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Abstract
The transitions between the different contact models which include the Hertz, Bradley, Johnson–Kendall–
Roberts (JKR), Derjaguin–Muller–Toporov (DMT) and Maugis–Dugdale (MD) models are revealed by
analyzing their contact pressure profiles and surface interactions. Inside the contact area, surface interac-
tion/adhesion induces tensile contact pressure around the contact edge. Outside the contact area, whether
or not to consider the surface interaction has a significant influence on the contact system equilibrium. The
difference in contact pressure due to the surface interaction inside the contact area and the equilibrium influ-
enced by the surface interaction outside the contact area are physically responsible for the different results
of the different models. A systematic study on the transitions between different models is shown by analyz-
ing the contact pressure profiles and the surface interactions both inside and outside the contact area. The
definitions of contact radius and the flatness of contact surfaces are also discussed.
 Koninklijke Brill NV, Leiden, 2008
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Nomenclature

a, r contact radius and polar coordinate, respectively,
D separation gap between two spheres,
E1, E2 Young’s moduli of two spheres,
ν1, ν2 Poisson ratios of two spheres,

E effective Young’s modulus and 1
E

= 1−ν2
1

E1
+ 1−ν2

2
E2

,
FvdW van der Waals force outside the contact area,
h, h0 the JKR model neck height and the height of cohesive zone, respectively,
pd Dugdale tensile stress,
p0, p′

0 compressive and tensile contact pressures at the center, respectively,
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700 Y. Zhang / Journal of Adhesion Science and Technology 22 (2008) 699–715

p contact pressure profile, and p(r) = p0(1 − r2/a2)1/2 +
p′

0(1 − r2/a2)−1/2 in the JKR model,
P external loading force,
−Pc, ac pull-off force and radius of the JKR model, respectively,
F , A, B dimensionless quantities defined as F = P

Pc
, A = a

ac
and

B = r
ac

,
R1, R2 radii of two spheres,
R = R1R2/(R1 + R2),
u1, u2 elastic deformations of two contacting bodies,
uB, uH elastic deformations due to the Boussinesq pressure and

the Hertz pressure, respectively,
W = W(D) surface interaction energy of two spheres with a separa-

tion gap of D,
z0, −σ0 equilibrium separation of atoms and theoretical stress of

the material, respectively,
δ mutual approach of two spheres,
γ surface energy per unit area of a surface,
κ dimensionless parameter defined as κ = W(D)/(2γ ),
µ, λ Tabor number and elastic parameter, respectively, µ =

[Rγ 2/(E2z3
0)]1/3 and λ = 1.16µ.

1. Introduction

Hertz [1] and Boussinesq [2] independently worked out the famous contact theory
known as the Hertzian theory [3]. The Hertzian theory does not incorporate the sur-
face interaction known as the adhesion effect. The pull-off force in the Hertz model
is zero. If considering the surface interaction, Bradley [4] found that the amount
of external force required to pull off two rigid spheres was −4πγR (in this paper,
negative value of force/pressure indicates tensile force/pressure and positive value
denotes compressive ones). Derjaguin [5] gave a more general calculation form for
the pull-off force of two spheres separated with a varying distance D by using an
approximation known as the Derjaguin approximation [6]. The Derjaguin pull-off
force is −2πRW(D) and W(z0) = 2γ . Therefore, Derjaguin’s pull-off force corre-
sponds to Bradley’s [4]. Johnson, Kendall and Roberts [7] developed their famous
adhesion contact model known as the JKR model. By assuming a different contact
pressure profile from the Hertzian and accounting for the contribution of surface en-
ergy to the total energy of the system, the following JKR equation is obtained [7, 8](

P − 4Ea3

3R

)2

= 16πγEa3. (1)

It is noticed that γ defined in the paper [7] and the book [8] has the difference of
a factor of 2. γ defined in [7] is the surface energy per unit area of the two contacting
surfaces; γ defined in [8] is the surface energy per unit area of a contacting surface.
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Figure 1. The P –a curves predicted by different contact models.

