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Numerical simulations were conducted to study thermocapillary flows in short half-zone liquid bridges
of molten tin with Prandtl number Pr = 0.009, under ramped temperature difference. The spatio-temporal
structures in the thermocapillary flows in short half-zone liquid bridges with aspect ratios As = 0.6, 0.8
and 1.0 were investigated. The first critical Marangoni numbers were compared with those predicted
by linear stability analyses (LSA). The second critical Marangoni numbers for As = 0.6 and 0.8 were found
to be larger than that for As = 1.0. The time evolutions of the thermocapillary flows exhibited unusual fea-
tures such as a change in the azimuthal wave number during the three-dimensional stationary (non-
oscillating) flow regime, a change in the oscillation mode during the three-dimensional oscillatory flow
regime, and the decreasing and then increasing of amplitudes in a single oscillation mode. The effects of
the ramping rate of the temperature difference on the flow modes and critical conditions were studied as
well. In this paper, the experimental observability of the critical conditions was also discussed.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Studies on the stability of thermocapillary flows in half-zone li-
quid bridges of fluids with low Prandtl number (Pr) are motivated
by the experimentally proven fact that oscillatory thermocapillary
flow in floating-zone configurations may be responsible for the
striations in crystals grown in space (Croell et al., 1989). Since
Rupp et al. (1989) first predicted the flow instability of the thermo-
capillary flow in a half-zone liquid bridge by numerical simulation,
numerous linear stability analyses (LSA) and nonlinear direct
numerical simulations (DNS) (e.g. see Kuhlmann, 1999; Davis
and Smith, 2003; Lappa, 2005) have proved that the thermocapil-
lary flows in nonisothermal half-zone liquid bridges and floating-
zones of low-Pr fluids becomes oscillatory via a two-step bifurcation:
the first bifurcation to a three-dimensional stationary flow occurs
at a certain Marangoni number (the first critical Marangoni num-
ber Mac1) and the second bifurcation to a three-dimensional oscil-
latory flow occurs at a larger Marangoni number (the second
critical Marangoni number Mac2). Very recently, nine research
groups jointly performed a numerical benchmark work study
(Shevtsova, 2005) on the first bifurcation of the thermocapillary
flow in half-zone liquid bridges (hereafter, ‘‘half-zone” is elimi-
nated) of low-Pr fluids. However, the results of the benchmark
study on the second bifurcation to oscillatory thermocapillary flow
ll rights reserved.

: +81 92 583 7796.
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were not available in the paper. In our previous numerical studies
(Imaishi et al., 1999, 2000, 2001; Yasuhiro et al., 2000), the general
features of the oscillatory thermocapillary flows in liquid bridges of
low-Pr fluids (Pr = 0.01 and 0.02) under microgravity condition
were systematically investigated for a wide range of aspect ratios
(As) from 1.0 to 2.2, and the corresponding stability map was pro-
posed (Imaishi et al., 2001). In the As range studied, the critical azi-
muthal wave number (m) of the three-dimensional stationary
thermocapillary flow approximately agrees with the empirical cor-
relation (Kuhlmann, 1999), namely, m � 2/As. For the oscillatory
thermocapillary flow under slightly supercritical conditions, the
flow and temperature field F(x,s) can be expressed as the superpo-
sition of the time-dependent three-dimensional velocity or tem-
perature disturbance F0(x,s) and the time-averaged basic field
FðxÞ, i.e., Fðx; sÞ ¼ FðxÞ þ F 0ðx; sÞ. Generally, the basic field inherits
its characteristics from the corresponding three-dimensional sta-
tionary flow, however, the time-dependent velocity or tempera-
ture disturbance exhibits complex behavior. We reported three
types of oscillation modes that were classified based on the time-
dependent deformations of the flow and thermal fields in the
mid-plane of the liquid bridges (Imaishi et al., 1999, 2000, 2001;
Yasuhiro et al., 2000), the three types of oscillation modes were
‘‘P”, ‘‘T” and ‘‘R”, and they represent the ‘‘pulsating”, ‘‘twisting”,
and ‘‘rotating” modes, respectively. The stability limits for the
thermocapillary flows also exhibit a strong aspect-ratio (As) depen-
dency as shown in Fig. 1. In the range of As studied, the Mac2 pro-
files for liquid bridges of Pr = 0.01 and 0.009 show the maximum
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Fig. 1. Critical Marangoni number profiles as a function of aspect ratio.

