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Dejun Ma
Department of Mechanical Engineering, The Academy of Armored Forces Engineering,
Beijing 100072, People’s Republic of China

Chung Wo Onga)

Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong, People’s Republic of China

Taihua Zhang
State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy
of Sciences, Beijing 100080, People’s Republic of China

(Received 20 September 2007; accepted 14 March 2008)

We previously proposed a method for estimating Young’s modulus from instrumented
nanoindentation data based on a model assuming that the indenter had a
spherical-capped Berkovich geometry to take account of the bluntness effect. The
method is now further improved by releasing the constraint on the tip shape, allowing
it to have a much broader arbitrariness to range from a conical-tipped shape to a
flat-ended shape, whereas the spherical-capped shape is just a special case in between.
This method requires two parameters to specify a tip geometry, namely, a volume
bluntness ratio Vr and a height bluntness ratio hr. A set of functional relationships
correlating nominal hardness/reduced elastic modulus ratio (Hn/Er) and elastic
work/total work ratio (We/W) were established based on dimensional analysis and finite
element simulations, with each relationship specified by a set of Vr and hr. Young’s
modulus of an indented material can be estimated from these relationships. The
method was shown to be valid when applied to S45C carbon steel and 6061 aluminum
alloy.

I. INTRODUCTION

Young’s modulus is one of the most important me-
chanical properties of a material. Instrumented indenta-
tion is distinctive among all techniques for measuring
Young’s modulus, because it is particularly suitable for
small-scaled specimens.1–8 Conventionally, a result is
derived from indentation data according to Oliver and
Pharr’s formulation4–6:

Er =
��

2�

Su

�A�hcm�
. (1)

Su is the initial slope of an unloading curve. Er is the
reduced modulus, related to the Young’s modulus and
Poisson’s ratio of the indented material (E and �) and
those of the indenter (Ei and �i) by the equation 1/Er �
(1 − �2)/E + (1 − �i

2)/Ei. � is a constant depending on the

shape of the indenter. A(hcm) is the projected contact area
evaluated at the maximum contact depth hcm correspond-
ing to the maximum indentation depth hm and maximum
load Pm. According to Oliver and Pharr’s model, A(hcm)
can be estimated from the unloading curve, but the result
may not be accurate enough, particularly when piling up
occurs.

An alternative way to analyze instrumented indenta-
tion data is to refer to the energy quantities involved in
the process.9–11 By applying scaling relationships in
combination with finite element simulations, Cheng et
al.12–14 verified the existence of a functional relationship:

H/Er = g(We/W) , (2)

where H ≡ Pm/A(hcm) is the hardness. We and W are the
elastic work and total work, which are equal to the areas
under the unloading and loading curves, respectively. By
combining Eqs. (1) and (2) to eliminate A(hcm), Er can be
determined as:

Er � [�/(2�)2] g(We/W)[Su
2/Pm] . (3)
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This method is different from Oliver and Pharr’s method,
because it has no need to determine hcm [or A(hcm)] by
some indirect means as is the case in Oliver and Pharr’s
model, such that no error would be generated from this
process. However, the method was developed only for an
ideally sharp conical indenter, so the influence of the
bluntness of the indenter is not included. Moreover, the
determination of Su may have some uncertainty due to,
for example, vibration noise, the influence of which is
serious for a shallow indentation. This error is magnified
after taking the square of Su, which eventually propagates
to the estimated value Er through Eq. (3).

Recently, we proposed a new method to analyze in-
dentation data for estimating the elastic modulus of a
material, which not only can prevent indirect estimation
of hcm, but can also take the bluntness effect into ac-
count.15,16 In this method, a nominal hardness Hn �
Pm/A(hm) is introduced, which is defined as the maxi-
mum load Pm divided by the cross-sectional area A(hm)
evaluated at the maximum indentation depth hm and is
therefore different from the conventional hardness H de-
termined with the area evaluated at the maximum contact
depth hcm. The bluntness of a nonideally sharp indenter
was considered by introducing a parameter named the
volume bluntness ratio Vr ≡ Videal/Vblunt, where Videal is
the part of volume bounded by the area A(hm) for an
ideally sharp Berkovich indenter (Fig. 1), and Vblunt is
that for a real indenter. Functional relationships correlat-
ing Hn/Er and We/W for various values of Vr were estab-
lished from the results of finite element analysis (FEA).
The Young’s modulus of an indented material can thus
be estimated according to the experimental values of Hn,
We, W, and Vr. Because this method is built up based on
a spherical-capped indenter model, it can only provide
good results when the real indenter tip has a shape close
to this model.

