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Summary. Many experimental observations have shown that a single domain in a ferroelectric material

switches by progressive movement of domain walls, driven by a combination of electric field and stress. The

mechanism of the domain switch involves the following steps: initially, the domain has a uniform spontaneous

polarization; new domains with the reverse polarization direction nucleate, mainly at the surface, and grow

though the crystal thickness; the new domain expands sideways as a new domain continues to form; finally,

the domain switch coalesces to complete the polarization reversal. According to this mechanism, the volume

fraction of the domain switching is introduced in the constitutive law of the ferroelectric material and used to

study the nonlinear constitutive behavior of a ferroelectric body in this paper. The principle of stationary total

potential energy is put forward in which the basic unknown quantities are the displacement ui, electric

displacement Di and volume fraction qI of the domain switching for the variant I. The mechanical field

equation and a new domain switching criterion are obtained from the principle of stationary total potential

energy. The domain switching criterion proposed in this paper is an expansion and development of the energy

criterion established by Hwang et al. [1]. Based on the domain switching criterion, a set of linear algebraic

equations for determining the volume fraction qI of domain switching is obtained, in which the coefficients of

the linear algebraic equations only contain the unknown strain and electric fields. If the volume fraction qI of

domain switching for each domain is prescribed, the unknown displacement and electric potential can be

obtained based on the conventional finite element procedure. It is assumed that a domain switches if the

reduction in potential energy exceeds a critical energy barrier. According to the experimental results, the

energy barrier will strengthen when the volume fraction of the domain switching increases. The external

mechanical and electric loads are increased step by step. The volume fraction qI of domain switching for each

element obtained from the last loading step is used as input to the constitutive equations. Then the strain and

electric fields are calculated based on the conventional finite element procedure. The finite element analysis is

carried out on the specimens subjected to uniaxial coupling stress and electric field. Numerical results and

available experimental data are compared and discussed. The present theoretic prediction agrees reasonably

with the experimental results.

1 Introduction

Ferroelectric materials are used in many electric components such as sensors, actuators and

transducers owing to their coupled electromechanical character. Recent applications of ferroelectric
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materials include nonvolatile computer memories and switching capacitors for integrated circuitry.

Those applications require the largest possible strain and polarization, and many repeated cycles of

domain switch under high electric fields and high stress. Therefore, being able to understand and

predict the change of materials response under combined electrical and mechanical loading is crucial

for the suitable design of a ferroelectric device.

Significant effort has been devoted to the development of constitutive models to describe the

nonlinear response of ferroelectric materials. Many theories were proposed to explain the nonlinear

behavior of the ferroelectric ceramics. Those theories of the ferroelectric ceramics may be divided

broadly into two types. Micromechanics and phenomenological modeling are the most common

approaches to the development of constitutive models.

Micromechanics models are based on the microscopic behavior of the domains. Domain switching

is considered the source of the butterfly shaped strain versus electric field curves and the

corresponding electric displacement versus electric field loops. If the electrical and mechanical

energy reduction of each domain exceeds a critical energy barrier, then switching occurs. The

macroscopic behavior is controlled by the combination of the average microscopic switching

behavior and the reversible linear behavior [1]–[24]. Early a micro-electro-mechanical model was

proposed by Hwang et al. [1]. They established the energy criterion of the domain switching using

the energy difference before and after the domain switching,

EkDDs
k þ rijDcs

ij� 2EcPs; ð1Þ

where Dcs
ij and DD

s
k are the changes of spontaneous strain and spontaneous electric displacement

before and after the domain switching, respectively, Ec is the coercive electric field, Ps is the

spontaneous polarization. Lu et al. [2] developed Hwang’s switching criterion [1]. They

distinguished the energy barriers of 90� and 180� domain switching. The results given by them

were matched well with those under uniaxial mechanical loading. Chen et al. [3] introduced the

volume fraction of various kinds of domains as internal variables describing the pattern of the

internal rearrangement resulting from the domain switching and studied the nonlinear behavior of

polycrystalline ferroelectrics. Huo and Jiang [4] considered that every crystal had different kinds

of domains and that the volume fractions of the various domains were the internal variables, so the

average polarization of each crystal could be expressed as a linear function of the volume fraction,

and the domain switching corresponds to changes of the volume fraction of domains. Huber et al.

[5] developed the ferroelectric constitutive model based on the domain wall motion that is similar

to the crystal slip. They thought that there were several variants in a tetragonal crystal and the

volume fraction of each variant was cI. They used a self-consistent analysis to estimate the

macroscopic response of tetragonal crystals under a variety of loading paths. Huber and Fleck [6],

[7] improved this model. Li and Weng [8]–[11] adopted the irreversible thermodynamics and

physics of domain switch to study the nonlinear behavior of PZT, and it was recently expanded to

include the effect of temperature to study the shift of Curie point (Su and Weng [12], [13]) and to

calculate the hysteresis behavior of single crystals and the ceramic polycrystal (Srivastava and

Weng [14], [15]; Su and Weng [16]). The micro-electro-mechanical models described some

aspects of the behavior of ferroelectric materials [17]–[24]. The micro-electro-mechanical model

reflects the physical essence of the nonlinear behavior of the ferroelectric material. But in order to

make the calculation accurate, those methods require thousands of crystallite grains. Hence the

finite element simulations cost too much computation time and are not efficient. A detailed review

on recent advances in the micromechanical modeling of ferroelectric material was given by Huber

[25].

Phenomenological theories start with a chosen set of state variables and an expression which

connects them, such as a free-energy function. Thermodynamic principles are then used to derive
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further expressions. Chen and his cooperators [26]–[29] proposed the phenomenological model to

describe the electromechanical coupling characters of ferroelectric material. Their model was quite

complex and limited to uniaxial electrical loading. However, it did capture the fundamental

butterfly and D–E loops and was capable of capturing some rate dependent behavior. A later

model presented a 3D formulation, but gave no specific equations. Another macroscopic model,

developed by Bassiouny et al. [30], [31], was based on the principle of virtual power from rational

thermodynamics. They established the admissibility of additive decomposition of polarization and

strain, as well as the use of remanent strain and polarization as internal state variables. The

Clausius–Duhem inequality is then used as the basis for the development of the evolution of these

internal variables by means of a dissipation potential. A simple macroscopic constitutive model

with remanent polarization and remanent strain as internal variables was developed by Kamlah

and his coworkers [32]–[35]. A series of work on constitutive modeling of ferroelectric ceramics

has been published recently by McMeeking’s group [36]–[41]. They established some self-

consistent analysis to estimate the macroscopic response of tetragonal crystals under a variety of

loading paths. There have also been assorted other approaches to capturing the nonlinear behavior

of these materials. Some other studies have also been conducted on ferroelectric constitutive

relations [42]–[45].