Fig. 2. Schematic of a realistic half-zone liquid bridge model (a), and the ramped
temperature difference applied on the iron supporting rods (b).
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values at around As = 1.2, and they decrease rapidly with the dis-
tance from As = 1.2. In most of the aforementioned numerical stud-
ies, a simple liquid bridge model in which the liquid bridge was
supported between two isothermal discs with a constant tempera-
ture difference was adopted and the calculation domain was re-
stricted to the melt zone.

Despite the large number of experimental studies (Han et al.,
1996; Levenstam et al., 1996; Nakamura et al., 1998; Hibiya and
Nakamura, 1999; Cheng and Kou, 2000; Sumiji et al., 2000, 2001,
2002; Azami et al., 2001a,b; Hibiya et al., 2001; Yang and Kou,
2001) on the oscillatory thermocapillary flow in the liquid bridges
of low-Pr fluids, our understandings of this phenomena continue to
remain insufficient due to the difficulties in conducting well-con-
trolled experiments; these difficulties stem from the opacity, reac-
tivity, and high melting point of low-Pr fluids (mostly liquid
metals). Recently, JAXA (former NASDA) conducted a series of
on-ground experimental studies (Takagi et al., 2001) on the liquid
bridges of molten tin (Pr = 0.009) supported between iron rods. In
these experimental studies, the free surface temperature oscilla-
tions were successfully observed by using radiation thermometers,
however, the oscillations possess greater amplitudes and lower
frequencies than those predicted by the numerical studies. For
investigating the causes of these discrepancies, long-run numerical
simulations were conducted based on realistic liquid bridge mod-
els of molten tin with As = 1.22 and 2.0 (Yasuhiro et al., 2004; Li
et al., 2005) in which the heat transfer in the supporting iron rods
was taken into account, further, in these simulations a ramped
temperature difference was imposed to mimic the experimental
condition. The numerical studies revealed that velocity oscillations
with small amplitudes and high frequencies occur in the interior
regions of the melt zone at the second bifurcation. However, free
surface temperature oscillations can be detected much later due
to the low Pr of molten tin. Thus, the value of Mac2 determined
by the experimentally observed free surface temperature oscilla-
tions may not correspond to the exact onset of the oscillatory flow.
Despite these experimental difficulties, JAXA’s experimental re-
sults for As larger than 1.2 appear to support the As dependency
of Mac2 predicted by our numerical simulations (Matsumoto
et al., 2006). However, the decrease in As range from 1.2 to 1.0
has not been verified experimentally.

Despite the aforementioned experimental and numerical stud-
ies performed for studying the oscillatory thermocapillary flows
in the liquid bridges of low-Pr fluids based on either the simple
model or a realistic model, the number of investigations on the
spatio-temporal details of three-dimensional thermocapillary
flows for small aspect ratios (less than unity) is sparse. The objec-
tives of this study are to extend the numerical studies to small as-
pect ratios and to explore the As dependency of the corresponding
stability limits. Moreover, the effects of the ramping rate of the
temperature difference on the flow modes and critical conditions
are studied. Finally, a quantitative discussion on the experimental
observability of the critical conditions is presented.

2. Problem statement

Fig. 2a shows the schematics of a more realistic liquid bridge
model of molten tin considered in this study. The melt zone is as-
sumed to be cylindrical and non-deformable under microgravity
conditions. The molten tin is considered to be an incompressible
Newtonian fluid with constant properties. A cylindrical coordinate
system (r, h, z) is adopted with the origin located at the center of
the bottom of the melt zone. The radius of the liquid bridge is a,
and the lengths of the melt zone and the iron rod are L and Lr,
respectively. The corresponding As values of the melt zone and iron
rods are given by As = L/a and Asr = Lr/a, respectively. The funda-
mental equations are expressed in the dimensional form as
follows:

In the liquid bridge,

r � U ¼ 0; ð2:1Þ
oU
ot
þ U � rU ¼ �1

q
rpþ mr2U; ð2:2Þ



Table 1
Thermophysical properties and geometric parameters

Molten tin Iron

Pr 0.009 –
Density q (kg/m3) 6793 7700
Thermal conductivity k (W/mK) 35.44 20.0
Specific heat Cp (J/kg K) 242 460
Viscosity l (kg/ms) 1.318 � 10�3 –
Temperature gradient of surface tension rT (N/mK) �1.3 � 10�4 –
Radius a (m) 3.0 � 10�3

Offset of the thermocouple junction from melt/rod
interface d (m)

0.5 � 10�3
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oT
ot
þ U � rT ¼ ar2T: ð2:3Þ

In the iron rods,

oT
ot
¼ arr2T: ð2:4Þ

Here, U = (Ur, U h, Uz) is the velocity vector; m, the kinetic viscosity; t,
the time; q, the density; p, the pressure; T, the temperature; and a
and ar, the thermal diffusivities of the fluid and rods, respectively.