In this work, we further modified the aforementioned
method by making it suitable to a broad range of tip
shapes with more arbitrary bluntness—including the ex-
tremely blunt situation. In addition to Vr used in our
previous method, a new parameter named the height

bluntness ratio hr ≡ hideal/hm is introduced to describe the
tip geometry, where hideal is the distance from the vertex
of an ideally sharp conical shape to the area A(hm). Com-
pared with our previously proposed method just involv-
ing one single parameter Vr, the arbitrariness of the shape
and bluntness of a real Berkovich indenter tip would be
better expressed by the present model, which requires the
use of two parameters.

II. TWO-PARAMETER DESCRIPTION OF
NONIDEALLY SHARP INDENTERS

An indenter with Berkovich geometry is commonly
used in a nanoindentation test. The real indenter geom-
etry is not ideally sharp, whereas the influence of the
bluntness of the tip is remarkable in a nanoscaled inden-
tation. For simplicity, a blunt or nonideal Berkovich in-
denter is approximated by a nonideal conical geometry
with a protruding end. The reasonability was based on
the fact that the computational load–displacement re-
sponse produced by using a real Berkovich tip was found
to be virtually identical to that produced by a conical tip
with a half-included conical angle � � 70.3° having the
same area-to-depth ratio as that of the real indenter.17,18

We start from showing three selected cases in Fig. 2,
which are drawn to have the same volume bluntness ratio
Vr but different height bluntness ratios hr. Case 1 refers to
a flat-end geometry, which has the largest value of hr and
hence is used to represent the extremely blunt situation.
Case 2 refers to a conical-tipped geometry with a half-
included conical angle � larger than � � 70.3°. This
geometry is thus regarded to be blunter than the ideal
one. Since hr of this model is the smallest one among
those of these three models, this geometry is used to
represent another extreme situation. The third case is the
spherical-capped geometry, which is an intermediate
situation between the aforementioned two. One learns
from Fig. 2 that though the three models have the same
value of Vr, their hr parameters are different, indicating
that a single parameter Vr alone is not enough to fully
describe the tip shape, but only can give a primary

FIG. 1. Schematic diagrams of an ideally sharp indenter and a blunt
indenter.

FIG. 2. Three representative blunt geometries and the ideally sharp
geometry.
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approximation. This motivates the use of two parameters
Vr and hr to describe the real geometry of the tip that in
general deviates more or less from the typical ones con-
sidering different degrees of bluntness. It is further noted
that Vr and hr are not independent for a specific bluntness
type. With the use of suffixes “f,” “c,” and “s” to label
the purely flat-ended case, conical-tipped case, and
spherical-capped case, respectively, the first one has
Vr � 1/[1 − (1 − 1/hrf)

3]; the second one has Vr � hrc;
and the last one has Vr � 1/[1 − (1 − 1/hrs)

3 (1 + sin �)]
when Vr � 1.361, and Vr � 2hrs

3/(3hrs
2 + cot2 �) when

Vr > 1.361. The condition Vr � 1.361 specifies a situa-
tion in which the maximum indentation depth is equal to
the distance between the bottom of the spherical cap and
the conical-spherical cap interface.

III. NUMERICAL ANALYSIS OF THE NONIDEALLY
SHARP INDENTATION

Within the framework of continuum mechanics, we
apply the finite element method to investigate the re-
sponse of the indented material by three representative
types of nonideal conical indenters mentioned previ-
ously. The indented material is assumed to behave as an
isotropic and rate-independent solid and obeys Von
Mises yield criterion and pure isotropic hardening rule.
The uniaxial stress–strain relations take the form of lin-
ear elasticity combined with the Hollomon’s power-law
hardening, namely:

� = �E �, � � �y

�y�� ��y�n, � 	 �y
� , (4)

where � and � are the true stress and true strain, and �y

and �y � �y/E the yield stress and yield strain. When we
assume that the indenter is elastic, and no friction exists
between the contact interface and the indenter, the nomi-
nal hardness Hn and the work ratio We/W are treated as
the responses and should be regarded as functions of the
elastoplastic properties (E, �, �y, n) of the tested material,
the elastic properties (Ei, �i) of the indenter, the maxi-
mum indentation depth (hm), and two bluntness ratios (Vr

and hr). The correlations between these quantities are
expressed implicitly as:

Hn � fH(E, �, �y, n, Ei, �i, hm, Vr, hr) , (5)

We/W � fW(E, �, �y, n, Ei, �i, hm, Vr, hr) . (6)

According to Dao et al.17 and Fischer-Cripps,19 these two
functions may be simplified by introducing the quantity
Er to combine the overall elasticity effects of the indenter
and the indented material, such that Eqs. (5) and (6) can
be expressed as:

Hn � fH(�y, n, Er, hm, Vr, hr) , (7)

We/W � fW(�y, n, Er, hm, Vr, hr) . (8)