γ in this paper adopts the definition of the book [8]. If γ in equation (1) is set
to be zero, the Hertz equation (P = 4Ea3/3R) is obtained. The JKR model of
equation (1) predicts a larger contact radius/area than that by the Hertzian model
(see Fig. 1) under the same load P because of the adhesion effect. Derjaguin, Muller
and Toporov [9] developed a model known as the DMT model. Heated debates
on the JKR and DMT models were exchanged for years in the Journal of Colloid
and Interface Science [10–13]. The P –a curves from different contact models are
presented in Fig. 1. Besides the difference in the P –a curves, a significant (physical)
difference of the JKR model from the Hertz and DMT models is that the Hertz and
DMT models predict that the two contacting elastic bodies follow a continuous and
stable path until the separation at a = 0; the JKR model predicts that at an unstable
point with −Pc = −3πγR and ac = (9πγR2/4E)1/3, the two elastic bodies will
have a sudden jumping separation [7, 8].

Maugis [3] used Dugdale’s approximation [14] for the Lennard-Jones potential
and a fracture mechanics approach to develop a model known as the Maugis–
Dugdale (MD) model. The MD model introduces a dimensionless transition number
called elastic parameter (λ) to show the transition between the DMT and JKR mod-
els. The elastic parameter is related to the Tabor number as λ = 1.16µ [15, 16].
Maugis [3] shows that as λ → 0, the MD model approaches the DMT model and
as λ → +∞, the MD model approaches the JKR model. Johnson and Green-
wood [16] constructed their famous ‘adhesion map’ using two-dimensionless pa-
rameters P̄ = P/(2πγR) and λ (or µ) as the coordinates. The demarcations of the
different models in the adhesion map are the curves of two ratios, i.e., the ratio
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702 Y. Zhang / Journal of Adhesion Science and Technology 22 (2008) 699–715

of the adhesion force to the total force P and the ratio of σa/h0 (σa is the elastic
deformation due to adhesion forces and h0 = 0.97z0) [16].

Realizing the difference in different contact models, Maugis [3], Johnson and
Greenwood [16], Kim et al. [17] used different approaches to analyze and show the
transitions of some of the above models. Here we present a more comprehensive
transition study by analyzing the contact pressure profiles and the surface interac-
tions both inside and outside the contact area, which affect the contact pressure as
well as equilibrium. The assumptions of some contact models are also analyzed
and by analyzing them, the applicability range of different contact models is also
evaluated. Through the analysis of the contact pressure profiles and surface inter-
actions, the transitions of different contact models are systematically demonstrated.
As shown later in this paper, the contact area of the Hertz and JKR models is proved
to be flat. This flatness of contact area is an important assumption in the ‘hard’ con-
tact models, which is also the main reason causing the difference between the ‘hard’
and ‘soft’ contact models. We also find that in different contact models, the physical
meanings/definitions of contact radius are different. Therefore, besides the physi-
cal reasons (i.e., the contact pressure profiles and surface interactions), the different
definitions of contact radius also contribute to the differences of different contact
models. Unlike the adhesion map of Johnson and Greenwood [16] which uses the
two ratios mentioned above to demarcate the applicability zones of the different
contact models, this paper offers a direct approach to illustrate both mathematically
and physically how exactly these different contact models transit to one another.

2. Surface Interactions Inside the Contact Area: Contact Pressure Analysis

2.1. Transition Between the JKR and Hertz Models

The contact pressure profile in the JKR model is assumed to have the following
form

p(r) = p0(1 − r2/a2)1/2 + p′
0(1 − r2/a2)−1/2, (2)

where p0 is the positive compressive pressure and p0(1 − r2/a2)1/2 is often called
the Hertz pressure [8]. Singularity in p(r) at r = a is noticed. Finding p0 is a
Boussinesq problem and the detailed procedure can be found in Johnson’s book [8].
p0 has the following form

p0 = 2Ea

πR
. (3)

To find the negative tensile pressure p′
0, Griffith’s concept of energy release rate [18]

in fracture mechanics needs to be introduced here. The energy release rate is defined
as G = ∂UE/∂S, which has the unit of N/m. UE is elastic energy and S is crack area.
Griffith’s criterion for rupture is defined as follows: if G > Gc, rupture is developed
(in this particular contact problem, rupture means that the contact radius shrinks);
if G < Gc, no rupture occurs and G = Gc is the critical state. Gc here is a critical
value and for brittle materials like glass, Griffith shows Gc = 2γ .
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The elastic energy due to deformation is given as [8]

UE = π2a3

E

(
2

15
p2

0 + 2

3
p0p

′
0 + p′2

0

)
. (4)

And p0 and p′
0 also have the following relation [8]

δ = πa

2E
(p0 + p′

0). (5)

From equations (3) and (5), p′
0 is found to be

p′
0 = E

π

(
δ

a
− a

R

)
. (6)