The boundary conditions are as follows:
On the melt surface (r = a),

Ur ¼ 0;
o

or
Uh

r

� �
¼ � rT

r2qm
oT
oh
;

oUz

or
¼ � rT

qm
oT
oz
;

oT
or
¼ 0: ð2:5Þ

On the rod surface (r = a),

oT
or
¼ 0: ð2:6Þ

At the melt/rod interfaces (z = L and z = 0),

Ur ¼ Uh ¼ Uz ¼ 0; k
oT
oz
¼ kr

oT
oz
: ð2:7Þ

Here, k and kr are the heat conductivities of the melt and rod,
respectively.

It is supposed that at the initial time (t = 0), the molten tin was
quiescent and at a uniform temperature of 703.6 K, and subse-
quently the time-dependent temperatures were imposed on each
end of the iron rods (TH and TC) (see Fig. 2b). The ramping rate of
the temperature difference, d(TH � TC)/dt = 1.93 K/min, was calcu-
lated based on the experimental value measured by thermocouples
located at 0.5 mm apart from the melt/rod interfaces by means of a
steady conduction model (Yasuhiro et al., 2004; Li et al., 2005). The
Pr and Marangoni numbers in this study are defined as Pr = m/a and
Ma ¼ � arTDTe

qma , respectively, where DTe acting on the melt/solid
interfaces is expressed as follows:

DTe ¼
Z 2p

0
Tða; h;0Þdh�

Z 2p

0
Tða; h; LÞdh

� �
=2p: ð2:8Þ
3. Numerical methods

3.1. Method for the non-linear numerical simulation

The fundamental equations are discretized through the control-
volume finite difference method on staggered grids. Non-uniform
grid distributions are adopted to increase the resolution near the
boundaries. A full description of the numerical methods and the
code validation can be found elsewhere (Yasuhiro et al., 2004). In
this study, the total grid numbers are 40 � 83 � 96 (Nr � Nh � Nz)
(32 grids in the z-direction of the melt zone), 40 � 83 � 104 (40
grids in the z-direction of the melt zone) and 40 � 83 � 104 (40
grids in the z-direction of the melt zone) for cases with As = 0.6,
0.8 and 1.0, respectively. The numerical simulations were con-
ducted on a Fujitsu VPP-5000 vector processor. The thermophysi-
cal properties and geometric parameters of the liquid bridge
models are listed in Table 1.

3.2. Method for the linear stability analysis (LSA)

In the linear stability analysis, a basic steady axisymmetric state
denoted by

X ¼ fUðr; zÞ ¼ Urer þ Uzez; pðr; zÞ; Tðr; zÞg

is first determined for a given set of parameters (Ma, Pr and As), and
subsequently small three-dimensional disturbances are added to
the basic state and linearized by neglecting the high orders of
disturbances. The disturbances are assumed to be in the normal
mode

U0ðr; h; z; t; Þ
p0ðr; h; z; t; Þ
T 0ðr; h; z; t; Þ

2
64

3
75 ¼

U0ðr; zÞ
p0ðr; zÞ
T 0ðr; zÞ

2
64

3
75 expðcðmÞt þ imhÞ: ð3:1Þ

Here, the variables with the prime symbol indicate the distur-
bances: m, the azimuthal wave number: c(m), the complex growth
rate of the corresponding perturbation mode: and i ¼

ffiffiffiffiffiffiffi
�1
p

. The dis-
crete form of the linearized equations can be expressed as the gen-
eralized eigenvalue problem

gðx;X;Ma;m; Pr;AsÞ � Ax ¼ cBx; ð3:2Þ

where x � (Ur, Uh, Uz, p, T)T denotes a vector comprising the distur-
bance velocity, pressure and temperature. A is a real-valued non-
symmetric matrix, while B is a singular real-valued diagonal
matrix. The eigenvalues and related eigenfunctions of problem
(3.2) are solved for a given set of parameters. For each value of m,
the Marangoni number corresponding to the marginal stability limit
(the real part of c(m) is zero) is determined. Mac1 is obtained as the
minimum value among all the m values. The numerical method and
its validations are reported in detail elsewhere (Xun et al., in press).
It must be noted that the LSA was conducted on simple liquid bridge
models with constant (uniform and time-independent) tempera-
ture differences.