Applying ∏ theorem of dimensional analysis, functions
(7) and (8) can be rewritten in the following dimension-
less forms:

Hn/Er � 
H(�y/Er, n, Vr, hr) , (9)

We/W � 
W(�y/Er, n, Vr, hr) . (10)

Considering that �y/Er in Eq. (10) can be expressed in
terms of We/W, n, Vr, and hr, it can be expressed alter-
natively as:

�y/Er � �W(We/W, n, Vr, hr) . (11)

By substituting Eq. (11) into Eq. (9) to remove �y/Er, the
expression of Hn/Er becomes:

Hn/Er � 
H[�W(We/W, n), n, Vr, hr]
� �H(We/W, n, Vr, hr) . (12)

To obtain an explicit result, a commercial finite ele-
ment code ABAQUS20 having the capability of handling
large deformation analysis was employed to simulate the
indentation process with nonideal conical indenters.
In the calculations, the independent variable �y/Er in
Eqs. (9) and (10) was varied in such a way that Er is kept
unchanged by assigning fixed values to E, �, Ei, and �i,
and let �y vary alone. In particular, Ei and �i can be
removed to get further simplicity by assuming that the
indenter is rigid. As such, E and � are fixed at 70 GPa and
0.3, while �y is assigned to vary in a broad range of
0.0005 to ∼10.500 GPa. n is assigned by the values of 0,
0.15, 0.3, and 0.45 in sequence, and Vr by 1, 1.336,
2.547, and 4.764. The settings are kept the same for all
cases unless otherwise specified. For each of the three Vr

values other than 1, three hr values corresponding to the
three representative types as described in Sec. II are de-
rived. Vr � 1 refers to the case of ideal tip shape, where
hr � 1. In a finite element simulation, four-node axisym-
metric elements are used. The size of the elements was
made to have the same size near the contact region,
which was sufficiently small to make sure that at least
60 nodes are included in a radial profile across a nominal
contact area, which is defined as the cross-sectional area
of the indenter evaluated at the maximum indenta-
tion depth. The mesh used in our study was designed to
be composed of 28,900 quadrilateral elements and
29,241 nodes, and the total degree of freedom (DOF) of
the model is 58,140. The overall dimensions of the model
in the radial and axial directions are identical, and the
radius of the cross-sectional area of the indenter at the
maximum indentation depth is constantly below 1⁄20 of
the overall radius of the model. A sensitivity test was
performed by looking at the result obtained after refining
the mesh size by one-half and doubling the dimensions of
the model in both radial and vertical directions. The val-
ues of the peak load Pm and the work ratio We/W thus
obtained do not vary more than 0.5% from those obtained
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by using the original model, confirming that the original
settings of meshing and overall dimension of the model
are suitable for simulating a hypothetical indentation
made on a semi-infinite solid.

Figure 3 shows some exemplified normalized load–
displacement curves obtained from simulations with the
settings of �y � 280 MPa, n � 0.15, E � 70 GPa, and
� � 0.3 and by making use of the three representative
indenter types. Each set of load and unload curves can be
used to derive a pair of Hn/Er and We/W.

Similar simulation processes were performed for vari-
ous combinations of �y, n, Vr, and hr. Figure 4 shows the
plot of Hn/Er versus We/W obtained for a purely flat-

ended indenter with different bluntness levels. Each
bluntness level is specified by a combination of Vr and hr.
Figures 5 and 6 show the results for purely conical-tipped
and purely spherical-capped situations. Figure 7 shows
the result for an ideal sharp indenter; i.e., Vr �1, hr �1.
One immediately sees that for a specific bluntness level,
the data points of various n values delineate a functional
relationship between Hn/Er and We/W. Such a functional
relationship can be expressed as a polynomial of We/W:

Hn�Er = �
i=1

6

�ai�Vr, hr���We�W�i , (13)

FIG. 3. Normalized load–displacement curves obtained from simula-
tions at �y � 280 MPa, n � 0.15, E � 70 GPa, � � 0.3, and Vr �
2.547, with different hr corresponding to the three representative blunt
geometries.

FIG. 4. Three Hn/Er–We/W functional relationships for flat-ended in-
denter with different bluntness levels specified with Vr and hrf equal to
1.336, 2.547, 4.764, and 2.712, 6.531, 13.240, respectively, each con-
taining data of n from 0 to 0.45.

FIG. 5. Three Hn/Er–We/W functional relationships for conical-tipped
indenter with different bluntness levels specified with Vr and hrc equal
to 1.336, 2.547, 4.764 and 1.336, 2.547, 4.764, respectively, each
containing data of n from 0 to 0.45.

