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A quasi-Dammann grating is proposed to generate array spots with proportional-intensity orders in the far
field. To describe the performance of the grating, the uniformities of the array spots are redefined. A two-
dimensional even-sampling encode scheme is adopted to design the quasi-Dammann grating. Numerical so-
lutions of the binary-phase quasi-Dammann grating with proportional-intensity orders are given. The ex-
perimental results with a third-order quasi-Dammann grating, which has an intensity proportion of 3:2:1

from zero order to second order, are presented. © 2008 Optical Society of America
OCIS codes: 230.1360, 050.1950, 120.5060, 070.2580, 110.5220.

Modulation of the periodic structure of a binary dif-
fraction grating to shape the intensity distributions
of diffracted orders has attracted considerable inter-
est in recent years [1-4]. Conventional Dammann
gratings are binary-phase Fourier holograms capable
of generating one-dimensional and two-dimensional
array spots with high efficiency and high uniformity
[6]. However, for certain practical applications, two-
dimensional uneven intensity array spots with spe-
cial proportions are preferred in the far field, which
cannot be produced with conventional Dammann
gratings. Extensions of the Dammann method are
necessary for those applications that require uneven
arrays, especially the generation of arrays with
proportional-intensity orders.

Conventional Dammann gratings are pure, binary-
phase gratings whose phase transition points are op-
timized to produce equal-intensity spots. In theory,
encoding technology for conventional Dammann grat-
ings is still applicable for quasi-Dammann gratings
(QDGs) with proportional-intensity orders. Besides
the separable encoding technology for Dammann
gratings, Vasara et al. introduced inseparable two-
dimensional gratings [6]. In this Letter, a two-
dimensional even-sampling encoding scheme is
adopted for simplification. As is known, the merit
function is the key point in the design of binary phase
gratings. The merit function used in the design of
Dammann gratings to obtain even intensity is not ap-
plicable for QDGs to obtain proportional intensity ar-
rays. Therefore a new merit function is defined. In
this Letter, the concept of a QDG with proportional
intensity orders is proposed. The design of an optimal
QDG is described, and the experimental results are
presented to verify the validity of this kind of QDG.

The experimental optical system is shown in Fig. 1.
A collimated laser beam illuminates the QDG in front
of the lens. In the focal plane, an array pattern with
proportional intensity orders is formed, which is cap-
tured by a laser beam analyzer and displayed on a
computer monitor. The key component of this optical
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system is the QDG. The design of this kind of QDG is
described as follows.

It is assumed that this kind of QDG satisfies the
scalar diffraction theory. The He-Ne laser beam is
approximately expressed as a flattop laser beam. For
high diffraction efficiency, pure modulation of the
grating is preferred; i.e., there should be no ampli-
tude modulation. The phase modulation can be bi-
nary, multilevel, or continuous. For simplification of
fabrication, we used binary phase modulation. The
two-dimensional even-sampling encoding schemes
(Fig. 2) yield the intensity distribution measured at
the output plane:
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Fig. 1. (Color online) Experimental system for optical
demonstration of a QDG. The He—Ne laser beam is ex-
panded and collimated as a uniform laser beam to illumi-
nate the grating, and the proportional-intensity array pat-
tern is captured by a laser beam analyzer in the focal plane
of the lens.

where \ is the wavelength of the laser and fis the fo-
cal length of the lens. The phase distribution of one
period in the uniform sampling rectangle aperture
grating is made of grid aperture cells (Fig. 2). The
phase delays of the cells are ¢; (white cells) and ¢,
(black cells), respectively. L represents the number of
cells, and the coordinate of the /th cell’s nearest apex
to the origin is (x;,y;).

Before evaluating the performance, it is necessary
to define the following parameters for characteriza-
tion of the QDG with proportional-intensity orders:
(1) Order M of the QDG. The point with m=0, n=0
was defined as the zero order of the QDG, and all the
points with |m|=1 and |n|<1 or |n|=1 and |m|<1 are
defined as first order; i.e., the first order of the QDG
includes all the points whose |m|=1 and |n|<1 or
|n|]=1 and |m|<1. In like manner, the Mth order in-
cludes all the points whose |m|=M and |[n|<M or |n|
=M and |m|<M. According to this definition a three-
order QDG can be expressed as in Fig. 3. (2) The uni-
formity of the QDG including in-order uniformity
U, u and the proportional uniformity of orders U,,.

The former is defined as U(,,M:E(Imn—f)/ls to evalu-
ate the uniformity of a single order, where I,,, is the

intensity of the points of the Mth order, I is the aver-
age intensity of these points, and I, is the sum of the
intensity of these points. The latter is defined as U,
=1y/1y:1,/1;: ...:I,//I); to evaluate the deviation of
the designed and ideal intensity proportions, where

1y,14,...Iyyand 1,1, ...I; are the designed and ideal
average intensities of the points of order 0,1,...M,
respectively. (3) The diffraction efficiency is deﬁned
directly from the description of a conventional Dam-
mann grating.