4. Numerical results

In order to explore the spatio-temporal details of the thermo-
capillary flows in liquid bridges of molten tin with small As and
to implement the corresponding stability boundaries, numerical
simulations were conducted based on realistic liquid bridge mod-
els with As = 0.6, 0.8 and 1.0. The computed results are compared
with the LSA results in the following sections.

4.1. Liquid bridge of molten tin with As = 0.6

Before the first bifurcation, the thermocapillary flow is axisym-
metric and non-oscillatory. At t = 900.0 s, and DTe = 2.53 K, the azi-
muthal velocities on the free surface become non-zero and grow
rapidly, indicating the formation of a three-dimensional flow field.
Thus, Mac1 is determined to be 34.73. The free surface tempera-
tures also deviate from the uniform and monotonic increase with
time, which reflects the axisymmetric stationary flow field existing
at that instant (details will be discussed in Section 5). Fig. 3 indi-
cates that the developed three-dimensional flow field is character-
ized by an azimuthal wave number of m = 3. Table 2 shows Mac1

values and the corresponding critical azimuthal wave numbers
based on the LSA for Pr = 0.009. It can be observed that the Mac1 va-
lue determined through the present numerical simulations is close
to the LSA result for As = 0.6 (Mac1 = 32.31). With a further increase



Fig. 3. Velocity and temperature distributions on the mid-plane (z = 0.5L) for sta-
tionary three-dimensional flow in liquid bridge of As = 0.6: m = 3 at Ma = 42.44.

Table 2
LSA results for the first bifurcation

As Mac1 m

0.6 32.31 3
0.8 23.18 2
1.0 17.00 2
1.1 14.81 2
1.2 13.06 2
1.3 11.80 2
1.4 11.00 2
1.6 10.42 2
1.8 8.89 1
2.0 6.94 1
2.2 5.92 1
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in the temperature difference, the three-dimensional velocity and
temperature fields gradually evolve into the saturated regime.
The 3D flow field becomes unstable and changes to an oscillatory
flow. In this study, as an indicator for the second bifurcation, the
maximum absolute value of the radial velocity near the axis jUr

(r ? 0,z = 0. 5L)jmax was chosen due to its sensitivity to the incipi-
ence of oscillatory flow (Li et al., 2005). Fig. 4 shows the time evo-
lutions of the indicator velocity and the free surface temperature at
the center (z = 0.5L) of the liquid bridge. The flow begins to exhibit
oscillations with a frequency of 0.128 Hz (determined through FFT)
Fig. 4. Time evolutions of indicator velocity and a free surface temperature at
z = 0.5L for liquid bridge with As = 0.6.
at t = 1880.0 s, DTe = 5.24 K, and Mac2 = 71.93. However, the ther-
mal field does not respond quickly to the flow oscillations that
start near the axis. The free surface temperature generates oscilla-
tions at Ma = 74.47 (normalized distance from the second bifurca-
tion: e2 = (Ma �Mac2)/Mac2 = 0.035). A similar phenomenon was
observed in the case of As = 1.22 (Li et al., 2005). During the process
of development of the oscillatory flow, different wave numbers and
oscillation modes were observed as shown in Fig. 4. At slightly
super critical conditions (immediately after the second bifurcation
point), the basic flow field of m = 3 is modulated by a periodic pen-
dulum-like pulsating motion: this pulsating motion first induces a
radial velocity across the axis back and forth along P1 (see Fig. 3),
which is followed by a similar pulsating motion along P2, and then
along P3. The type of oscillation mode is denoted as 3P. These
asymmetric pulsating actions stimulate the azimuthal velocity
field. At approximately t = 2000 s, the entire velocity and tempera-
ture fields exhibiting 3P oscillation start bulk rotation around the
z-axis. Let us denote this type of oscillation mode as (3P)R. The sur-
face temperature during the (3P)R oscillation exhibits two charac-
teristic frequencies of 0.13 Hz (corresponding to the 3P
oscillations) and 0.021 Hz (corresponding to the bulk rotation with
a period of 142.9 s.). When the temperature difference increased
further, DTe = 5.82 K and Ma = 79.93 (e2 = 0.11) at t = 2092.0 s, and
the type of oscillation mode showed a quick transition to 2P (it
was also expressed as (2 + 1) in our previous reports (Imaishi
et al., 1999, 2000, 2001; Yasuhiro et al., 2000)): the rotation
stopped and this was accompanied by a decrease in the oscillation
amplitudes. However, after t = 2177.0 s, DTe = 6.05 K and
Ma = 83.12 (e2 = 0.16), the oscillation amplitudes of the 2P type
oscillation mode increase quickly and reached the saturated re-
gime in which the oscillation amplitudes continued increasing
gradually until the end of the present simulation (t = 2550.1 s,
DTe = 7.06 K, Ma = 96.92 and e2 = 0.35). The transition of the oscilla-
tion modes from 3P through (3P)R to 2P suggests that the basic
mode of m = 2 is more favorable (or stable) in the moderately
supercritical region than that of m = 3.