Recent phenomenological models have had the aim of capturing the multi-axial behavior of

ferroelectric nonlinear constitutive laws, with varying degrees of success. For instance, Kamlah and

Tsakmakis [32] apply a bilinear approach, but because of the lack of multi-axial data, the model was

only fully developed for the uniaxial case. In the plasticity based model by McMeeking and Landis

[38], only three internal variables are employed by linking the remanent strain to the remanent

polarization. Landis [39] proposed a multi-axial constitutive model. In the model an appropriate

switching surface and associated flow rules for increments of remnant strains and polarization are

proposed to make the model thermodynamically consistent. The reader is referred to the contribution

by Kamlah [46] and Landis [47] for a survey of the thermodynamically consistent modeling of

switching effects.

Early finite element models for piezoelectric materials utilized linear constitutive laws, and were

only suitable for small stress and electric field loadings. At this time there have been lots of

research activities in developing nonlinear finite element simulation for ferroelectric materials.

Gong and Suo [48] and Hom and Shankar [49] simulated the electrostriction behavior of

multilayer actuators. When analyzing the interaction between adjacent domains, a straightforward

approach is to employ a micromechanical model for single domain behavior at each integration

point in a finite element scheme. The finite element mesh can then be used to capture the details

of grain geometry, with the orientation of the direction of polarization varying from domain to

domain. Based on this idea, the interaction among grains has been implemented in the finite

element method for simulating the fully coupled constitutive behavior by Hwang et al. [19]; Lu

et al. [2]; Hwang and Waser [50]; Fang et al. [51]. Liu Bin [52] analyzed the plane problem using

total coupling nonlinear finite element method. Kamlah and Bohle [33] implemented a

phenomenological law into a finite element code. Their finite element tool is suitable for studying

the influence of geometry and material parameters on the stresses in critical regions of

piezoceramic devices. Ghandi and Hagood [53] developed a hybrid finite element formulation,

which incorporates electric displacement degrees of freedom along with the conventional

displacement and electric potential degrees of freedom. Landis [54] developed a new finite

element formulation, the vector potential formulation which uses a charge based potential as the

independent variable. Li and Fang [55] carried out 3D finite element simulations on ferroelectric

materials. Kim and Jiang [56] and Arockiarajan et al. [57] also developed a 3D finite element

model for rate-dependent behavior of ferroelectric ceramics.
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2 Constitutive law and energy principle

2.1 The volume fraction of domain switching

First consider the domain switches only in one direction. Suppose the material element is a single

domain zone before switching. The spontaneous polarization, spontaneous polarization strain, elastic

compliance, dielectric and piezoelectricity coefficients are D
s(0)
i , cs(0)

ij , S
(0)
ijmn, e(0)

ij and d
(0)
ijk ,

respectively. The corresponding quantities will be D
s(I)
i , cs(I)

ij , S
(I)
ijmn, e(I)

ij and d
(I)
ijk after the whole

domain in the material element has switched. If the volume friction of the switched domain in the

material element is qI, the spontaneous polarization, spontaneous strain and the piezoelectric, elastic

and dielectric moduli of the material element will be

Ds
i ¼ 1� qIð ÞDs 0ð Þ

i þ qID
s Ið Þ
i ¼ D

s 0ð Þ
i þ qIDD

s Ið Þ
i ; ð2:1Þ

cs
ij ¼ 1� qIð Þ cs 0ð Þ

ij þ qIc
s Ið Þ
ij ¼ cs 0ð Þ

ij þ qIDcs Ið Þ
ij ; ð2:2Þ

dikl ¼ 1� qIð Þd 0ð Þ
ikl þ qId

Ið Þ
ikl ¼ d

0ð Þ
ikl þ qIDd

Ið Þ
ikl; ð2:3Þ

Sijmn ¼ 1� qIð ÞSð0Þijmn þ qIDS
Ið Þ

ijmn ¼ S
ð0Þ
ijmn þ qIDS

Ið Þ
ijmn; ð2:4Þ

eij ¼ 1� qIð Þ eð0Þij þ qIDe Ið Þ
ij ¼ eð0Þij þ qIDe Ið Þ

ij ; ð2:5Þ

where symbol D is the change of the related physical quantity before switching and after the whole

domain of the material element having switched.

In fact, the domain may switch both in the 90� and 180� directions. And the domain may switch in

several potential orientations during 90� switching. Suppose the volume fraction of 180� switching is

q1. If there are N @1 90� switchings, the volume fraction of 90� switching can be expressed as qI

(I [ 2, 3,…, N).

Similar to Eq. (2), the spontaneous electric displacement the spontaneous strain and the

piezoelectric, elastic and dielectric moduli of the material element can be written as follows:

Ds
i ¼ D

s 0ð Þ
i þ

XN

I¼1

qIDD
s Ið Þ
i ; ð3:1Þ

cs
ij ¼ cs 0ð Þ

ij þ
XN

I¼1

qIDcs Ið Þ
ij ; ð3:2Þ

dikl ¼ d
0ð Þ

ikl þ
XN

I¼1

qIDd
Ið Þ

ikl; ð3:3Þ

Sijmn ¼ S
ð0Þ
ijmn þ

XN

I¼1

qIDS
Ið Þ

ijmn; ð3:4Þ

eij ¼ eð0Þij þ
XN

I¼1

qIDe Ið Þ
ij ; ð3:5Þ

where I ¼ 1 corresponds to 180� switching, I [ 2, 3,…, N are corresponding 90� switchings in the

I-th orientation.
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The constitutive law of the ferroelectric material can be described as follows:

cij � cs 0ð Þ
ij �

PN

I¼1

qIDcs Ið Þ
ij ¼ S

ð0Þ
ijmn þ

PN

I¼1

qIDS
Ið Þ

ijmn

� �
rmn þ d

0ð Þ
kij þ

PN

I¼1

qIDd
Ið Þ

kij

� �
Ek;

Di � D
s 0ð Þ
i �

PN

I¼1

qIDD
s Ið Þ
i ¼ d

0ð Þ
ikl þ

PN

I¼1

qIDd
Ið Þ

ikl

� �
rkl þ eð0Þik þ

PN

I¼1

qIDe Ið Þ
ik

� �
Ek;

ð4Þ

where Sijkl and eik are the elastic compliance and dielectric permittivity tensor measured at constant

electric field and constant stress, respectively. Tensor dikl is the piezoelectric coefficient at constant

stress. In general the displacement ui and electric potential / are used as the basic unknown

quantities in finite element simulation. Hence the second type constitutive law is needed in which the

basic unknown quantities are the strain cij and electric field Ei. We have

rij ¼ Cijmn cmn � cs
mn

� �
� CijmndkmnEk;

Di ¼ Ds
i þ Cmnkldikl cmn � cs

mn

� �
þ eik � dkmneimnð ÞEk;

ð5Þ

where Cijmn is the elastic modulus tensor measured at constant electric field, eimn is the piezoelectric

coefficient tensor at constant strain eimn ¼ Cmnkl dikl.

2.2 Principle of stationary total potential energy

Suppose the volume and boundary of the ferroelectric body are V and S, respectively. When no body

forces and free charges are present, the field equations can be written as

rij;j ¼ 0; ð6Þ
Di;i ¼ 0: ð7Þ

The mechanical boundary conditions are:

rijnj ¼ �ti on Sr; ð8Þ
ui ¼ �ui on Su; ð9Þ

where rij are the components of stress, �ti is the prescribed traction on Sr; �ui is the prescribed

displacement on Su.

