
Available online at www.sciencedirect.com
www.elsevier.com/locate/compfluid

Computers & Fluids 37 (2008) 993–1010
A pressure-correction method and its applications
on an unstructured Chimera grid

Xing Zhang *, Saizhen Ni, Guowei He

The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, PR China

Received 19 January 2007; received in revised form 16 May 2007; accepted 25 July 2007
Available online 1 November 2007
Abstract

In this paper, an unstructured Chimera mesh method is used to compute incompressible flow around a rotating body. To implement
the pressure correction algorithm on unstructured overlapping sub-grids, a novel interpolation scheme for pressure correction is pro-
posed. This indirect interpolation scheme can ensure a tight coupling of pressure between sub-domains. A moving-mesh finite volume
approach is used to treat the rotating sub-domain and the governing equations are formulated in an inertial reference frame. Since
the mesh that surrounds the rotating body undergoes only solid body rotation and the background mesh remains stationary, no mesh
deformation is encountered in the computation. As a benefit from the utilization of an inertial frame, tensorial transformation for veloc-
ity is not needed. Three numerical simulations are successfully performed. They include flow over a fixed circular cylinder, flow over a
rotating circular cylinder and flow over a rotating elliptic cylinder. These numerical examples demonstrate the capability of the current
scheme in handling moving boundaries. The numerical results are in good agreement with experimental and computational data in
literature.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Flow around moving boundaries is ubiquitous in engi-
neering applications, such as rotating machinery, flapping
wing micro-air vehicle (MAV) and particulate flows in
chemical process. Efficient algorithm to handle moving
boundaries is still one major challenge in computational
fluid dynamics (CFD).

The methodology to tackle this problem can be catego-
rized as three types. The first type is based on body confor-
mal mesh and arbitrary-Lagrangian–Eulerian (ALE)
algorithm. In this approach, the Navier–Stokes (NS)
equation is solved on a mesh conforming to the moving
boundary throughout the computation. At the moving
boundaries, velocities of the mesh points are determined
by the dynamics of the object, whereas at other computa-
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tional (fixed) boundaries they are set to zero. Elsewhere
in between, the mesh velocity is arbitrarily chosen so as
to absorb the mesh deformation properly. Unstructured
mesh has gained its popularity since the early 1990s
because of its simplicity in mesh generation around com-
plex objects. An extra strength of the unstructured grid lies
in the implementation of the moving-mesh and/or mesh-
adaptive schemes. In conjunction with ALE method,
smoothing techniques have been developed for unstruc-
tured mesh to avoid re-meshing or at least prevent it from
occurring too frequently when the motion of the moving
boundary becomes large. Nevertheless, re-meshing is
unavoidable when dealing with certain kind of problem
such as the rotation of blades. Under such circumstance,
mesh-related operations are very computational intensive
and sometime also very tedious to implement, especially
in a three-dimensional situation. A comprehensive review
on the development of unstructured techniques is presented
in [1]. More detailed discussions on the mathematical
formulation and implementation issues can be found in
[2]. There are also some recent works on high-order
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unstructured method, e.g. [3] by Sun et al. For dynamic
unstructured mesh method, please refer to [4,5]. For mesh
smoothing techniques, please refer to [6,7].

The second type of method is based on regular Cartesian
mesh. When an object of arbitrary shape is immersed in a
rectangular computational domain, in order to impose a
non-slip boundary condition, one can either modify the
governing equation to include a ‘forcing’ term or modify
the grid cell when it intersects with the boundary of the
object. The former sub-type is termed as ‘immersed bound-
ary’ technique, whereas the latter one is known as ‘cut-cell
Cartesian’ method. Comprehensive reviews on the Carte-
sian grid method are given by Peskin [8] and Mittal and
Iaccarino [9].

The third type is ‘Chimera’ grid, or overset grid method.
It is based on the concept of domain decomposition by Ste-
ger [10] and Berriz et al. [11]. The central idea behind it is
the use of several meshes instead of only one mesh in the
first two types of methods. In the method, sub-domains
are meshed independently and governing equations are
also solved separately on them. Actually, it can extend
the capability of an existing solver to treat moving bound-
aries with very little code-development effort. The complex-
ity of this type method lies in the data interchange between
different sub-domains. The method proposed in the paper
falls into this category.

It should be emphasized that the three methods afore-
mentioned can be used to treat arbitrary motion of bound-
aries. If only some particular types of motion are
considered, one can resort to some techniques that are
non-generalizable. For example, if only one moving part
is considered, a non-inertial reference frame which moves
with the solid body can be used in the formulation and sub-
sequent solution of the Navier–Stokes equation. Another
method exclusively designed for rotation is the ‘shear-slip
mesh update’ method proposed by Behr and Tezduyar
[12]. Actually, this method is very similar to the overset
grid method in handling moving boundaries. The only dif-
ference is that it uses a simple ‘shear-slip layer’ (which
includes very few elements) to connect the two independent
meshes in lieu of the overlapping region in the overset
method. In this method, a local re-meshing in the shear-slip
layer is needed. Although these methods are effective in
dealing with certain problems, their limitations are also
obvious. The non-inertial frame approach cannot handle
problem that involves multiple parts with relative motions;
whereas the ‘shear-slip mesh update’ method fails in the
presence of irregular boundary motions.