Substituting equations (3) and (6) into equation (4), the elastic energy UE now is

UE = E

(
a5

5R2
− 2

3

δa3

R
+ aδ2

)
. (7)

For a fixed δ, ∂UE/∂a becomes

∂UE

∂a
= Ea2

(
a

R
− δ

a

)2

= π2a2

E
p′2

0 . (8)

The surface energy of contact area defined by the JKR model [7, 8] is US =
−2γπa2. For equilibrium, ∂(UE + US)/∂a vanishes, leading to

π2a2

E
p′2

0 = −∂US

∂a
= 4πγ a, (9)

i.e.,

p′
0 = −

√
4Eγ

πa
. (10)

The minus sign is chosen to let p′
0 be tensile. Clearly the tensile contact pressure

p′
0 is directly determined by the surface interaction inside the contact area.
The following amount of external loading force P is required to balance the force

due to elastic deformation

P =
∫ a

0
2πrp(r)dr =

(
2

3
p0 + 2p′

0

)
πa2. (11)

Equation (11) is the equation of equilibrium and it does not consider the surface
interaction outside the contact area, which as analyzed later can be problematic
in the DMT contact scenario. From equations (3), (10) and (11), the JKR P –a

relation of equation (1) is obtained. The following two-dimensionless quantities are
introduced

F = P

Pc
, A = a

ac
, (12)
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where Pc = 3πγR and ac = (9πγR2/4E)1/3. −Pc and ac are the pull-off force
and radius, respectively, in the JKR model when the external loading force P is the
control parameter [8]. The dimensionless form of equation (1) now is as follows

(F − A3)2 = 4A3. (13)

Where p′
0 is zero in the Hertz model. Correspondingly, equation (11) becomes P =

2
3p0πa2 and equation (13) becomes F = A3.

2.2. Characteristics of Contact Pressure Profiles in the Hertz, JKR and MD
Models

With the substitution of p0 = 2Ea/(πR) and p′
0 = −√

4Eγ/(πa) in the JKR
model into equation (2), the dimensionless contact pressure profile is obtained as
follows

σ(B) = A

(
1 − B2

A2

)1/2

− 2

3
A−1/2

(
1 − B2

A2

)−1/2

. (14)

Where σ(B) = p/[18E2γ /(π2R)]1/3 and B = r/ac. The first part A(1 − B2

A2 )1/2

in the above equation is the Hertz pressure. Figure 2 compares the Hertz and JKR
contact pressure profiles when the contact radius is small and large. Clearly when
the contact radius is small, their difference is very significant. The difference di-

Figure 2. (a) The JKR and Hertz contact pressure profiles when A is small (A = 0.78). (b) The JKR
and Hertz contact pressure profiles when A is large (A = 4).
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minishes with the increase of the contact radius. Here it is of an interest to discuss
the disappearance of the tensile contact pressure in the JKR model.

r0 is introduced and defined as p(r0) = 0. Physically, r0 is the demarcation point
of the tensile and compressive pressure zones. From equation (2), r0 is found to be

r0 = a

√
1 + p′

0/p0, (15)

p(r) is compressive when 0 � r < r0 and p(r) is tensile when a � r > r0. For the
JKR model, substituting p0 = 2Ea/(πR) and p′

0 = −√
4Eγ/(πa) in equation (15)

and non-dimensionalizing it, the following dimensionless form of equation (15) is
obtained

R0 = A

√
1 − 2

3
A−3/2. (16)

Where R0 = r0/ac. For R0 to be real, the quantity inside the square root must be
non-negative; therefore,

A � (3/2)−2/3. (17)

We define Amin = (3/2)−2/3 ≈ 0.763. Because the tensile contact pressure zone is
a � r > r0 (or A � B > R0) and R0 does not exist in real domain when A < Amin,
we can only conclude that there is no tensile contact pressure zone in the contact
area when A < Amin. So the JKR model itself predicts that when the contact ra-
dius reaches a critical value, there will be no tensile contact pressure zone. This
was discussed by Muller, Yushchenko and Derjaguin [19] as a possibility without a
detailed discussion.