FIG. 6. Three Hn/Er–We/W functional relationships for spherical-
capped indenter with different bluntness levels specified with Vr and
hrs equal to 1.336, 2.547, 4.764 and 2.025, 3.832, 7.152, respectively,
each containing data of n from 0 to 0.45.
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with ai(Vr, hr) (i � 1, . . . , 6) being the coefficients.
Considering that Vr and hr are not independent for a
definite bluntness type, the relationships between Hn/Er

and We/W for the aforementioned three types of blunt tip
geometries can be described, respectively, as:

�Hn�Er�fj = �
i=1

6

�afi�Vrj���We�W�i , (14)

�Hn�Er�cj = �
i=1

6

�aci�Vrj���We�W�i , (15)

�Hn�Er�sj = �
i=1

6

�asi�Vrj���We�W�i , (16)

where the subscripts f, c, and s refer to the flat-ended,
conical-tipped, and spherical-capped bluntness, respec-
tively. The values of the index j � 1, 2, 3, and 4 corre-
spond to four selected bluntness levels described by vol-
ume bluntness ratios Vr1 � 1, Vr2 � 1.336, Vr3 � 2.547,
and Vr4 � 4.764. Best fits to the numerical results
as shown in Figs. 4 to 6 determine the coefficients
afi(Vrj), aci(Vrj), and asi(Vrj) for different Vrj values (Ta-
bles I to III). It should be pointed out that the Hn/Er–

We/W relationships for the spherical-capped geometry as
well as the ideal one obtained in this analysis are slightly
different from those obtained in our previous work.15

The present results of Hn/Er for definite We/W are slightly
smaller than those of Ref. 15 because a larger overall
dimension of the model is used in the present analysis.
Results of this sensitivity test prove that the present set-
ting can further improve the quality of the simulated
results.

Also shown in Fig. 7 are data points of Hn/Er against
We/W obtained from Bolshakov and Pharr’s results (de-
noted by “•”) presented in Figs. 4, 7, 8, and 11 of Ref. 21
based on a linear hardening model with a hardening
modulus El � 10 �y. It is clearly shown that these Hn/Er

and We/W values obey a relationship similar to that de-
rived from a Hollomon’s hardening model, indicating
that the method introduced in the present study is almost
independent of the hardening model employed.

Figure 8 shows the best fits to the data shown in Figs.
4 to 6 by applying the function forms given by Eqs. (14)
to (16). These fitting curves are used to express the func-
tional relationships between Hn/Er and We/W for the three
typical indenter types. One immediately learns that for
the same Vr, the change in hr can also affect the trend of
the function.

If a spherical-capped indenter model is used to derive
the Hn/Er value according to the experimental data pro-
duced by a real indenter having a tip shape inconsistent
with the spherical-capped bluntness, the result could be
misestimated by a certain amount. The range of misesti-
mate of Hn/Er for two extreme cases, i.e., flat-ended
bluntness and conical-tipped bluntness, is reasonably
evaluated by calculating the quantities fsj ≡ [(Hn/Er)sj −
(Hn/Er)fj]/(Hn/Er)sj and csj ≡ [(Hn/Er)sj − (Hn/Er)cj]/(Hn/
Er)sj for j � 2, 3, 4. From the results of fsj and csj as
shown in Fig. 9, it can be seen that the maximum mis-
estimate of Hn/Er would lie between −9.9% and 12.5%.
Further interpolation analysis based on the correlations
of (Hn/Er)fj–We/W, (Hn/Er)cj–We/W, and (Hn/Er)sj–We/W
(j �1, 2, 3, 4) showed that even though the value of Vr

is as small as 1.02, the misestimate of Hn/Er based on the
spherical-capped indenter model was still confined
within the range between −1.0% and 0.4%, reflecting that
the introduction of a parameter hr is necessary for de-
scribing more correctly the real tip shape and degree of
bluntness to produce a correct Hn/Er–We/W relationship.

FIG. 7. Relationships between Hn/Er and We/W for ideally sharp in-
denter based on power law hardening and linear work hardening with
hardening modulus El � 10�y.

TABLE I. The values of coefficients afi(Vrj).

j Vrj af1(Vrj) af2(Vrj) af3(Vrj) af4(Vrj) af5(Vrj) af6(Vrj)

1 1.000 0.16716 −0.13875 0.06215 0.01568 -0.04784 0.01878
2 1.336 0.11088 −0.13538 0.30236 −0.50340 0.41954 −0.13528
3 2.547 0.05344 −0.07060 0.18858 −0.31453 0.25048 −0.07588
4 4.764 0.02776 −0.03934 0.10015 −0.15016 0.10604 −0.02790

i � 1, . . . , 6; j � 1, . . . , 4 for different Vrj.
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In addition, the interpolation analysis showed that when
the value of Vr is smaller than 1.006, the value of Hn/Er

estimated for a blunt indenter will be smaller than that for
an ideal indenter by no more than 1.0%.