The electrical boundary conditions are:

Dini ¼ ��x on Sx; ð10Þ

/ ¼ �/ on S/; ð11Þ

where Di is the electric displacement, �x is the prescribed surface free charge on Sx, ni is the unit

normal to the surface S; and �/ is the prescribed electric potential on S/.

The internal energy density can be expressed as follows [58]:

U ¼ 1

2
rij cij � cs 0ð Þ

ij �
XN

I¼1

qIDcs Ið Þ
ij

 !
þ Ek Dk � D

s 0ð Þ
k �

XN

I¼1

qIDD
s Ið Þ
k

 !" #
: ð12Þ

When the domain switching is considered, the total potential energy is

U ¼
Z

V

U dV �
Z

Sr

�tiui dSþ
Z

S/

�/ Dini dSþ
Z

V

XN

I¼1

qI W Ið Þ
cr

 !
dV; ð13Þ

where W
(1)
cr is the critical energy barrier which the single domain per unit volume must overcome

when the polarization of the whole domain has switched by 180�. W
(I)
cr (I ¼ 2, 3, …, N) is the critical
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energy barrier which the single domain per unit volume must overcome when the whole domain has

switched by 90� in the I-th variant orientation.

The first variation of the internal energy density is

dU ¼ rij dcij þ Ek dDk

�
XN

I¼1

dqI rijDcs Ið Þ
ij þ EkDD

s Ið Þ
k þ 1

2
DS

Ið Þ
ijmnrmnrij þ

1

2
De Ið Þ

ik EkEi þ Dd
Ið Þ

kijrijEk

� �
: ð14Þ

The first variation of the total energy of the system is

dU ¼
Z

V

dU dV �
Z

Sr

�tidui dSþ
Z

S/

�/ dDini dSþ
Z

V

XN

I¼1

dqI W Ið Þ
cr

 !
dV: ð15Þ

Substituting Eq. (14) into Eq. (15), we get

dU¼
Z

S/

�/dDini dS�
Z

Sr

�tidui dSþ
Z

V

rij dcijþEk dDk

�

�
XN

I¼1

dqI rij Dcs Ið Þ
ij þEk DD

s Ið Þ
k þ 1

2
DS

Ið Þ
ijmnrmnrijþ

1

2
De Ið Þ

ik EkEi þDd
Ið Þ

kijrijEk�W Ið Þ
cr

� �#
dV :

ð16Þ

The displacement ui which satisfies the boundary condition (9) is called the kinematically

admissible displacement, and the electric displacement Di which satisfies the field equation (7) and

the boundary condition (10) is called the electrically admissible electric displacement. The volume

fraction qI of the domain switching that satisfies the conditions qI C 0 and
PN

I¼1 qI�1 is called the

physically admissible volume fraction.

We have the following principle of stationary total energy:

Among all kinematically admissible displacements ui, electrically admissible electric displace-

ments Di and physically admissible volume fractions qI, the actual displacement u
*
i , actual electric

displacement D
*
i and actual volume fraction q*

I make the total energy U stationary. The proof of the

principle of stationary total energy is given in Appendix A.

Based on this principle of stationary total potential energy, one can obtain the stress field equation

(6) and boundary conditions (8) and (11). In addition one can also obtain the following switching

criterion:

rij Dcs Ið Þ
ij þEk DD

s Ið Þ
k þ1

2
DS

Ið Þ
ijmnrmnrijþ

1

2
De Ið Þ

ik EkEiþDd
Ið Þ

kijrijEk¼W Ið Þ
cr ðI 2 1;2;3; . . .Þ: ð17Þ

It should be emphasized that Eq. (17) is only available for the variant I in which the domain

switching is active (It means that the volume fraction qI satisfies the active condition qI > 0).

Equation (17) is the modification and further development of the energy criterion proposed by

Hwang et al. [1]. It accords with the work by Kessler and Balke [58] and Huber and Fleck [6] in the

spirit.

Since the most important contribution of material anisotropy in Eq. (17) is due to the term of Dd
(I)
kij

rij Ek, hence in order to simplify the finite element calculation procedure, following Hwang et al.

[10], McMeeking and Landis [29], Kamlah [37] and Arockiarajan et al. [57], the ferroelectric

material is assumed to be isotropic elastic and isotropic dielectric, but the piezoelectricity coefficient

d
(I)
ijk is anisotropic.
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Then Eq. (17) can be reduced to

rij Dcs Ið Þ
ij þ Ek DD

s Ið Þ
k þ Dd

Ið Þ
kijrijEk ¼ W Ið Þ

cr : ð18Þ

Substitute Eq. (5) into Eq. (18). A set of linear algebraic equations for qI are obtained,

XN

J¼1

qJAIJ ¼ Ŵ
Ið Þ

cr ðI 2 1; 2; 3; . . .;NÞ; ð19Þ

where

AIJ ¼ CijklDĉ Jð Þ
ij Dĉ Ið Þ

kl ; ð20Þ

Dĉ Ið Þ
ij ¼ Dcs Ið Þ

ij þ Dd
Ið Þ

kijEk ðI 2 1; 2; 3; . . .;NÞ; ð21Þ

Ŵ
Ið Þ

cr ¼ r̂ijDĉ Ið Þ
ij þ EkDD

s Ið Þ
k �W Ið Þ

cr ðI 2 1; 2; 3; . . .;NÞ; ð22Þ

r̂mn ¼ Cmnij cij � cs 0ð Þ
ij � d

0ð Þ
kijEk

� �
: ð23Þ

It must be emphasized that the unknown quantities in the coefficients AIJ are the strain and the

electric field. Once the strain and electric field are given, the volume fraction qI of the domain

switching can be determined by Eq. (19). Especially for a plane problem, q1 is the volume fraction of

180� switching, q2 is the volume fraction of clockwise 90� switching, q3 is the volume fraction of

counter clockwise 90� switching.