4.2. Liquid bridge of molten tin with As = 0.8

In this case, the axisymmetric thermocapillary flow breaks up
into a three-dimensional stationary flow of m = 2 (see Fig. 5a) at
the first bifurcation point (t = 560.4 s, DTe = 1.80 K and Mac1

= 24.71), as shown in Fig. 6. Thus, the Mac1 value that is determined
is consistent with the LSA result shown in Table 2 (Mac1 = 23.18).
However, this stationary three-dimensional flow becomes unstable
at a larger temperature difference. At t = 1181.3 s, DTe = 3.75 K and
Ma = 51.48, the velocity and temperature fields deform the pat-
terns along the shorter axis (Ps) of the m = 2 velocity field (Imaishi
et al., 1999). The resultant three-dimensional stationary fields
resemble that of a mixture of velocity and temperature fields of
m = 2 and m = 3, as shown in Fig. 5b. Such a two-step bifurcation
of the non-oscillating thermocapillary flow (see Fig. 6) has never
been observed in our numerical simulations with ramped temper-
ature difference (Yasuhiro et al., 2004; Li et al., 2005). Oscillations
in the flow field starts at t = 1640.1 s, DTe = 5.16 K and Mac2 = 70.84
at the critical frequency of 0.067 Hz. The oscillatory disturbance
exhibits a periodic pendulum-like pulsating motion that induces
a radial velocity across the axis back and forth along Ps (Imaishi
et al., 1999). It must be noted that a considerably long time gap
is needed before large amplitude oscillations occurs, and the oscil-
lation amplitudes decrease instantly (see Fig. 7). However, at
t = 1875.0 s, DTe = 5.87 K and Ma = 80.59 (e2 = 0.14), the oscillatory
flow is developed again and the amplitude increases steadily until
the end of the present simulation (t = 2069.9 s, DTe = 6.45 K,
Ma = 88.51 and e2 = 0.25). In this case, the free surface tempera-
tures start oscillations at Ma = 74.27, and the lag between the on-



Fig. 5. Stationary three-dimensional flow in liquid bridge of As = 0.8. (a) Velocity
and temperature distributions on z = 0.5L observed at Ma = 44.90 (m = 2). (b) Vel-
ocity and temperature distributions on z = 0.5L observed at Ma = 60.03 (mixture of
m = 2 and m = 3). Temperature distributions are expressed by the gray scale.

Fig. 6. Time evolutions of three-dimensional stationary flow in liquid bridge of
As = 0.8. Azimuthal velocities and temperatures observed at three different points at
z = 0.5 L are plotted as a function of time.

Fig. 7. Time evolution of three-dimensional oscillatory flow in liquid bridge of
As = 0.8, expressed by the indicator velocity (jUr (0,h,0.5 L)jmax) and a free surface
temperature at (a,p/4,0.5L) as a function of time.
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sets of the velocity and the free surface temperature oscillations is
e2 = 0.048.