IV. METHOD FOR DETERMINING
YOUNG’S MODULUS

Based on the polynomials (14) to (16) with the coef-
ficients tabulated in Tables I to III, an improved method
for determining Young’s modulus is developed that is
applicable to any real Berkovich indenter tip with an
arbitrary tip shape and degree of bluntness. Detailed pro-
cedures of analysis are:

(i) Calibrate the area function A(h) of a real Berkovich

indenter used for indentation tests according to the tip
calibration procedures proposed by Oliver and Pharr.4,6

(ii) Generate loading and unloading curves by per-
forming indentations on the tested material with a depth-
sensing indentation system. Pm and hm are directly
measured, and A(hm) is derived from the tip-calibration
function. Hence, the value of the nominal hardness
Hn ≡ Pm/A(hm) is determined. Further, the work ratio
We/W is determined, where We and W are obtained by
integrating the areas under the unloading and loading
curves, respectively.

(iii) Calculate the volume bluntness ratio Vr ≡ Videal/
Vblunt, where Videal � (1⁄3)A(hm)[A(hm)/24.5]0.5 for an ideal
Berkovich indenter, and Vblunt � ∫0hm A(h)dh for the
real Berkovich indenter.

TABLE II. The values of coefficients aci(Vrj).

j Vrj ac1(Vrj) ac2(Vrj) ac3(Vrj) ac4(Vrj) ac5(Vrj) ac6(Vrj)

1 1.000 0.16716 −0.13875 0.06215 0.01568 −0.04784 0.01878
2 1.336 0.12655 −0.14012 0.20772 −0.29096 0.22433 −0.07001
3 2.547 0.06482 −0.07744 0.14161 −0.22246 0.18104 −0.05782
4 4.764 0.03393 −0.04164 0.08170 −0.13158 0.10712 −0.03376

i � 1, . . . , 6; j � 1, . . . , 4 for different Vrj.

TABLE III. The values of coefficients asi(Vrj).

j Vrj as1(Vrj) as2(Vrj) as3(Vrj) as4(Vrj) as5(Vrj) as6(Vrj)

1 1.000 0.16716 −0.13875 0.06215 0.01568 −0.04784 0.01878
2 1.336 0.11612 −0.14391 0.29892 −0.50592 0.43731 −0.14669
3 2.547 0.05899 −0.06815 0.13162 −0.21203 0.17552 −0.05691
4 4.764 0.03104 −0.03438 0.06404 −0.10089 0.08154 −0.02588

i � 1, . . . , 6; j � 1, . . . , 4 for different Vrj.

FIG. 8. Functional relationships (Hn/Er)fj–We/W (dashed line),
(Hn/Er)cj–We/W (dotted line), and (Hn/Er)sj–We/W (solid line) for three
typical indenter types produced by the best fits to the data in Figs. 4 to
6 with the use of expressions (14) to (16).

FIG. 9. fsj and csj versus We/W for three degrees of bluntness labeled
by j � 2, 3, and 4.
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(iv) Calculate the height bluntness ratio hr ≡ hideal/hm

for the real Berkovich indenter, where hideal � [A(hm)/
24.5]0.5. Then, calculate the height bluntness ratios hrf,
hrc, and hrs associated with the three typical types of
blunt tips by substituting the Vr value obtained in (iii)
into the expressions relating the two bluntness ratios
given in Sec. II.

(v) Write down the expressions (14) to (16) with the
coefficients tabulated in Tables I to III for the three typi-
cal tip shapes and four different levels of bluntness speci-
fied by assigning Vrj with the values of 1, 1.336, 2.547,
and 4.764 corresponding to j � 1, . . . , 4. Then substi-
tute We/W into the formulas to calculate the values of
(Hn/Er)fj, (Hn/Er)cj, and (Hn/Er)sj, with j � 1, 2, 3, 4
corresponding to three typical tip shapes and four differ-
ent bluntness levels.

(vi) Derive the best fit to the four data points of
(Hn/Er)fj versus Vrj (j � 1, 2, 3, 4) by using a third-order
polynomial of 1/Vrj. A best estimate of (Hn/Er)f corre-
sponding to Vr is thus derived via interpolation. The best
estimates of (Hn/Er)c and (Hn/Er)s are obtained with the
same technique.

(vii) Derive the best fit to the data points of (Hn/Er)f,
(Hn/Er)c, and (Hn/Er)s obtained in (iv) versus respectively
values of hrf, hrc, and hrs by using a second-order poly-
nomial of hr. Based on this relationship, a best estimate
of Hn/Er at Vr and hr is derived by interpolation.