Now let us examine how the JKR and DMT P –a curves are related by this dis-
appearance of tensile contact pressure. In Fig. 1 there is an intersection point in the
JKR and DMT P –a curves. Figure 3 plots the dimensionless F –A curves and the
points in Fig. 3 are indicated by their corresponding F and A. For example, point
S1 = S1(−1,1) is the critical point at which the JKR model loses the stability when
P (F ) is the control parameter. As mentioned before when the instability occurs,
the contacting bodies will experience a displacement jump to separate from each
other. At A = Amin = 0.763, the corresponding F predicted by the JKR model is
−0.89. It is also interesting to notice that U1(−0.89,0.763) is the intersection point
in the JKR and DMT F –A curves. As shown later there is no tensile contact pres-
sure in the DMT model because it assumes the Hertzian contact pressure. It should
also be pointed out that the JKR curve plotted in Fig. 3 is based on equation (13)
and as analyzed above the 4A3 term is due to the tensile contact pressure. In Fig. 3,
A continuously reduces to zero, so does 4A3. But we also show that the tensile con-
tact pressure cannot exist when A < Amin. Therefore, there is some inconsistency
here. For the JKR model the stability is lost at S1 = S1(−1,1) when P is the con-
trol parameter, and the disappearance of tensile contact pressure does not have any
influence because Amin is smaller than unity, so equation (13) is valid. However, it
should be kept in mind that when δ is the control parameter, the JKR model loses
stability at U2(−5/9,0.481) [3, 8], which has a smaller contact radius than Amin.
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706 Y. Zhang / Journal of Adhesion Science and Technology 22 (2008) 699–715

Figure 3. The F –A curves of the JKR and DMT models. The JKR curve loses stability at S1(−1,1)

when external loading force P (F ) is the control parameter. U1(−0.89,0.763) is the point below
which in the JKR model the tensile contact pressure can no longer exist and it is also the intersection
of the JKR and DMT curves. U2(−5/9,0.481) is the instability point when δ is the control parameter.

The JKR contact pressure profile is derived from the Boussinesq solution of an
elastic half-space, which goes to infinity at the contact edge. In the MD model there
is an area called cohesive zone, in which the contact pressure is the theoretical stress
of the material. Originally, the stress used by Dugdale in the cohesive zone was the
yield stress [14]. Figure 4 gives schematic definition of the theoretical stress of the
material (−σ0), the cohesive zone and the MD contact pressure profiles. In Fig. 4(a),
−σ0 is the theoretical stress of the material, which is also the maximum value of
the attractive force [20]. The cohesive zone is defined as z0 � z � z0 + h0. Because
σ0h0 = γ [16] and σ0 = 1.03γ /z0 [3, 20], h0 = 0.97z0. The contact pressure in the
MD model is as follows

p(r) = p0(1 − r2/a2)1/2 + pd(r). (18)

The first term is still the Hertzian pressure. pd is the tensile Dugdale stress defined
as follows [16]

pd(r) =

−σ0

π
cos−1

(
2a2 − c2 − r2

c2 − r2

)
, r � a,

−σ0, a � r � c.

(19)

In the annulus a � r � c of Fig. 4(b), the surfaces of two contacting bodies separate
gradually from z0 to z0 + h0, which is the cohesive zone. Obviously, the pressure
profile from the Dugdale approximation is different from that of the JKR model.
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Figure 4. (a) The surface force due to Lennard-Jones potential versus distance z and the definitions of
σ0 and h0. (b) Contact pressure in the MD model as a function of r .

However, a systematic numerical study by Barthel [21] shows that the solution is
insensitive to the nature of surface interaction and the MD model with Dugdale
approximation for surface interaction is acceptable for most contact problems.

One issue about the JKR model is that the pull-off force of −3πγR predicted by
the JKR model is independent of the Young’s moduli of elastic spheres as compared
to −4πγR in the Bradley model for rigid spheres. As the JKR model applies to
large compliant spheres (i.e., large λ or µ) [16], this pull-off force independence on
Young’s moduli is ‘puzzling’ and ‘irreconcilable’ with the Bradley model of rigid
spheres [3]. This puzzle is solved by Maugis [3]. As λ varies from 0 to +∞, the
pull-off force in the MD model varies from −3πγR in the JKR model to −4πγR

in the DMT model. The pull-off force in the MD model is the function of λ and
λ = 1.16µ = 1.16× (γ 2R/E2z3

0)
1/3. Therefore, the MD pull-off force is dependent

on the Young’s moduli of deformable spheres. The MD pull-off force is bounded
between −4πγR and −3πγR and it monotonously decreases (tensile force in-
creases) as λ (or µ) decreases.