When the domain only switches by 180�, we have

q1 ¼
Ŵ

1ð Þ
cr

A11
: ð24Þ

When the domain only switches by clockwise 90�, we have

q2 ¼
Ŵ

2ð Þ
cr

A22
: ð25Þ

When the domain only switches by counter clockwise 90�, we have

q3 ¼
Ŵ

3ð Þ
cr

A33
: ð26Þ

When the domain switches by both 180� and clockwise 90�, we have

q1 ¼
Ŵ

1ð Þ
cr A22 � Ŵ

2ð Þ
cr A12

A11A22 � A12A21
; ð27Þ

q2 ¼
Ŵ

2ð Þ
cr A11 � Ŵ

1ð Þ
cr A21

A11A22 � A12A21
: ð28Þ

When the domain switches by both 180� and counter clockwise 90�, we have

q1 ¼
Ŵ

1ð Þ
cr A33 � Ŵ

3ð Þ
cr A13

A11A33 � A13A31
; ð29Þ

q3 ¼
Ŵ

3ð Þ
cr A11 � Ŵ

1ð Þ
cr A31

A11A33 � A13A31
: ð30Þ
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If the whole domain has completely switched, but a partial domain switched by 90� and the others

switched by 180�, it means that

q1 þ q2 ¼ 1: ð31Þ

It must be pointed that Eq. (31) is obtained when the mixture domain switching occurs by both 180�
and clockwise 90�. For this saturated situation of the mixture domain switching, the variation of the

total energy is no longer Eq. (16), and becomes

rij Dcs 2ð Þ
ij � Dcs 1ð Þ

ij

� �
þ Ek DD

s 2ð Þ
k � DD

s 1ð Þ
k

� �
þ Dd

2ð Þ
kij � Dd

1ð Þ
kij

� �
rijEk ¼ W 2ð Þ

cr �W 1ð Þ
cr

� �
: ð32Þ

From the first one of Eqs. (4), we can get

rij ¼ Cijmn cmn � cs 0ð Þ
mn � d

0ð Þ
kmn þ

X2

I¼1

qI Dd
Ið Þ

kmn

 !
Ek �

X2

I¼1

qI Dcs Ið Þ
mn

" #
: ð33Þ

Substitute Eq. (33) into the Eq. (32), so

Cijmn cmn � cs 0ð Þ
mn � d

0ð Þ
kmn þ

X2

I¼1

qI Dd
Ið Þ

kmn

 !
Ek �

X2

I¼1

qI Dcs Ið Þ
mn

" #
Dcs 2ð Þ

ij � Dcs 1ð Þ
ij

� �

þ Ek DD
s 2ð Þ
k � DD

s 1ð Þ
k

� �

þ Cijmn Dd
2ð Þ

kij � Dd
1ð Þ

kij

� �
Ek cmn � cs 0ð Þ

mn � d
0ð Þ

kmn þ
X2

I¼1

qI Dd
Ið Þ

kmn

 !
Ek �

X2

I¼1

qI Dcs Ið Þ
mn

" #

¼ W 2ð Þ
cr �W 1ð Þ

cr

� �
: ð34Þ

Then we have

q2 ¼
Ŵ

2ð Þ
cr � Ŵ

1ð Þ
cr � A12 � A11ð Þ

A11 þ A22ð Þ � A12 � A21
; q1 ¼ 1� q2: ð35Þ

3 The calculation method

3.1 Finite element formulation

The finite element formulation of Li and Fang [55] is employed in this paper. The displacement and

electric potential are taken to be the nodal degrees of freedom in the present finite element method.

The interaction between adjust domains is taken into account.

3.2 Boundary conditions

In Lynch’s experiment [59], samples were cut to 10 mm cubes. Hence strictly speaking, the problem

is truly 3D. But the 3D finite element simulation costs too much computation time and the efficiency

of the 3D finite element simulation is quite lower due to the complex distribution of the polarization

direction. For simplicity a 2D finite element model was proposed and depicted in Fig. 1, in this

paper.

The mechanical boundary conditions are that the x-displacement and the z-displacement at

(x ¼ @a=2,z ¼ @a=2) are fixed at zero. The z-displacement on point (x ¼ a=2, z ¼ @a=2) is zero

in order to prevent rigid body motion. Uniformly distributed compressive stress is applied to the
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specimen on z ¼ : a=2. All other surfaces are free of traction. The electrical potential has the value

/ on the upper surface electrode z ¼ þ a=2 and is @/ on the surface z ¼ @a=2. On all other

surfaces, the free charge and the normal component of the electric displacement are zero.

3.3 The calculation method

The samples of the polycrystalline ferroelectric ceramic were first poled by applying an electric field

excess of the coercive field, this changes the original direction of the polarization vector of the

domains to that most closely aligned with the positive direction of z-axis. Hence the polarization

vectors of the domains are assigned nearly to the z direction in this paper. Let u be the angle

between the initial polarization vector of the domain and the z-axis. So the value of u is between

@umax and umax. The simulation is carried out with a large number of domains. All the calculations

are carried out with total 12,800 elements. Each domain is represented by one element in finite

element simulation. Triangle elements with uniform strain and electric field are used. The sketch of

the grids is shown in Fig. 2. The macroscopic response of the specimen is computed from the

volume average response of each domain,

a

O

a

x

z

Fig. 1. The 2D finite element model

x

z

O

Fig. 2. The sketch of finite element calculation
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cij ¼
1

V

XN

l¼1

cij lð ÞVl

 !
; ð36Þ

Di ¼
1

V

XN

l¼1

Di lð ÞVl

 !
; ð37Þ

where Nt is the total number of the triangle elements, V is the volume of the ferroelectric body, Vl is

the volume of the l-th element, cij(l), Di(l) is the strain and electric displacement of the l-th element,

respectively.

Polycrystalline ferroelectric ceramic (8/65/35 PLZT) was used in the experiment studied by

Lynch [59]. The material parameters are Y ¼ 68 � 109 Pa, m ¼ 0.3, e33 ¼ 56.25 � 10@9 C/(V m),

Pr ¼ 0.25 C/m2, cr ¼ 0.143 %, Ec ¼ 0.36 MV/m.

The interaction among domains is naturally taken account in the finite element simulation.

Because different elements have different spontaneous polarizations and spontaneous strains, the

internal stress and electric field generate due to polarizations and strain incompatibilities, when the

external electric field and mechanical loads are zero. One can get the following relations:

Pr ¼ aPs; ð38Þ
cr ¼ bcs: ð39Þ

Hence one can obtain the suitable parameters Ps and cs which guarantee the remnant polarization

Pr ¼ 0.25 C/m2 and cr ¼ 0.143%. In this paper a and b are taken to be 0.953 and 0.98, respectively,

for the case of umax ¼ 15�. The material constants and parameters in the present simulation are

chosen to be Y ¼ 50 � 109 Pa, m ¼ 0.3, e33 ¼ 62 � 10@9 C/(V m), Ps ¼ 0.254 C/m2, cs ¼ 0.15%,

Ec ¼ 0.36 MV/m, d33 ¼ 0.9 � 10@9 m/V, d31 ¼ @4.5 � 10@ 10 m/V, d15 ¼ 1.545 � 10@9 m/V.

3.4 The hardening function

The experimental results by Lynch [59] have clearly shown that the critical energy barrier W
(I)
cr will

increase when the volume fraction qI of the domain switching increases. In other words, the driving

force of domain switch which equals the critical energy barrier W
(I)
cr will be hardening as the domain

switching processes.

Li and Weng [8], [9] were the first to introduce the concept of a hardening relation for ferroelectric

materials in their several papers. They thought the energy dissipation associated with the movement

of domain walls will increase with increasing domain concentration and assumed a simple nonlinear

function with several unknown parameters which needed to be determined by comparison of the

calculation results with the experiment results for purely mechanical loading or purely electric

loading.

In the present paper, the hardening relation between the driving force of domain switch and the

volume fraction qI of domain switching is calibrated based on the partial experimental results for the

poled ferroelectric ceramic specimen. The detailed procedure is given by Liu et al.