(viii) Determine Er � Hn/(Hn/Er), and then E of the
tested material by using the expression E � (1 − �2)/[1/
Er − (1 − �i

2)/Ei], provided that the values of Ei, �i, and
� are all known.

V. EXPERIMENTAL EXAMPLES

In this section, we present the results obtained by ap-
plying the proposed method. Two materials, i.e., S45C
carbon steel and 6061 aluminum alloy, were selected for
investigation. Two specimens of the materials were pol-
ished to produce mirror-reflecting surfaces for indenta-
tion tests. The polishing processes were performed using
grinding papers of 800, 1200, 2000, and 4000 grits, and
then diamond pastes of 6, 3, 1, and 0.25 �m grain sizes.
Atomic force microscopy analysis showed that the root
mean square roughness of the polished surface was
around 0.5 nm in a detected surface of 15 �m2. To obtain
references of the E values, uniaxial tensile tests for the
two selected materials were performed. Results for the
S45C carbon steel and 6061 aluminum alloy are found to
be 200.1 and 70.5 GPa, respectively. Detailed rationale
for using the results obtained from this test as references
of E is given in our previous paper.15

A commercial Nano Indenter XP (MTS Systems
Corp., Knoxville, TN) equipped with a Berkovich in-
denter was used for the measurements. The area function
A(h) of the indenter was derived according to Oliver and

Pharr’s procedures.4,6 Indentation tests with full loads of
0.315 and 0.312 mN were performed on a carbon steel
specimen and a 6061 aluminum alloy specimen. Each
indentation test consisted of an approaching segment, a
loading segment, a holding segment, an unloading seg-
ment, and a thermal drift correction segment. Five re-
petitive measurements were conducted at different posi-
tions on a sample surface to give an average result. Typi-
cal load–unload curves for S45C carbon steel and 6061
aluminum alloy are shown in Figs. 10 and 11. Influences
caused by thermal drift and load frame stiffness were
diminished through standard correction procedures. We
take the experimental curve shown in Fig. 10 as an ex-
ample to demonstrate the program of determining E, and
the main results of different analysis steps described in

FIG. 10. Typical nanoindentation load-displacement curves for S45C
carbon steel.

FIG. 11. Typical nanoindentation load-displacement curves for 6061
aluminum alloy.
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Sec. IV are listed in Table IV. For comparison, we ap-
plied our previous method based on a single-parameter
spherical-capped indenter model to deduce the results,
which were found to be Ers � Hn/(Hn/Er)s � 204.2 GPa
and Es � (1 − �2)/[1/Ers − (1 − �i

2)/Ei] � 226.1GPa
(subscript “s” refers to the spherical-capped model). A
noticeable difference between E and Es is observed.

Analyses of repetitive tests on S45C carbon steel and
6061 aluminum alloy were performed with the same pro-
cedures. Results obtained are shown in Table V. It can be
seen that the average values determined from the current
method for the two materials are smaller and closer to the
reference values than those from the previous method.
This improvement is attributed to the use of a more rea-
sonable model of tip geometry. This is understood as
according to the fact that the value of height bluntness
ratio hrc < hr < hrs, the indenter used in the experiments
should have a shape between a typical conical-tipped
shape and a spherical-capped shape. Figure 12 shows the
equivalent radial profile of the real indenter tip used in
our nanoindentation tests. Also shown in the figure are
the profiles of an ideal tip and the three representative
indenter models, i.e., conical-tipped, flat-ended, and
spherical-capped bluntness. It shows clearly that the
shape of the real indenter tip is closer to a conical-tipped
geometry. Thus the value of (Hn/Er)s should always be
smaller than the value of Hn/Er. This is clearly demon-

strated in Fig. 8. As such, the values of Es deduced from
Es � Hn/(Hn/Er)s would always be larger than the values
of E calculated from E � Hn/(Hn/Er). In addition, the
results of Young’s modulus EO&P determined by the
Oliver and Pharr method are also shown in Table V. It is
obvious that for a material such as S45C carbon steel
with a moderate strain-hardening exponent of about 0.15,
the traditional method may provide a good estimate on
the Young’s modulus, while for a material such as 6061
aluminum alloy with a small strain-hardening exponent
of about 0.04, the currently proposed method appears to
be more effective than the traditional one. It is thus fur-
ther believed that the relatively low strain-hardening ex-
ponent of 6061 aluminum alloy would cause a pileup
effect, which is supposed to be the main reason respon-
sible for the lower accuracy in estimating the Young’s
modulus of the material using the Oliver and Pharr
method.

Finally, we point out that to date there is no effective
method to correlate the indentation data and the elastic
moduli of an elastoplastically anisotropic solid because
of the complexity of the problem itself. However, one
can still gain an insight into the meaning of the nominal
Young’s modulus of an elastically anisotropic material
obtained from indentation, which is denoted as in-
dentation modulus thereafter. According to the analysis
of Vlassak et al.,22–24 the indentation modulus of an

TABLE IV. The main results of respective analysis steps as described in Sec. IV for Test 1 on S45C carbon steel.

