simulation is out of the scope of this
paper.

D. Effect of depth ratio d̂

Figure 9�a� shows the marginal curves for different depth

ratios in the low porosity case. For �=0.3, d̂
=0.05,0.1,0.12,0.15 the marginal curves present a bimodal

structure. With the increase in d̂, both the long wave and the

short wave branches become more stable. It can be seen that
the short wave branch predicts a lower critical value, so the
even-fluid-layer mode is dominant.

Chang et al.9 have investigated the influence of depth

ratio d̂ on the stability of a fluid-porous system in the frame-
work of Darcy’s model. For low porosity and low permeabil-

ity �=0.3, �=0.001, their results show that when d̂ changes
from 0.11 to 0.12, the instability changes from a porous
mode �long wave� to odd-fluid-layer dominated mode �short

wave�. For d̂=0.121, a new instability �even-fluid-layer�
mode presents between the long wave branch and the short

wave branch. With the increase in d̂, the even-fluid-layer
mode becomes dominant.

In this study, the influence of d̂ on the instability for
Brinkman’s model is different to Darcy’s model. For Brink-
man’s model with low porosity and low permeability, the
even-fluid-layer instability is the dominant mode for differ-
ent depth ratios. Although the marginal curve may be bimo-
dal, the short wave branch �even-fluid-layer mode� is lower
than the long wave branch �porous mode�. So, such a transi-
tion from a porous mode to an even-fluid-layer mode for
Darcy’s mode has not been found for Brinkman’s model in
low porosity and low permeability case.

The instability of high porosity and high permeability
fluid-porous system is different from that of low porosity and
low permeability. In Fig. 9�b�, the marginal curves are shown

for different depth ratios d̂=0.05,0.06,0.07,0.08,0.1,0.12
with higher porosity �=0.8 and higher permeability �
=0.01. It is shown that for smaller depth ratios, the long
wave mode is preferred. For a larger depth ratio, the even-
fluid branch enters at the short wave region. With the in-
crease in the depth ratio, the system becomes more unstable
and the short wave mode is preferred.
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E. Effect of the Darcy number �

The Darcy number � is an important parameter to influ-
ence the instability of a fluid-porous system. Figure 10
shows the marginal curves for different Darcy numbers �

with d̂=0.13. For �=0.001,0.003,0.005,0.008,0.01,0.012
each curve exhibits a bimodal structure. For �=0.001, the
long wave branch is more stable than the short wave branch.
When ��0.008, with the increase in �, both the long wave
and the short wave branches become more unstable. But, the
short wave branch is lower than the long wave branch, and
the even-fluid-layer mode is preferred. When �=0.008, the
minimum in the short wave branch is equal to that in the
long wave branch. When ��0.008, with the increase in �,
the minimum of the long wave branch almost does not

change, but the short wave branch gets more stable than the
long wave branch. As a result, the porous mode suppresses
the even-fluid-layer mode.

Chang et al.9 have investigated the influence of the
Darcy number � on the stability for Darcy’s model. They
presented the marginal curves for �=5.0
10−4, 8.0
10−4,
1.0
10−3, 2.0
10−3, 3.0
10−3, and 4.0
10−3. These
curves are also shown in Fig. 4 in this paper. Their results
show that, owing to a larger permeability in the porous layer,
the instability can more easily occur in the porous medium.
The convection switches from an even-fluid-layer mode to a
porous mode in the range of 1.0
10−3���2.0
10−3.

For Brinkman’s model, as shown in Fig. 10, such a tran-
sition from an even-fluid-layer mode to a porous mode has
also been found. But such a transition occurs when �
=0.008, which is much higher than the result of Darcy’s
model.

VI. CONCLUSIONS

In the present paper, we study the instability of a fluid-
porous system subjected to a plane Poiseuille flow. We use
Brinkman’s model to describe the porous medium and inves-

tigate the influence of the depth ratio d̂ and the Darcy num-
ber � on the instability of the system. We also compare thor-
oughly the characteristics of the instability of Brinkman’s
model with that of Darcy’s model. Major results of this study
can be summarized as follows.

For Darcy’s model, there are three instability modes
when the Darcy number � is small. When the depth ratio is
small, the long wave branch is the most unstable and the

porous mode is favored. As d̂ increases, the instability
switches from the porous mode to the odd-fluid-layer mode.
Such an odd-fluid-layer mode exists only in a small range of

depth ratio d̂. For a more larger d̂, the even-fluid-layer mode
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FIG. 9. The marginal curves of the Reynolds number vs the wavenumber
for different depth ratios using Brinkman’s model. The other parameters are
�a� �=0.3, �=1.0, �=0.001 and �b� �=0.8, �=1.0, �=0.01.
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becomes dominant. In our results, we found that when
even-fluid-layer mode occurs, the marginal curves are multi-
valued.

For Brinkman’s model, only two instability modes are
found in our results, i.e., the porous mode and the even-fluid-
layer mode. The odd-fluid-layer mode for Darcy’s model will
not occur for Brinkman’s model. In the low permeability
case, the marginal curve displays a bimodal structure and the

short wave mode is preferred. With the increase in d̂, the
system becomes more stable. When the short wave �even-
fluid-layer� mode is dominant, the system behaves like the
plane Poiseuille flow and the porous medium behaves some-
what like a solid boundary. In the high permeability case,

when the depth ratio d̂ is small, the porous mode is preferred.

With the increase in d̂, the short wave branch is present and
both the long wave branch and the short wave branch be-

come more unstable. For larger d̂, the porous mode is sup-
pressed by the even-fluid-layer mode.

The Darcy number � is an important parameter to influ-
ence the instability of the system. For small �, the short wave
branch is more unstable than the long wave branch. With the
increase in �, the instability switches a short wave mode to a
long wave mode.

The instability of a fluid-porous system predicted by the
Brinkman model is different from the results of the Darcy
model. The question which model predicts the reasonable
results can only be answered by careful experiments.
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