[60].

The non-dimensional hardening relation can be written as

f1 q1ð Þ ¼ W
ð1Þ
cr

.
2EcPs

; ð40Þ

f2 q2ð Þ ¼ W
ð2Þ
cr

.
1:5rccs

s
: ð41Þ
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The calibrated results for polycrystalline ferroelectric ceramic (8/65/35 PLZT) under combined

mechanical and electric loading are listed as follows:

(i) The hardening function for 90� domain switching is expressed as

f2ðq2Þ ¼
7:340q2

0:2790þ q2

þ 1:835q2

0:9799� q2

� 6:256q2 þ 1; ð42Þ

(ii) The hardening function for 180� domain switch is

f1ðq1Þ ¼ Er
c=Ec þ B � q1; ð43Þ

where E
r
c is the coercive electric field under a suppressive stress r,

B ¼ 0:0242� 0:3607nirijnj=rc: ð44Þ

Generally speaking, the ferroelectric ceramics contain numerous internal micro voids, hence

there is an additional nonlinear deformation when the specimen of the ferroelectric ceramics is

subjected to compressive loading. We call this additional strain as plastic strain. According to

the experimental result for purely mechanical loading by Lynch [59], the overall plastic strain

for the specimen can be expressed as

cp

33 ¼ 0:01477 e�0:5856r33=rc � 1
� �

; 1\�r33=rc\3:57; ð45Þ

cp

33 ¼ �0:125%; �r33=rc� 3:57: ð46Þ

The domain switching criterion used in this paper is

EiDD
sðIÞ
i þ kr̂11Dc

_sðIÞ
11 þ r̂33Dc

_sðIÞ
33 ¼ W ðIÞ

cr ; ð47Þ

where r̂11 and r̂33 are the stresses in the local coordinate system x̂j aligned with the crystal axes of

the initial single domain and Dc
_sðIÞ

11 ;Dc
_sðIÞ

33 are the corresponding items in the local coordinate system

x̂j:

The internal stresses induced as a result of the incompatibility spontaneous strains are much higher

than the critical stress rc, so that the second term of the driving force is modified by introducing a

modification factor k. If k ¼ 1, the domain switching criterion (47) is completely consistent with

Hwang’s criterion. In the present simulation the modification factor k is taken to be 0.8. The applied

field is gradually increased from zero to maximum, and then reversed. The volume fraction qI of

domain switching for each element obtained from the last loading step is used as input to the

constitutive equations. The strain and electric fields are calculated based on the finite element

procedure. Using the computed strain and electric fields, the new values of the volume fraction qI of

domain switching are obtained from Eq. (19).

4 The calculated results

4.1 Uniaxial mechanical loading

The nonlinear constitutive behavior of the ferroelectric specimen subjected to a purely uniaxial

compressive stress is studied in this Section.
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Divide the load @85 MPa into 100 steps. The external mechanical loading is increased step by

step. Figures 3 and 4 show the curves of the stress versus electric displacement and stress versus

strain.

The solid lines in Figs. 3 and 4 correspond to the experimental results by Lynch [59]. The present

FEM results are denoted by the open triangles.

In our simulation, we find that a lot of domain switches before the compressive stress is applied on

the specimen. Those switchings are induced by large internal stress and electric field. But most of the

calculated volume fractions of domain switching are quite small. When the load is gradually

increased, the calculated volume fraction is increased simultaneously. Since most of the calculated

volume fractions of domain switching are still small, the behavior of the stress-electric displacement

and stress-strain is nearly linear at beginning from 0 to @10 MPa.

At r33 ¼ @15 MPa, in about 60% of all elements the volume fraction of 90� domain switching is

greater than 0.1. At r33 ¼ @30 MPa, in about 80% of all elements the volume fraction of 90�
domain switching is greater than 0.4. At r33 ¼ @85 MPa, in about 40% of all elements the volume

fraction of 90� domain switching is greater than 0.8 and in another about 40% of total elements the

volume fraction of 90� domain switching is within the range 0.4 � 0.8. Figure 3 shows that the

calculated electric displacement of the specimen is greater than the experimental results for the case

|r33| < 45 MPa. At @85 MPa the calculated electric displacement D3 is less than the experimental

result. Figure 4 shows the axial stress–strain curve. When |r33| is less than 30 MPa, the calculated

axial strain is in good agreement with the experimental result. With the increasing of the

compressive stress the calculated axial strain c33 deviates the experimental curve gradually. The

reason may be described as follows. The orientation angle u between the direction of polarization

and the z-axis is zero in the mechanical model of the single domain (see Appendix B). But the

orientation angle u of each domain is distributed between @umax and umax in the present finite

element simulation. Hence in the same loading, the driving force in the mechanical model is greater

than that in the finite element analysis. In the same way, the volume fraction of domain switching in

the mechanical model is greater than that in the finite element analysis.

4.2 Uniaxial electric field loading

Figures 5 and 6 show the ferroelectric hysteresis and butterfly shaped curve under the uniaxial

electric loading, respectively. First we discuss the negative electric field loading (E3 opposite to the

σ 33
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vs. electric displacement at zero applied
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direction of the remanent polarization of the specimen). From Fig. 5 we can see that the calculated

axial strain c33 agrees well with the experimental results from point A to point B. The strain of the

poled ceramic decreases linearly due to the piezoelectric effect as the electric load is lower; then, the

strain drops sharply and reaches the minimum at point B as depolarization occurs. The strain then

rises to reach saturation at point C after repolarization. As polarization reversal takes place, the

piezoelectric coefficients of the ferroelectric specimen change their signs. This leads to a reversal of

the macroscopic piezoelectric effect, manifested in the change of slope in the linear regime from

positive to negative. The strain decreases linearly due to the piezoelectric effect as the negative

electric field is gradually decreased from point C.

As shown in Fig. 6 the calculated electric displacement D3 is in reasonable agreement with the

experimental results before Ec. At @0.1 MV/m, the volume fraction of 90� domain switching of all

elements is larger than 0.1. When the electric field is less than @0.30 MV/m, the elements of 0 < q
(q ¼ q2 or q3) B 0.4 decrease quickly, and the elements of 0.4 < q B 0.8 increase quickly. But

when the electric field is less than @0.36 MV/m, the elements of 0 < q B 0.4 increase quickly, and

 Experimental data (Lynch, 1996)
 FEM results
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the elements of 0.4 < q B 0.8 decrease quickly because the 180� domain switching takes place. At

@0.44 MV/m, the volume fraction q1 of 180� domain switching of all elements is larger than 0.8.

Now a positive electric field is applied to the specimen from point D. With the electric field E3

increasing, the domain switching occurs in most of all elements. The situation of the domain

switching is similar to that of the negative electric loading from point A to points B and C. The

computed strain c33 and electric displacement D3 for the specimen agree well with the experimental

data from point D to point E and point F. The computed strain c33 and electric displacement D3 for the

specimen match well with the experimental data for unloading from point F and point A.