Steps Main results

(i) A(h) = 26.2644h2 + 1255.2840h − 1951.4068h1/2 − 61.7471h1/4 + 945.9002h1/8

(ii) Pm = 0.315 mN, hm � 46.6 nm, Hn ≡ Pm/A(hm) � 3.02GPa, We/W � 0.126

(iii) Vr ≡ Videal/Vblunt � (1⁄3)A(hm)[A(hm)/24.5]0.5/∫0hm A(h)dh � 1.186

(iv) hr ≡ hideal/hm � [A(hm)/24.5]0.5/hm � 1.395, hrf � 1/[1 − (1 − 1/Vr)
1/3] � 2.172, hrc � Vr � 1.186, hrs � 1/{1 − [(1 − 1/Vr)/

(1 + sin �)]1/3} 1.762
(v)

�Hn�Er�fj = �
i=1

6

�afi�Vrj���We�W�i = 0.0190, 0.0123, 0.0059, 0.0030 for j = 1, 2, 3, 4

�Hn�Er�cj = �
i=1

6

�aci�Vrj���We�W�i = 0.0190, 0.0141, 0.0072, 0.0037 for j = 1, 2, 3, 4

�Hn�Er�sj = �
i=1

6

�asi�Vrj���We�W�i = 0.0190, 0.0128, 0.0066, 0.0035 for j = 1, 2, 3, 4

(vi)
�Hn�Er�f = �

k=1

4

��Hn�Er�fk�
j=1
j�1

4

�1�Vr − 1�Vrj���1�Vrk − 1�Vrj�� = 0.0145

�Hn�Er�c = �
k=1

4

��Hn�Er�ck�
j=1
j�1

4

�1�Vr − 1�Vrj���1�Vrk − 1�Vrj�� = 0.0159

�Hn�Er�s = �
k=1

4

��Hn�Er�sk�
j=1
j�1

4

�1�Vr − 1�Vrj���1�Vrk − 1�Vrj�� = 0.0149

(vii) Hn/Er = (Hn/Er)f{(hr − hrc)(hr − hrs)/[(hrf − hrc)(hrf − hrs)]} + (Hn/Er)c{(hr − hrf)(hr − hrs)/[hrc − hrf)(hrc − hrs)]}
+ (Hn/Er)s{(hr − hrf)(hr − hrc)/[(hrs − hrf)(hrs − hrc)]} � 0.0155

(viii) Er = Hn/(Hn/Er) � 196.5 GPa, E � (1 − �2)/[1/Er − (1 − �i
2)/Ei] � 215.8 GPa
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anisotropic material behaves differently from the real
elastic modulus associated with the crystallographic di-
rection along which the load is applied. The difference
between the indentation moduli for different crystallo-
graphic directions is always much smaller than that be-
tween two elastic moduli associated with the respective
crystallographic directions. The influence of anisotropy
on the indentation modulus is substantially diminished
by the loading mode of indentation. In fact, intruding an
indenter into a crystal causes multiaxial stresses, so the

indentation modulus thus obtained should represent some
average of elastic moduli of different crystallographic
directions. It has been shown that for most of the cubic
crystals having an anisotropy ratio less than 3 to ∼4, such
as Al, Ag, Au, Cr, Cu, Fe, Ge, Mo, Nb, Ni, Pb, Ta, Si, V,
W, TiC, diamond, MgO, etc.,25 the indentation modulus
values corresponding to different crystallographic direc-
tions would not deviate from its polycrystalline indenta-
tion modulus by more than 12%. Therefore, the inden-
tation modulus measured by a nanoindentation test can
be regarded as a good estimate of the polycrystalline
modulus for a material with small or moderate anisot-
ropy. As for a material with larger anisotropy such as
zinc single crystal, it is difficult to determine the poly-
crystalline indentation modulus by indentation test in
only one direction.

VI. CONCLUSIONS

A volume bluntness ratio Vr and a height bluntness
ratio hr were introduced to describe the blunt tip geom-
etry of a real Berkovich indenter. The volume bluntness
ratio is defined as Vr ≡ Videal/Vblunt. Videal is the part of the
volume of an ideal Berkovich indenter bounded by the
cross-sectional area A(hm), namely the cross-sectional
area of the real indenter measured at the maximum dis-
placement hm. Vblunt is the part of the volume of the real
indenter bounded by the same area A(hm). The height
bluntness ratio is defined as hr ≡ hideal/hm, in which hideal

is the indentation depth of the ideal indenter calculated
from the ideal tip point to the cross-sectional area with a

FIG. 12. Equivalent radial profiles of the real indenter tip used in the
present study (hm � 50 nm, Vr � 1.1745, and hr � 1.3762), an ideal
tip and the three representative indenter models (conical-tipped, flat-
ended, and spherical-capped bluntness).