4.3. Liquid bridge of molten tin with As = 1.0

Since the numerical simulation results for the case of As = 1.0
are very similar to those of the simple liquid bridge model for
Pr = 0.01 (Kuhlmann, 1999), we describe only them briefly as fol-
lows. The mode of the three-dimensional stationary flow is m = 2
after the first critical condition is established at Mac1 = 19.77. The
second bifurcation occurs at Mac2 = 57.66, and the three-dimen-
sional oscillatory flow is of the typical 2P type (Imaishi et al.,
1999) with a critical frequency of 0.257 Hz. The free surface tem-
peratures starts oscillations at Ma = 59.20, and the lag between
the onsets of the velocity and the free surface temperature oscilla-
tions is e2 = 0.027. The oscillatory thermocapillary flow of the 2P
type remains until the end of the present simulation (DTe = 4.64 K,
Ma = 63.76 and e2 = 0.11).

4.4. Stability boundaries for liquid bridges of molten tin

Fig. 1 summarizes the stability limits for the liquid bridges of
molten tin (Pr = 0.009 and 0.01). In the As range studied so far,
the Mac1 determined by direct numerical simulations based on
the more realistic liquid bridge model with a ramping rate of
(d(TH � TC)/dt = 1.93 K/min) agrees fairly well with the LSA results
based on the simple liquid bridge model. The Mac1 profile de-
creases monotonously with an increasing As value up to 1.8, and
this is followed by a gradual increase again. In the As range from
1.2 to 1.0, the numerical results based on the models exhibit a de-
crease in Mac2 for both the Pr values. However, for smaller As val-
ues (less than unity), Mac2 increases again and then becomes
almost constant as As decreases below 0.8. It must be noted that
in the As range studied, the pulse-like three-dimensional oscilla-
tory disturbance prevails at the onset of the second bifurcation.
The agreement between the critical Marangoni numbers obtained
by numerical simulations based on both the simple and the realis-
tic models with a small temperature ramping rate suggests that the
heat conduction in the supporting rods and the method of applica-
tion of the temperature difference do not significantly affect the
stability of the thermocapillary flow.

In order to evaluate the effects of the ramping rate of the tem-
perature difference on the stability limits, numerical studies based
on realistic liquid bridge models with As = 0.6 and 0.8 and a larger
ramping rate of d(TH � TC)/dt = 11.57 K/min (approximately six
times that of the aforementioned ramping rate) were conducted.
The computed results are tabulated in Table 3 together with the
previous result for As = 1.22 (Li et al., 2005). For all the cases, the
flow transition requires a large DTe for a large temperature ramp-
ing rate. However, the differences are rather small for a liquid
bridge with As = 0.8. Fig. 8 provides an explanation for this; for
example, oscillations under larger temperature ramp rates begin
without the saturated regime of the 3D stationary flow (mixture
of m = 2 and m = 3). Therefore, the faster ramping rate tends to sta-
bilize the stationary thermocapillary flow and also affects the time
evolution of the flow to a certain extent.



Table 3
Effects of the temperature ramping rate on Mac1 and Mac2

d(TH–TC)/dt (K/min) As = 0.6 As = 0.8 As = 1.22

Mac1 Mac2 Mac1 Mac2 Mac1 Mac2

1.93 34.73 71.93 23.18 70.84 15.68 81.7
11.57 36.65 75.50 27.45 71.38 20.19 84.4

Fig. 8. Effect of ramping rate of temperature difference on the time evolution of 3D
flows in a liquid bridge with As = 0.8. Ramping rates: d(TH � TC)/dt = 1.97 K/min and
d(TH � TC)/dt = 11.57 K/min.

Fig. 9. Thermocouple positions and calculated temperature changes. (a) Thermo-
couples embedded in the cold rod in the experimental apparatus. (b) The numerical
temperature recordings at the monitoring points on the cold rod/melt interface for
As = 0.6.
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5. Discussion on the experimental observability