4.3 Combined electromechanical loading

As for electromechanical coupling loading, first a prescribed compressive stress is applied to the

specimen. Then a circle of electric field is applied to the specimen while the external compressive stress

is held fixed. The open triangles in Figs. 7 and 12 show the results of the calculated electric

displacement and strain versus the applied electric field with different compressive stress loading. In the

current simulation the switching process under applied compressive stress is more gradual than that at

zero stress. The solid lines in Figs. 7–12 correspond to the experimental results obtained by Lynch [59].

First we discuss the case of r33 ¼ @15 MPa. This prescribed compressive stress is applied to the

specimen and held fixed. An electric field parallel to the applied stress is then introduced and cycled

between positive and negative limits. At zero electric field, the volume fraction of 90� domain

switching of all elements is larger than 0.1, because the applied compression encourages the domain

switching. When the negative electric field increases, the elements of 0.4 < q B 0.8 also increase

slowly. Until @0.15 MV/m 180� domain switches take place. At maximum electric field, the volume

fraction q1 of 180� domain switching of all elements is larger than 0.8, so when unloading the

electro-mechanical response is linear. The general feature of the hysteresis loop for the applied stress

of @15 MPa is captured in the predicted curve as shown in Fig. 8. But the calculated butterfly loop is

remarkably deviating from the experimental result as shown in Fig. 7.

For the cases of r33 ¼ @30 MPa, the switch process is similar to that of r33 ¼ @15 MPa. At

zero electric field, the volume fraction of the 90� domain switching of almost all elements is
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larger than 0.4. When the negative electric field increases, the elements of 0.4 < q B 0.8 are

decreasing linearly. At @0.05 MV/m, the 180� domain switches take place. After that the

elements of 0.8 < q1 B 1.0 increase linearly and the elements of 0.4 < q B 0.8 decrease linearly

as the negative electric field increases. The calculated hysteresis loop for the applied stress of

@30 MPa agrees well with the experimental results as shown in Fig. 10, but the calculated

butterfly loop is obviously deviating from the experimental results as shown in Fig. 9.

For the case of r33 ¼ @60 MPa, the volume fraction of 90� domain switching of all elements

is larger than 0.4 at zero electric field. When the negative electric field increases, the elements of

0.4 < q B 0.8 decrease linearly and the elements of 0.8 < q B 1.0 increase linearly. From @0.05

to @0.36 MV/m, the elements of 0.4 < q B 0.8 and 0.8 < q B 1.0 decrease slightly, meanwhile

the elements of 0.0 < q1 B 0.8 increase linearly. The general feather of the calculated butterfly

loop for the applied stress of @60 MPa agrees well with the experimental curve as shown in

Fig. 11. But the hysteresis loop is obviously deviating from the experimental results when E3 >

0.2 MV/m as shown in Fig. 12. This deviation is probably associated with a simplification of the

model in handing the relation of 180 switching. A simple linear fit of the hardening relation of

180 switching cannot reflect the actual evolution process of the domain wall.

5 Conclusions

The principle of stationary total potential energy is put forward in this paper. The mechanical field

equation and a domain switching criterion are deduced from the energy principle. The domain

switching criterion established in this paper is the expansion and development of the energy criterion

established by Hwang et al. [1]. The 2D finite element procedure for domain switching in

ferroelectric specimens is developed. The hardening relation between the driving force of domain

switching and the volume fraction of domain switching is calibrated based on the single domain

mechanical model and partial experimental results. Using this calibrated hardening relation, the

nonlinear response of the ferroelectric specimen is calculated. A systematic finite element analysis

was performed on the nonlinear behavior of ferroelectric ceramics subjected to the electromechan-

ical coupling loading. The results involve the electric butterfly shaped curves of axial strain versus

axial electric field, the hysteresis loops of the electric displacement versus electric field and the

evolution process of the domain switching in the ferroelectric specimen under uniaxial coupled stress

and electric field. The present theoretic prediction for hysteresis loops agrees reasonably with the

experimental results given by Lynch [59]. The simulated butterfly loops agree well with

experimental results [50] for purely mechanical loading and purely electric loading, but for

combined electromechanical loading the present predictions for hysteresis loops are obviously

deviating from the experimental results [50] which needs to be studied in the future.

Appendix A

The total energy U can be expressed as

U ¼
Z

V

U dV �
Z

Sr

�tiui dSþ
Z

S/

�/ Dini dS þ
Z

V

XN

I¼1

qI W Ið Þ
cr

 !
dV : ðA:1Þ

Using the Lagrange multiplier k, the principle of stationary total energy U is equivalent to the

following principle of stationary functional ~U:
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~U ¼ U�
Z

V

kDi;i dV: ðA:2Þ

The first variation of ~U has the form

d~U ¼
Z

V

rijdcij þ EidDi

� �
dV �

Z

Sr

�tidui dSþ
Z

S/

�/nidDi dS

þ
Z

V

XN

I¼1

dqI W Ið Þ
cr

 !
dV �

Z

V

Di;idk dV �
Z

V

kdDi;i dV :

ðA:3Þ

The above equation can be rewritten as

d~U ¼
Z

v

�rij;jiþ ðEi þ k;iÞdDi

� �
dV þ

Z

Sr

ðrijnj � �tiÞduidS�
Z

s/

ðk� �/ÞnidDids

�
Z

v

XN

I¼1

dqI rijDcsðIÞ
ij þ EkDD

sðIÞ
k þ 1

2
DS
ðIÞ
ijmnrmnrij þ

1

2
DeðIÞik EkEi þ Dd

ðIÞ
kijrijEk �W ðIÞ

cr

� �
dV

�
Z

v

Di;idkdV : ðA:4Þ

The necessary condition for ~U to be stationary is

d~U ¼ 0: ðA:5Þ

From Eq. (A.5), one can obtain

rij;j ¼ 0;

Ei ¼ �k;i

Di;i ¼ 0;

: in V ; ðA:6Þ

rijDcs Ið Þ
ij þ EkDD

s Ið Þ
k þ 1

2
DS
ðIÞ
ijmnrmnrij þ

1

2
DeðIÞik EkEi þ Dd

Ið Þ
kijrijEk ¼ W Ið Þ

cr in V ; ðA:7Þ

rijnj ¼ �ti; on Sr; ðA:8Þ

k ¼ �/; on S/: ðA:9Þ

Clearly these are the basic equations and the boundary conditions for the ferroelectric body. From

Eqs. (A.6) and (A.9) one can see that the Lagrange multiplier k is the electric potential /.

Appendix B

Mechanical model

In order to describe the electromechanical coupling phenomenon of the ferroelectric specimen, the

hardening relation between the driving force of domain switching and the volume fraction of domain

switching needs to be determined.

A plane strain single domain mechanical model is proposed in this Appendix. The poled

ferroelectric specimen is considered as a transversely isotropic homogeneous material with single

domain. The single domain is assumed to switch when the reduction of potential energy of the
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system due to that switch exceeds a critical value, which can be considered as the energy barrier that

must be overcome to achieve the switch.