TABLE V. The values of E, Es, and EO&P for S45C carbon steel and 6061 aluminum alloy determined from the current method, the model based
on the spherical-capped geometry and Oliver and Pharr method.

For S45C carbon steel

Test no.

hm

(nm) hr Vr We/W

Hn

(GPa) (Hn/Er)f (Hn/Er)c (Hn/Er)s Hn/Er

E

(GPa)

Es

(GPa)

EO&P

(GPa) (E − 200.1)/E

(Es − 200.1)/

Es

(EO&P − 200.1)/

EO&P

1 46.6 1.395 1.186 0.126 3.041 0.0145 0.0159 0.0149 0.0155 215.8 226.1 197.6 7.3% 11.5% −1.3%

2 45.7 1.401 1.190 0.128 3.138 0.0147 0.0161 0.0150 0.0156 221.3 232.0 211.2 9.6% 13.8% 5.3%

3 45.2 1.404 1.192 0.129 3.193 0.0147 0.0162 0.0151 0.0157 224.7 235.8 202.7 10.9% 15.1% 1.3%

4 40.6 1.435 1.212 0.170 3.787 0.0184 0.0202 0.0188 0.0196 211.3 221.8 206.1 5.3% 9.8% 2.9%

5 43.5 1.415 1.199 0.128 3.395 0.0145 0.0160 0.0149 0.0155 246.3 258.8 256.9 18.8% 22.7% 22.1%

Average 44.3 1.410 1.196 0.136 3.311 0.0154 0.0169 0.0157 0.0164 223.9 234.9 214.9 10.4% 14.6% 6.9%

Std. dev. 2.4 0.016 0.010 0.019 0.296 0.0017 0.0019 0.0017 0.0018 13.5 14.4 24.0

For 6061 aluminum alloy

Test no.

hm

(nm) hr Vr We/W

Hn

(GPa) (Hn/Er)f (Hn/Er)c (Hn/Er)s Hn/Er

E

(GPa)

Es

(GPa)

EO&P

(GPa) (E − 70.5)/E

(Es − 70.5)/

Es

(EO&P − 70.5)/

EO&P

1 64.6 1.314 1.138 0.191 1.768 0.0223 0.0239 0.0226 0.0234 72.2 74.7 76.3 2.4% 5.6% 7.6%

2 60.1 1.330 1.147 0.223 1.992 0.0251 0.0269 0.0255 0.0263 72.2 74.7 77.4 2.4% 5.6% 8.9%

3 64.8 1.313 1.137 0.202 1.759 0.0234 0.0250 0.0237 0.0245 68.3 70.6 80.5 −3.2% 0.1% 12.4%

4 62.1 1.323 1.143 0.184 1.888 0.0214 0.0230 0.0218 0.0225 80.6 83.5 91.4 12.5% 15.6% 22.9%

5 65.9 1.309 1.135 0.164 1.711 0.0196 0.0210 0.0199 0.0206 79.9 82.7 93.1 11.8% 14.8% 24.3%

Average 63.5 1.318 1.140 0.193 1.824 0.0224 0.0240 0.0227 0.0235 74.6 77.2 83.7 5.2% 8.3% 15.8%

Std. dev. 2.4 0.009 0.005 0.022 0.115 0.0021 0.0022 0.0021 0.0021 5.4 5.6 7.9
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magnitude A(hm). Dimensional analysis and finite ele-
ment method are employed to investigate the indentation
responses. Three representative nonideal indenter geom-
etries, i.e., flat-ended geometry, conical-tipped geometry
with a half-included conical angel � larger than � �
70.3°, and spherical-capped geometry with bluntness
specified by Vr and hr are used for analysis. It is shown
that for a set of definite values of Vr and hr, a functional
relationship between Hn/Er and We/W for each of the
three selected indenter geometries can be found. In
particular, the results of Hn/Er derived from a model
based on a spherical-capped geometry could have a mis-
estimate as large as −9.9% to 12.5%, if the shape of the
real indenter tip deviates significantly from a typical
spherical-capped geometry and has an extremely large
bluntness. Based on the Hn/Er–We/W relationships asso-
ciated with different indenter shapes and degrees of
bluntness specified by a certain set of Vr and hr, an im-
proved energy-based method for determining Young’s
modulus with an arbitrarily blunt Berkovich indenter was
developed. The procedures of analysis were established.
The superiority of the method was demonstrated by ap-
plying it to S45C carbon steel and 6061 aluminum alloy.
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