2.3. Flatness of Contact Area

It should be noted that during the above derivation, the surface energy of contact
area, US = −2γπa2, was used. Again, it is emphasized that γ is defined as the sur-
face energy per unit area of a surface [6]. So it is not difficult to conclude from this
surface energy expression that the contact area of πa2 is flat. Also, this contact area
of πa2 is a geometric area and the roughness effect is not considered here. To have
the adhesion contact area equal to the geometric area, the surfaces of both contact-
ing bodies must be ‘molecularly smooth’ [22]. In reality, the adhesion contact area
is not equal to the geometric area because of roughness. Recently, the breakdown
of continuum model for mechanical contact on a nanometer scale due to the effect
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of roughness was discussed [23]. This flatness property of contact area for sure has
an influence on the P –a curves. Before discussing it, an elasticity proof for that the
contact area of the Hertz and JKR models is flat is first presented.

The gap (D(r)) between two contacting bodies is expressed as [15, 19, 24, 25]

D(r) = −δ + z0 + r2

2R
+ u(r), (20)

where z0 arises in equation (20) when the surface force is due to the Lennard-
Jones (L-J) potential. When the surface force is due to the L-J potential, the two
‘contacting’ bodies must separate with a certain distance because the surface force
induced by the L-J potential becomes singular when the separation is zero. In the
JKR model and the ‘soft’ contact model of Hughes and White [26], there is no
such interatomic separation z0 term. Here u(r) = u1(r) + u2(r) and u1(r), u2(r)

are the elastic deformations inside the contact area of two contacting bodies. In
the JKR model, u(r) is the elastic deformation due to the contact pressure p(r).
In the numerical computation which assumes no contact pressure profile, u(r) is
induced by the surface force due to the L-J potential [15, 19, 24, 25]. As indicated
in equation (2), p(r) consists of two terms: the Hertzian pressure p0(1− r2/a2)1/2;
and p′

0(1 − r2/a2)−1/2, which is often referred to as the Boussinesq pressure [19].

The elastic deformation due to the Hertzian pressure is uH(r) = δ − r2

2R
[8] and the

elastic deformation due to the Boussinesq pressure is a constant uB(r) = D0 (D0
is a constant) [8, 19]. As linear elasticity applies, u(r) is obtained by superposing
uH and uB as follows

u(r) = uH + uB = δ − r2

2R
+ D0. (21)

By substituting equation (21) into equation (20) and δ, r2/(2R) terms are can-
celed out. The gap distance in the contact area is then derived as a constant
D(r) = z0 + D0, which physically means the flatness of contact area. So it is the
JKR contact pressure p(r) of equation (2) which results in the flatness of contact
area. As the Boussinesq pressure contributes only a constant elastic deformation
(uB(r) = D0), the contact area due to the Hertz pressure is also flat.

If the surface interaction inside the contact area is treated as the (vdW) force due
to L-J potential and when r < r0, as shown in Fig. 5 the separation of two surfaces
is less than z0 and the repulsive vdW force pushes the elastic bodies, so the contact
pressure is compressive. When r0 � r � a, the separation is larger than z0, the at-
tractive vdW force pulls the elastic bodies and the contact pressure becomes tensile.
The schematic of Fig. 5 was originally given by Tabor [22]. From this viewpoint of
vdW force, the contact surface of the JKR model cannot be exactly flat because it is
the curviness of the contact surface causing the compressive–tensile contact pres-
sure profile in the JKR model, which is also reflected in Fig. 4(a). In general z0 is
very small compared with a and the flatness is thus a good approximation, except
for few contact scenarios as analyzed below. As shown in the numerical results of
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Figure 5. The JKR contact pressure and contact surface profiles.

Figure 6. The contact scenarios of the DMT (a) and JKR models (b).