The switching criterion proposed by Hwang et al. [1] can be expressed as

EiDD
sðIÞ
i þ rijDcsðIÞ

ij ¼ W ðIÞ
cr : ðB:1Þ

The initial energy barrier against the 90� switch is assumed to be 3rccs=2; the initial energy barrier

against the 180� switch is 2Ec Ps, rc is the critical stress, cs is the spontaneous strain.

From the experimental results by Lynch [50], one can see that the butterfly loop tails become

narrow and short when the compressive stress increases. The narrow tails indicate that the coercive

electric fields E
r
c reduce with the compressive stress increasing clearly.

Suppose the volume fraction of 180� switching is q1. The volume fraction of clockwise 90�
switching can be expressed as q2. The volume fraction of counter clockwise 90� switching can be

expressed as q3. Due to the symmetry of the model, only clockwise 90� switch is considered in this

model. The whole process of domain switching contains four stages when the ferroelectric specimen

is subjected to both the negative electric and compressive mechanical loading. First the volume

fraction q2 of 90� switching increases when 90� domain switching takes place. Then the 180�
switching occurs when the applied electric field reaches the coercive electric field E

r
c, meanwhile the

q2 keeps constant since the driving force of domain switch for the second 90� switching is less than

the energy barrier. Third when q1 þ q2 reaches 1, q1 increases continuously and q2 decreases to

keep q1 þ q2 ¼ 1. Finally, the electric field is reduced to zero while the mechanical load keeps

constant. According to this process of domain switching, the hardening relation between the driving

force of domain switching and the volume fraction of domain switching can be calibrated using the

partial experimental data by Lynch [50].

Purely mechanical loading

According to the domain switching criterion, only 90� domain switching occurs. Using the

constitutive equation (4) one can obtain

q2 ¼
D3 � D

sð0Þ
3 � d

ð0Þ
333r33

DD
sð2Þ
3 þ Dd

ð2Þ
333r33

; ðB:2Þ

where D3 is the experimental result for the ferroelectric specimen under purely mechanical

loading.

Electromechanical loadings

After a prescribed compressive stress is applied to the specimen and held fixed, the strain of the

specimen can be expressed as c(0)
33 , and the volume fraction of 90� domain switching is q(0)

2 . Then a

circle of electric field is introduced. The strain increment is

Dc33 ¼ c33 � cð0Þ33 ¼ q2 � qð0Þ2

� �
Dcsð2Þ

33 þ d
ð0Þ
333 þ q1Dd

ð1Þ
333 þ q2Dd

ð2Þ
333

� �
E3: ðB:3Þ

Only the 90� domain switch occurs when the applied electric field is less than the coercive electric

field Ec
r,

q2 ¼
Dc33 þ qð0Þ2 Dcsð2Þ

33 � d
ð0Þ
333E3

Dcsð2Þ
33 þ Dd

ð2Þ
333E3

: ðB:4Þ
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After the applied electric field is larger than the coercive electric field Ec
r, the 180� domain switch

occurs. If q1 þ q2 are less than 1, q1 increases continuously and q2 keeps constant,

q1 ¼
Dc33 � q2 � qð0Þ2

� �
Dcsð2Þ

33 � d
ð0Þ
333 þ q2Dd

ð2Þ
333

� �
E3

Dd
ð1Þ
333E3

: ðB:5Þ

When q1þq2 reaches 1, q1 increases continuously and q2 decreases,

q1 ¼
Dc33 � 1� qð0Þ2

� �
Dcsð2Þ

33 � d
ð0Þ
333 þ Dd

ð2Þ
333

� �
E3

Dd
ð1Þ
333 � Dd

ð2Þ
333

� �
E3 � Dcsð2Þ

33

;

q2 ¼ 1� q1:

ðB:6Þ

The hardening relation

Based on the partial experimental results, one can easily obtain the measurement value of c33 or D3

when the ferroelectric specimen is subjected to different stress and electric fields. Substituting the

stress and electric field and the corresponding c33 or D3 into (B.2)–(B.6), the hardening relation

between the driving force of the domain switching and the volume fraction of the domain switching

can be calibrated. Then the relation can be non-dimensionalized by the initial energy barrier:

f1 q1ð Þ ¼ W ð1Þ
cr

.
2EcPs; ðB:7Þ

f2 q2ð Þ ¼ W ð2Þ
cr

.
1:5rcc

s
s: ðB:8Þ

According to the experimental data measured by Lynch [50], the corresponding ‘‘coercive electric

fields’’ E
r
c of ferroelectric ceramics are 0:36; 0:2; 0:14; 0:075 MV/m under the uniaxial compressive

stresses 0, @15, @30, @60 MPa, respectively.

The experimental data taken in the following analyses are based on Lynch’s work [50] for

ferroelectric ceramics PLZT 8/65/35.

First we discuss 90� domain switching:

Purely mechanical loadings

The hardening relation of 90� domain switch between the driving force of domain switching and the

volume fraction of domain switching is shown in Fig. 13.

The hardening curves of 90� domain switch under electromechanical coupling loadings are quite

similar to those of purely mechanical loading as also shown in Fig. 13. A single function is used to fit

the similar hardening relation in two loading conditions. The function can be expressed as

f2ðq2Þ ¼
7:340q2

0:2790þ q2

þ 1:835q2

0:9799� q2

� 6:256q2 þ 1: ðB:9Þ

The ferroelectric ceramics contains usually many micro pores. The irreversible strain, which is called

‘‘plastic’’ strain, denoted as cp
33, will be generated under compressive loading due to the pores. According

to the experimental results measured by Lynch [50], one can obtain the following fitting formula:

cp

33 ¼ 0:01477 e�0:5856r33=rc � 1
� �

; �r33=rc\3:26: ðB:10Þ

166 F. Liu et al.



It must be pointed out that the formula (48) is only suitable for @r33 /rc < 3. 26. When @r33 /rc C

3. 26, these pores will collapse so that the plastic strain keeps constant as shown in Fig. 14. Hence

the plastic strain cp
33 is equal to @0.085% for @r33 /rc C 3.26.

The hardening relation of 180� domain switch

The hardening relation curves of 180� domain switching between the driving force and the volume

fraction of domain switching are shown in Fig. 15. The experimental data is complex (Fig. 16).

A linear function is used to fit the experimental data, which can be expressed by

f1ðq1Þ ¼ Er
c=Ec þ B � q1; ðB:11Þ

where E
r
c is the corresponding coercive electric field of ferroelectric specimen under a suppressive

stress r. The slope B versus the corresponding stress r displays a linear relation,

B ¼ 0:0242� 0:3607r33=rc: ðB:12Þ

0 2 4 6 8 10 12 14

0.00

0.02

0.04

0.06

0.08

0.10

–
γ

p

33
 (

%
)

–σ
33

/σ
c

measured data
fitting curve

Fig. 14. The relationship and fitted

curves between cp
33 and @r33 /rc

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

Electromechanical coupling loadings
Purely mechanical loadings

f 2

ρ
2

Fig. 13. The hardening relation

between f 2 and q2 under purely

mechanical loading and combined

electromechanical loadings

Energy principle and nonlinear electric–mechanical behavior of ferroelectric ceramics 167



Acknowledgments

The present work is supported by the National Natural Science Foundation of China (No. 10572138).