Recently, JAXA has been attempting to detect the critical condi-
tions for flow transitions in the liquid bridges of molten tin and to
obtain a detailed information of the flow modes (Matsumoto et al.,
2006) through temperature measurements by employing 8 or 9
thermocouples embedded in the cold rod (see Fig. 9a). Fig. 9b
shows the temperature records obtained in the present simulation
on the cold rod/melt interface for the case with As = 0.6. The loca-
tions of the monitoring points coincide with the TC positions, as
shown in the inset. The temperature records reveal that the tem-
perature at the center of the cold melt/rod interface is always
colder than that near the periphery. Thus, the isothermal boundary
condition adopted for the simple model does not prove to be useful
and there always exists a 2D temperature distribution at the melt/
rod interface. It also shows that the temperatures TC1–TC8 (lo-
cated on a circle) remain exactly the same up to the first critical
point (DTec1 = 2.53 K), reflecting the axisymmetric flow and tem-
perature fields. However, these temperatures deviate from each
Fig. 10. Numerical results of the maximum temperature difference among the eight
monitoring points (from TC1 to TC8) on the rod/melt interface. For As = 0.6. At the
bifurcation point indicated by symbols �, Ma = 38.4 (DTe = 2.82 K). (b) For
As = 0.8. At the bifurcation point indicated by symbols �, Ma = 30.28 (DTe = 2.21 K).
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other after the first critical condition and start oscillations after the
second critical condition (DTec2 = 5.24 K). Fig. 10 shows the plots of
the maximum temperature differences among the eight monitor-
ing points (from TC1 to TC8) together with the maximum temper-
ature difference from TC9 (located at the center of the disk). By
assuming the sensitivity of the temperature measurement system
to be 0.01 K, the first bifurcation point can be detected at
Ma = 38.74 (indicated by a symbol � in Fig. 10a) and the second
bifurcation at Ma = 76.56 (symbol � in Fig. 4). These bifurcation
points cause relative errors such as ec1 = (Ma–Mac1)/Mac1 = 0.115
and ec2 = 0.064. Fig. 10b indicates that the experimentally detect-
able first bifurcation condition for the case with As = 0.8 becomes
Ma = 30.28 (� in Fig. 10b) with a relative error of ec1 = 0.225, and
the second bifurcations should occur at Ma = 75.50 (ec2 = 0.066)
(� in Fig. 7). These results reveal that there is no way to avoid errors
in the detection of flow transitions through temperature measure-
ments because of the time lags between the flow transitions and
the temperature changes. There are two types of time lags: the first
type is the lag between the changes in the velocity field and tem-
perature field, and the second type is the lag induced by the sensi-
tivity of the temperature measurement system. Improving the
temperature measurement sensitivity reduces the second type of
lag, however, the first type of lag is intrinsic for the liquid bridges
of low-Pr fluids and independent of the sensitivity of the tempera-
ture measurement system. Thus, an accurate and sensitive velocity
measurement system is required for the accurate experimental
determination of Mac1 and Mac2 in liquid bridges of low-Pr fluids.
6. Conclusion

In this study, numerical simulations were conducted on the
Marangoni convection in half-zone liquid bridges of molten tin
with As = 0.6, 0.8, and 1.0 by using a realistic models of a liquid
bridge in which the supporting iron rods and ramped temperature
difference are taken into account. The critical condition for the first
flow transition determined by the present simulation with a low
ramping rate (1.93 K/min) approached the critical conditions
determined by the simple model as well as LSA. Mac1 increases
monotonously with a decrease in the As for a wide range of As val-
ues between 0.6 and 2.2. Further, the Mac2 values are also found to
be close to those in our previous results of the simple model when
the incipience of oscillations is monitored by observing the radial
velocity on the center line. The oscillating flow starts in the pulsat-
ing mode in the liquid bridges with As = 0.6, 0.8, and 1.0. However,
Mac2 exhibits a relatively complicated As dependency, i.e., it shows
a steep decrease with As from 1.2 to 1.0, and this is followed by an
increase in the As range between 1.0 and 0.8, subsequently, Mac2

becomes almost constant until As = 0.6. Two unusual phenomena
were observed in the present simulations: the first one is the
change in the azimuthal wave number during the three-dimen-
sional non-oscillatory flow regime in the case of As = 0.8, and the
second is a change in the azimuthal wave number during the oscil-
latory flow regime in the case of As = 0.6. Moreover, the pulse-like
three-dimensional oscillatory disturbance prevails at the onset of
the second bifurcation. The effects of the ramping rate of the tem-
perature difference on the flow modes and critical conditions were
studied. The computed results revealed that a large ramping rate
tends to result in larger values for the critical Marangoni number.
Finally, a quantitative discussion on the experimental observability
of the critical conditions was presented. The results revealed that
apart from temperature measurements, an accurate and sensitive
measurement system is strongly required for the accurate experi-
mental determination of Mac1 and Mac2 in the liquid bridges of
low-Pr fluids.
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