Feng [24, 25], for very small Tabor number cases (see Fig. 5(a) in reference [24]
and Fig. 6(a) in reference [25] or relatively large negative δ case with relatively
large Tabor number (µ = 3) (see Fig. 8(a) in reference [24]), the contact area is ob-
viously not flat, though the deviation from the flatness around the contact edges is
relatively small. Similar numerical results are also shown by Attard and Parker [27]
that the flatness is a good approximation for the contact profile due to the surface
force of the L-J potential though a closer look reveals that it is not exactly flat (see
Fig. 6(a) and 6(b)). It is also noticed that as shown by Attard and Parker [27], the
surface profile just before ‘jumping on’ to contact is very curvy and the contact sur-
face profile due to exponentially decaying repulsive surface force (not the L-J type
surface force) is also very curvy. For the Bradley model of rigid spheres, the flatness
of contact area is not permitted [17]. In equation (20) the parabolic term of r2/2R is
used to approximate the (undeformed) sphere profile. Without this approximation,
the result D(r) = z0 + D0 cannot be obtained. Maugis [28] uses the exact profile
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of sphere rather than the parabolic approximation to derive the contact of elastic
spheres and significant solution deviation from that of the JKR model for certain
scenarios is shown. However, for the Hertz model or the JKR model to apply, the
following conditions must be satisfied: the dimension of contact area must be small
compared (a) with the dimensions of each contacting body and (b) with the relative
radii of curvatures of the surfaces [8]. Only when these two conditions are satisfied,
linear elasticity (linear elastic fracture mechanics) and half-space solution used in
the derivation of the Hertz and JKR models can be applied. The two (constraint)
conditions above guarantee the accuracy of the parabolic approximation.

Hughes and White [26] developed the model for the ‘soft’ contact. The word
‘soft’ is used to differentiate it from the ‘hard’ contact model. In the ‘soft’ con-
tact theory, the key concept of perfect flatness over a well-defined contact area
in the ‘hard’ contact theories is replaced by the physically consistent surface
force [26]. This ‘soft’ contact approach was later used by Argento et al. [29],
Attard and Parker [27], Feng [24, 25], Greenwood [15], Muller, Yushchenko, Der-
jaguin [19, 30] and Wu [31]. When extending the JKR model or the Hertz model
to the problem of an elastic sphere indenting a cavity [32] or the contact problem
of a soft body with a hard body, the effect of curved contact surface should be con-
sidered. As shown in both the experiment and analysis of Goodman and Keer [32],
their contact radius is significantly smaller than that predicted by the Hertz model.
Also shown in the experiments involving a highly compliant substrate in contact
with rigid particles by Rimai et al. [33], their measured contact radius data deviate
significantly from those predicted by the JKR model. Here it needs to be empha-
sized that the JKR model was established for two similar homogeneous solids in
contact [34], not for the rigid-soft contact scenario.

3. Surface Interaction Outside the Contact Area: Equilibrium Analysis

3.1. Transitions Between the Hertz, JKR, MD, DMT and Bradley Models

Equation (11) is the key to understand the transitions between the Hertz, JKR, MD,
DMT and Bradley models. It should also be pointed out that there are two contact
scenarios as shown in Fig. 6. For the DMT contact scenario in Fig. 6, the surface
interaction outside the contact area is significant. Therefore, the DMT model con-
siders the influence of surface interaction (vdW force) due to the Lennard-Jones
potential outside the contact area. While, the JKR model assumes that there is a
‘neck’ formation around the contact zone (see Fig. 6). If the neck height h is large
compared with z0, the surface interaction outside the contact area can be ignored be-
cause the Lennard-Jones potential induced surface interaction decays rapidly with
the increase of the separation distance [6, 15, 19]. The ‘neck’ height is the key
to differentiate the DMT and JKR models. Tabor [22] introduced a dimensionless
number µ now known as the Tabor number for this differentiation. Physically, the
Tabor number is the ratio of (the order of ) neck height to z0. For a large Tabor num-
ber, the materials outside the contact area are well separated; therefore, the surface

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

M
ec

ha
ni

cs
] 

at
 0

2:
37

 3
1 

O
ct

ob
er

 2
01

3 



Y. Zhang / Journal of Adhesion Science and Technology 22 (2008) 699–715 711

interaction is very small and can be ignored, which is the JKR contact scenario. For
a small Tabor number, the surface interaction outside the contact area is significant;
therefore, it corresponds to the DMT contact scenario. The DMT model uses the
Hertzian contact pressure profile, which in essence as pointed by Tabor [22] has the
main drawback of neglecting the deformation due to the surface interaction close to
the contact edge. This surface interaction around the contact edges is also responsi-
ble for the tensile contact pressure and the singularity in the JKR contact pressure at
the edges [7, 8]. Tabor [22] argues that for the DMT model to consider the surface
interaction outside the contact zone, the large attractive forces around the contact
edge will pull some extra regions into contact (this is also why in Fig. 1 the JKR
contact radius is always larger than DMT’s before the jumping separation) and form
a ‘neck’. Otherwise, more and more regions will be pulled into contact without an
arrest mechanism. As seen in the JKR contact scenario of Fig. 6, the ‘neck’ forma-
tion separates the edges of contacting bodies, which reduces the surface interaction
outside the contact area. Therefore, the ‘neck’ formation is an arrest mechanism to
prevent more regions around edges to be pulled into contact by the large attractive
forces of surface interaction. Tabor’s experimental observation also supports the
neck-forming JKR contact scenario. The Tabor number plays an important role in
differentiating different models and defining their application ranges [16].