The merit function is important for the design of
the QDG. The merit function in Eq. (2) for a conven-
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Fig. 2. (Color online) Illustration of the phase distribution
of one period of the grating with white cells for zero-phase
delay and black cells for 7-phase delay.
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Fig. 3. (Color online) Orders of the QDGs. The spots with
the same color belong to the same order.

tional Dammann grating is not larger applicable to
the QDG:
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where «C[0,1] is the weight coefficient, jm is the

ideal intensity of the orders, I,, , is the intensity of
point (m,n), and 7y is the diffraction efficiency of the
gratings. The first item in Eq. (2) is used to judge the
variance between the designed and the ideal intensi-
ties; the second item is used to evaluate the diffrac-
tion efficiency. For the QDG with proportional inten-
sity orders, weight coefficients should be considered
according to the proportion of the orders to evaluate
the uniformity. Therefore the merit function of the
QDG is defined as follows:
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where By, s, ..., By are the weight coefficients of the
orders and I(g),l),...Is-1) are the intensities of or-
ders 0,1,...,M. To obtain the proportional intensity
orders, the intensity deviation of each order should
also have the given proportion, which means that the
weight coefficients should have the inverse given pro-
portion. In addition, because of the symmetrical char-
acteristic of the QDG, the weight coefficient of zero
order should be doubled. If the design target is a
three-order QDG with an intensity proportion of
Lo):1q):19y=k1:ky:k3, the weight coefficients should
be ﬁllﬂgiﬁ3=1/k1:1/2k211/2k3.

The simulated annealing algorithm [7,8] is adopted
to optimize the QDG. The third-order QDG with
Ig):1(1):19y=3:2:1 was chosen for design and experi-
mental verification. Figure 4 shows the designed re-
sult of this third-order QDG. The number of sam-
pling cells of one period of the third-order QDG is
16 X 16 [Fig. 4(a)l. The in-order uniformities of the
first and second orders are U,;=0.2% and U,,
=2.5%, respectively. The in-order uniformity of the
zero order is insignificant because there is only one
point in this order. The proportional uniformity is
U,=1.1:1.0:0.9, and the diffraction efficiency is
75.4%.



September 15, 2008 / Vol. 33, No. 18 / OPTICS LETTERS

Cell number
Normalized Intensity

I N
L
e
6 [
4
T

02468[0]2]416‘
Cell number g

(@) (b)

Fig. 4. (Color online) Designed result of the third-order
QDG with proportional intensity 3:2:1 from zero order to
second order: (a) phase distribution of one period and (b)
output intensity profile.

The very large scale integration technique [9] was
adopted in our experiments to fabricate this kind of
QDG. The first step is to create a mask with electron-
beam writing equipment. A thin layer of photoresist
is spun onto a glass substrate. With ordinary micro-
electronic lithography technology, the mask pattern
is transformed into a photoresist layer upon the glass
substrate. The inductive coupled plasma technique
was used to transfer the photoresist pattern onto the
substrate. The refractive index of the used glass sub-
strate at 6328 nm wavelength is 1.507, and the thick-
ness corresponding to phase difference 7 is 6244 nm.
The surface profile of the grating measured with
Dektak 8, which is an advanced surface texture mea-
suring system, is shown in Fig. 5, which clearly
shows that the average depth of this surface-relief
element is 6108 nm, a slightly deviation from the
desired value.

For the experimental system shown in Fig. 1, we
used a collimated 6328 nm wavelength He—Ne laser
as the light source with a lens of 155 mm focal
length. The third-order array pattern with an inten-
sity proportion of 3:2:1 from the zero order to the sec-
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Fig. 5. (Color online) Surface profile of the fabricated
third-order QDG with proportional intensity.
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Fig. 6. (Color online) Experimental images of the fabri-
cated third-order QDG with proportional intensity: (a) two-
dimensional laser beam distribution, (b) intensity distribu-
tion along the lines n=0 and m=-2,-1,0,1,2 in the
pattern measured by a laser beam analyzer, (c¢) three-
dimensional laser beam distribution.

ond order captured by a laser beam analyzer in the
rear focal plane of the lens is shown in Fig. 6. Figure
6(b) shows intensity distribution along the lines
n=0 and m=-2,-1,0,1,2 in the pattern measured
by the laser beam analyzer. The slightly lower effi-
ciency and worse uniformity might be due to the sur-
face roughness of the fabricated element, the phase
and position errors, and the dark noise of the laser
beam analyzer. Nevertheless, the experimental re-
sults verify the validity of the uneven grating.

In summary, one QDG that can produce a high-
efficiency array pattern with proportional-intensity
orders in the far field has been proposed. We have
presented the design and fabrication method as well
as the experimental results that verify the third-
order QDG with proportional-intensity 3:2:1 from
zero order to second order. This kind of QDG should
have many important applications in laser shaping,
laser micromachining, laser fusion, and laser detec-
tion.
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