The Chimera grid method was originally used only on
structured (curvilinear) meshes. Abundant literatures can
be found regarding the application and improvement of
this method, e.g. [13,14]. It seems that the idea of combin-
ing unstructured grid with Chimera grid is not very intui-
tive. A first impression is that this combination at least
cannot incorporate the best aspects of both methods. On
an unstructured grid, it is easier to implement mesh-
smoothing algorithm but this feature is not needed in the
Chimera grid method. Furthermore, unstructured mesh
makes it difficult to use high-order schemes in solving the
Navier–Stokes equation. However, after further investiga-
tion, one may find that this impression is not necessarily
correct. Unstructured Chimera grid method is not only
possible but also of great potential in tackling practical
problems. In a problem which involves both moving
boundary and complex geometry, since a structured solver
relies on multi-block technique, the number of domain
required in a traditional (structured) Chimera method
becomes fairly large. Thus the time required in the interior
boundary locating, link-building and data exchanging also
increases. The use of unstructured Chimera grid can reduce
the time consumption significantly by the reduction of
domain number. Generally speaking however, the use of
Chimera grid in the framework of unstructured grid is rel-
atively unexplored and only a few literatures can be found.
In [15,16], a realistic CFD simulation is performed of an
insect in flight. The unstructured grid allows a precise rep-
resentation of an insect including antennas, legs and a
sting. The Chimera grid method is used to treat the flap-
ping wing motion including translation and rotation. In
these papers, the authors solve a compressible NS equation
by finite volume method (FVM). Another example is pre-
sented by Maruoka [17], in which incompressible NS equa-
tion is solved to compute flow around a rotating body
using unstructured Chimera grid. His computation is based
on finite element method (FEM) and the moving part is
solved in a non-inertial frame. Similar studies are per-
formed by Houzeaux and Codian [18,19], both of them
are based on FEM and a non-inertial reference frame.

In the CFD field, finite volume based pressure-correction

method is widely used in simulating incompressible flows.
The core of many famous packages (both commercial
and in-house) that target at industrial application is an
unstructured solver that makes use of this scheme. How-
ever, the implementing of Chimera grid method on such
kind of solver is rarely reported in academic papers at least
to the knowledge of the authors of this paper.

In this paper, a well-known pressure-correction scheme
– SIMPLEC is modified and implemented on unstructured
Chimera mesh. The governing equations are solved in an
inertial frame with moving control volume approach. This
technique is then used to simulate flow over a rotating
body. Although other methods may be equally effective
in solving this type of problem, the method proposed in
this paper can be extended to tackle more challenge cases
such as free-falling objects and heavy particles in fluid. In
our future plan, this method will be applied to study such
complex problems.

This paper is organized into four sections. In the second
section, the numerical discretization procedure will be pre-
sented. It includes the pressure-correction scheme, the
moving-mesh algorithm and the interior boundary treat-
ment. In the third section, flow over a stationary circular
cylinder is first presented as a numerical validation. Then
other two examples of flow over rotating body are fol-
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lowed. They include flow over a rotating circular cylinder
and a rotating elliptic cylinder. A summary is presented
in the last section.

2. Numerical methodologies

2.1. Navier–Stokes equations in an integral form

We consider a two-dimensional unsteady laminar flow
in this study. The continuity and momentum equations
used in the simulation can be written in an integral form as

o

ot

Z
V

qdV þ
Z

oS
qðv� vgÞ � ndS ¼ 0 ð1Þ

o

ot
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qv dV þ
Z
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where t is time, q the density of the fluid, v the velocity vec-
tor, p the pressure and l the dynamic viscosity. vg is the
velocity vector of a moving-mesh. dS and dV are the sur-
face area and volume of a control volume, respectively. n
denotes the unit out-normal vector on the control surfaces.
Since the problem involves moving control surface, the
space conservation law (SCL) also has to be satisfied, i.e.

o

ot

Z
V

dV �
Z

oS
vg � n dS ¼ 0 ð3Þ

Variables in (1)–(3) can be non-dimensionalized by a char-
acteristic length L, a characteristic velocity U1 and a refer-
ence density q1, i.e.