Equation (11) is an equilibrium equation, which indicates that the external force
is equal to the internal force. Here it is emphasized that P is defined as the exter-
nal loading force. P is the control parameter. While, the external load should also
include the force FvdW due to the interaction between two surfaces outside the con-
tact area as shown in Fig. 6. FvdW is not the control parameter. The internal force∫ a

0 2πrp(r)dr is due to the elastic deformation. The surface interaction inside the
contact area is accounted as the internal force and it determines p′

0 as shown in
equation (10). Equation (11) now should be rewritten as follows

Pexternal = P + FvdW =
(

2

3
p0 + 2p′

0

)
πa2. (22)

For the expression for FvdW, there are several approximations [5, 15, 19, 30].
A more general and precise way of numerically calculating FvdW is given by Ar-
gento et al. [29]. Here the Derjaguin approximation [5, 6] is used, which states

FvdW = 2πRW(D). (23)

Where W(D) is the interaction energy of two spheres with a separation gap
of D [6]. W(D) for different geometries is given in Israelachvili’s book [6] and
W(z0) = 2γ for two spheres.

For the Bradley model, p0 and p′
0 are zero because of no elastic deformation

of rigid spheres. From equations (22) and (23) and at D = z0, the Bradley pull-
off force is P = −FvdW = −4πRγ . For varying D, P = −FvdW = −2πRW(D),
which is often referred to as the Bradley model though Bradley [4] actually only
calculated D = z0 case and it was Derjaguin [5] who calculated the varying D

case [15]. For the Hertz model, it is purely an elastic deformation problem and
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there is no adhesion effect. Therefore, FvdW is zero and adhesion-induced p′
0 is

also zero. Equation (22) now becomes P = (2/3)πp0a
2 and with p0 definition of

equation (3), the Hertz P –a relation of P = 4Ea3/(3R) is derived. For the DMT
model, FvdW = 4πRγ . The DMT model also assumes Hertzian contact pressure
profile, so p′

0 = 0. Therefore, from equations (22), (23) and (3), the DMT P –a

relation is derived as P = −4πRγ + 4Ea3/(3R). Compared with the Hertz P –a

curve, the DMT P –a curve is simply a 4πRγ shift from Hertzian. This fact was first
recognized by Maugis [3]. For the JKR model, FvdW = 0. By using the definitions
of p0 in equation (3) and p′

0 in equation (10), the JKR P –a curve of equation (1)
is also derived from equation (22). As shown by Maugis [3] and also in Fig. 1, for
the MD model, −4πRγ � F MD

vdW � 0, which in essence modifies the Derjaguin ap-
proximation for the surface/vdW force outside the contact area. Here we also need
to point out the following facts that to use −4πRγ in the DMT model to account
for the surface/vdW force outside the contact area is problematic when the contact
radius a is relatively large. This Derjaguin approximation of −4πRγ is for the sur-
face attraction of two spheres separated with a distance of z0 and curvy spheroid
surface profiles. However, the DMT model assumes Hertzian contact pressure and
the contact area is thus flat as analyzed above. So here the flatness of contact area
due to the Hertzian contact pressure and the Derjaguin approximation of assuming
curvy spheroid surfaces is inconsistent. When a is relatively large, the flat contact
area due to the Hertzian pressure is also relatively large, which makes the Derjaguin
approximation inaccurate. Therefore, in the DMT model the Derjaguin approxima-
tion which is independent of contact radius a is not a good approximation when a is
relatively large.