References

[1] Hwang, S.C., Lynch, C.S., McMeeking, R.M.: Ferroelectric/ferroelastic interactions and a polarization

switching model. Acta Metall. Mater. 43, 2073–2084 (1995)

[2] Lu, W., Fang, D.N., Hwang, K.C.: Nonlinear electric-mechanical behavior and micro-mechanics

modeling of ferroelectric domain evolution. Acta Mater. 47, 2913–2926 (1999)

[3] Chen, X., Fang, D.N., Hwang, K.C.: Micromechanics simulation of ferroelectric polarization

switching. Acta Mater. 45, 3181–3189 (1997)

[4] Huo, Y.Z., Jiang, Q.: Modeling of domain switching in ferroelectric ceramics: an example. Int.

J. Solids Struct. 35, 1339 (1998)

[5] Huber, J.E., Fleck, N.A., Landis, C.M., McMeeking, R.M.: A constitutive model for ferroelectric

polycrystals. J. Mech. Phys. Solids 47, 1663–1697 (1999)

[6] Huber, J.E., Fleck, N.A.: Multi-axial electrical switching of a ferroelectric: theory versus experiment.

J. Mech. Phys. Solids. 49, 785–811 (2001)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.4

0.8

1.2

1.6

2.0

f 1

σ33  = –15 MPa

σ33 = –30 MPa

σ33 = –60 MPa

ρ1

Fig. 16. The hardening relation

between f 1 and q1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.4

0.8

1.2

1.6

2.0

f 1

σ33  = –15 MPa

σ33 = –30 MPa

σ33 = –60 MPa

ρ
1

Fig. 15. The linear fitted hardening

function between f 1 and q1

168 F. Liu et al.



[7] Huber, J.E., Fleck, N.A.: Ferroelectric switching: a micromechanics model versus measured

behaviour. Eur. J. Mech. A. Solids 23, 203–217 (2004)

[8] Li, J., Weng, G.J.: A theory of domain switch for the nonlinear behavior of ferroelectrics. Proc. R. Soc.

London A 455, 3493–3511 (1999)

[9] Li, J., Weng, G.J.: A micromechanics-based hysteresis model for ferroelectric ceramics. J. Intel.

Mater. Syst. Struct. 12, 79–91 (2001)

[10] Li, W.F., Weng, G.J.: A theory of ferroelectric hysteresis with a superimposed stress. J. Appl. Phys. 91,

3806–3815 (2002)

[11] Li, W.F., Weng, G.J.: A micromechanics-based thermodynamic model for the domain switch in

ferroelectric crystals. Acta Mater. 52, 2489–2496 (2004)

[12] Su, Y., Weng, G.J.: The shift of Curie temperature and evolution of ferroelectric domain in

ferroelectric crystals. J. Mech. Phys. Solids 53, 2071–2099 (2005)

[13] Su, Y., Weng, G.J.: A self-consistent polycrystal model for the spontaneous polarization of

ferroelectric ceramics. Proc. R. Soc. Lond. A 462, 1763–1789 (2006)

[14] Srivastava, N., Weng, G.J.: A dual-phase homogenization theory for the hysteresis and butterfly-shaped

behavior of ferroelectric single crystals. Mech. Mater. 38, 945–957 (2006)

[15] Srivastava, N., Weng, G.J.: A theory of double hysteresis for ferroelectric crystals. J. Appl. Phys. 99,

1–11 (2006)

[16] Su, Y., Weng, G.J.: A polycrystal hysteresis model for ferroelectric ceramics. Proc. R. Soc. Lond. A

462, 1573–1592 (2006)

[17] Chan, K., Hagood, N.: Modeling of nonlinear piezoceramics for structural actuation. In: Proceedings

of SPIE Symposium on Smart Structures and Materials, vol. 2190, pp. 194–205 (1994)

[18] Steinkopff, T.: Finite-element modeling of ferroelectric domain switching in piezoelectric ceramics.

J. Eur. Ceram. Soc. 19, 1247–1249 (1999)

[19] Hwang, S.C., Huber, J.E., McMeeking, R.M., Fleck, N.A.: The simulation of switching in

polycrystalline ferroelectric ceramics. J. Appl. Phys. 84, 1530–1540 (1998)

[20] Zhang, Z.K., Fang, D.N., Soh, A.K.: A new criterion for domain-switching in ferroelectric materials.

Mech. Mater. 38, 25–32 (2006)

[21] Shaikh, M.G., Phanish, S., Sivakumar, S.M.: Domain switching criteria for ferroelectrics. Comput.

Mater. Sci. 37, 178–186 (2006)

[22] Chen, X., Fang, D.N., Hwang, K.C.: Micromechanics simulation of ferroelectric polarization

switching. Acta Mater. 45, 3181–3189 (1997)

[23] Lu, W., Fang, D.N., Hwang, K.C.: Micromechanics of ferroelectric domain switching behavior. Part I:

Coupled electromechanical field of domain inclusions. Theor. Appl. Fract. Mech. 37, 29–38 (2001)

[24] Lu, W., Fang, D.N., Hwang, K.C.: Micromechanics of ferroelectric domain switching behavior. Part

II: Constitutive relations and hysteresis. Theor. Appl. Fract. Mech. 37, 39–47 (2001)

[25] Huber, J.E.: Micromechanical modeling of ferroelectrics. Curr. Opin. Solid State Mater. Sci. 9,

100–106 (2005)

[26] Chen, P.J., Peercy, P.S.: One dimensional dynamic electromechanical constitutive relations of

ferroelectric materials. Acta Mech. 31, 231–241 (1979)

[27] Chen, P.J., Madsen, M.M.: One dimensional polar response of the electrooptic PLZT 7/65/35 due to

domain switching. Acta Mech. 41, 255–264 (1981)

[28] Chen, P.J., Mongomery, S.T.: A macroscopic theory for the existence of the hysteresis and butterfly

loops in ferroelectricity. Ferroelectrics 23, 199–208 (1980)

[29] Chen, P.J., Tucker, T.J.: Determination of the polar equilibrium properties of the ferroelectric ceramic

PZT 65/35. Acta Mech. 38, 209–218 (1981)

[30] Bassiouny, A.F., Ghaleb, G., Maugin, G.: Thermodynamical formulation for coupled electromechan-

ical hysteresis effects – I Basic equations. Int. J. Engng. Sci. 26, 1279–1295 (1988)

[31] Bassiouny, A.F., Ghaleb, G., Maugin, G.: Thermodynamical formulation for coupled electromechan-

ical hysteresis effects – II Poling of ceramics. Int. J. Engng. Sci. 26, 1297–1306 (1988)

[32] Kamlah, M., Tsakmakis, C.: Phenomenological modeling of the non-linear electromechanical coupling

in ferroelectrics. Int. J. Solids Struct. 36, 669–695 (1999)
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