Equation (22) is non-dimensionalized as follows using equations (3) and (10)

(F − A3)2 = 4A3 + 16

3
κ + 16

9
κ2. (24)

The dimensionless number κ is defined as κ = W(D)/(2γ ). When κ = 0 equa-
tion (24) recovers the JKR model of equation (13). In equation (24), 4A3 + 16

3 κ

is due to the Boussinesq pressure p′
0. If only the Hertzian contact pressure exists,

equation (24) becomes:

F = A3 − 4

3
κ. (25)

Equation (25) is the Hertz model when κ = 0 and the DMT model when κ = 1.
In the DMT contact scenario, κ = 1 when the Derjaguin approximation is applied;
at the same time µ is also very small because of the no/small ‘neck’ formation.
In the JKR contact scenario, κ = 0 because the ‘neck’ height is very large com-
pared with z0 and the surface interaction outside the contact area can thus be
ignored; µ approaches infinity due to the same reason, i.e., the ‘neck’ height is
very large compared with z0. The Tabor number µ is the ratio of neck height to
the inter-atomic equilibrium separation z0. A larger Tabor number means a larger
neck height (z0 is fixed), which results in larger gap distance and thus in smaller
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FvdW and W(D). Therefore, κ and µ are related as κ ∝ µ−n (n is a positive num-
ber depending on the geometries and force due to the Lennard-Jones potential of
two contacting elastic bodies).

3.2. Discussion on the Definitions of Contact Radius

It is noticed that when the Derjaguin approximation is considered, FvdW is inde-
pendent of a. In the Bradley model of P = −2πRW(D), contact radius a does
not appear. The rigid spheres of the Bradley model are not allowed to deform and
the two spheres are explicitly separated with a distance of D. Therefore, a natural
question arises: what is the contact radius/area in the Bradley model? For those car-
rying out numerical computation on the contact of elastically deformable spheres
under the L-J potential influence, they also face the problem and difficulty of defin-
ing contact radius [15, 25, 27]. If the flattened area is defined as the contact area
(then the spheres in the Bradley model are not in ‘contact’), as argued by Attard
and Parker [27], there is actually no exactly flat area in the ‘contact area’ if a closer
look is taken. Attard and Parker’s attitude on the definition of contact area is a little
bit radical as reflected in their statement that “any definition of the contact radius
is somewhat arbitrary” [27]. Greenwood [15] proposed that the edge of the con-
tact area is the point where the tensile pressure reaches the maximum. However,
Feng [25] argues that Greenwood’s definition is not consistent with that of tradi-
tional contact mechanics where the contact area is usually taken as the area with
compressive pressure. Feng’s conclusion is that any rigorous definition of ‘con-
tact area’ can be disputable when considering the L-J potential influence [25]. So,
instead of arguing the definition of contact area, Greenwood [15], Feng [24, 25],
and Attard and Parker [27] plotted P –δ curves instead of P –a curves. Although
experimentally measuring the normal displacement δ is much easier than measur-
ing the contact radius a [35], the P –a curves are presented in many theoretical
analyses [1, 3, 7–9, 32] and experiments [7, 32, 33, 36, 37]. This paper adopts
the P –a curves for comparison reasons. The conversion of P –a curves into P –δ

curves is available in Maugis’ paper [3]. For the Hertz model with the contact
pressure of p0(1 − r2/a2)1/2, the contact radius is the point (r = a) where the
(compressive) pressure disappears; for the JKR model with the contact pressure of
p0(1 − r2/a2)1/2 + p′

0(1 − r2/a2)−1/2, the contact radius is the point where the
(tensile) pressure becomes singular. Therefore, as pointed out by Feng [25], these
two definitions of contact radius are different, which also contributes to the differ-
ence in the JKR and Hertz models besides the physical reasons (the contact pressure
profiles and the surface interaction). For the MD model with the contact pressure
of p0(1 − r2/a2)1/2 + pd(r), the contact radius is defined as the one at which the
separation distance of two contacting surfaces reaches z0 + h0.

4. Conclusion

Surface interactions both inside and outside the contact area are the key to under-
stand the transitions between the different models. The surface interaction inside
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the contact area together with the elastic deformation determines the contact pres-
sure profiles and different contact models assume/have different pressure profiles.
The surface interaction outside the contact area together with the external mechan-
ical loading determines the total external load, which, in turn, affects the system
equilibrium. The ‘neck’ formation and different approximations for the surface in-
teraction outside the contact area result in different expressions for the equation of
equilibrium. Different models have different contact pressure profiles and as a re-
sult their definitions of the contact radius have different physical meanings. The
definition difference together with the modeling differences on how to evaluate the
surface interactions inside and outside the contact area contributes to the difference
in P –a curves obtained by different contact models. Because some of contact pres-
sure profiles mathematically lead to the conclusion of flat contact area, one should
be cautious in the application of certain contact models for those scenarios that may
have curvy contacting surfaces.
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