~x ¼ x=L; ~t ¼ tU1=L; ~v ¼ v=U1; ~vg ¼ vg=U1;

~p ¼ p=ðq1U 2
1Þ; ~q ¼ q=q1 ð4Þ

The governing equations for the dimensionless variables
are in the same form as (1)–(3) with l replaced by 1/Re,
where Re is the Reynolds number which is defined as

Re ¼ q1U1L
l

ð5Þ

Since only incompressible fluid is considered in this paper,
the dimensionless density ~q equals to unity.

2.2. Temporal and spatial discretization

To solve the NS equation numerically, the method
described in [20,21] is followed with minor modifications.
This method was originally implemented on a block-struc-
tured mesh and later generalized to unstructured mesh. The
discretization procedure will only be summarized briefly
here, for the details, please refer to those papers. In the cur-
rent implementation, a SIMPLEC algorithm is used to
couple the pressure with the velocity. A second-order
upwind scheme is used for the discretization of convective
term and the Crank–Nicholson scheme (second order in
time) is used for the temporal advancement.
In order to obtain a discrete solution of Eqs. (1) and (2),
the computational domain is discretized into finite number
of contiguous control volumes (CVs) or cells. Cells with
arbitrary shapes are permitted in this method. Hybrid mesh
that consists of triangular and quadrilateral cells will be
used in this study. All dependent variables are stored at
the centroid of cells, i.e. a collocated arrangement is
adopted. To explain the discretization procedure of the
momentum equation (2) term by term, we first re-formulate
it into a transport equation for an arbitrary variable /:

o

ot

Z
V

/dV

Transient term

Z
S
½/ðv� vgÞ

Convective term

�C/r/� � ndS
Diffusive term

¼
Z

S
Qf dS

Surface source

ð6Þ

where / represents the velocity components vi (i = 1,2) and
C/ is the coefficient of diffusivity (1/Re).

This time-dependent equation is discretized by the
Crank–Nicholson scheme (second order in time):

1

Dt
½ð/V Þnþ1;k � ð/V Þn� ¼ 1

2
½Dnþ1;kð/Þ þ Dnð/Þ� þ 1

2

� ½Cnþ1;k�1ð/Þ þ Cnð/Þ�

þ
Z

S
Qf dS

� �n

ð7Þ

where ‘n’ and ‘n + 1’ are the time step counters; C and D

denote the convective and diffusive terms, respectively.
The source term is related to the pressure gradient at time
step ‘n’. ‘k’ is the counter of the inner iteration regarding
pressure–velocity coupling (this so called ‘SIMPLEC’ loop
will be discussed later).

The convective term is discretized asZ
S

/ðv� vgÞ � ndS �
X

j

_mj
~/j ð8Þ

where _mj is the volume flux across face j. It is computed by

_mj ¼ Ajð~vj � vgÞ � nj ð9Þ
where Aj is the area of face j; ~vj is the face velocity; ~/j in
(8) is the variable interpolated to face j by a blended
scheme

~/j ¼ /ð1Þj þ c/ð/ð2Þj � /ð1Þj Þ ð10Þ

where the superscript ‘(1)’ and ‘(2)’ denote first-order and
second-order interpolation, respectively. The first-order
interpolation is just a simple ‘upwind’ scheme. In a sec-
ond-order scheme, we first use the gradient of variable
/ and Taylor expansion to evaluate the value of / on
the face centers from either side, then the one from the
‘upwind’ direction is chosen as the value for that particu-
lar face. The gradient of / is constructed using a linear
least-square approach. c/ in (10) is a blending factor
which is set to 1.0 in this paper. The first term on the
right-hand side of (10) is treated implicitly and the second
term is treated explicitly as a source term, i.e. a second-or-

der upwind scheme is implemented through a ‘deferred cor-

rection’ in this paper.
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The diffusive term is discretized asZ
S
�C/r/ � n dS �

X
j

�C/j
Aj

Lj
ðð/P j

� /P 0
Þ

þ ½ðr/ÞP j
� s1 � ðr/ÞP 0

� s2�Þ ð11Þ

where Lj is the distance from the center of cell P0 to that of
cell Pj projected to the normal direction of face j. s1 and s2

are two vectors in the tangential direction of face j (see
Fig. 1). The first term on the right-hand side of (11) is
the ‘normal diffusion’ and the second term is the ‘cross dif-
fusion’ which is a correction for non-orthogonal meshes.

The pressure gradient term is treated as a surface sourceZ
S

Qf dS �
X

j

�pfAfni ð12Þ

A linear system is obtained as a result of the discretization
of the momentum equation:

aC
P 0

/P 0
¼
Xnb cells

j

aj
P 0

/j
P 0
þ bP 0

ð13Þ

where superscript ‘C’ denotes the diagonal elements of the
coefficient matrix (related to cell P0) and ‘‘j’’ denotes the
non-diagonal elements of the matrix (related to the neigh-
boring cells of P0). ‘nb_cells’ denotes that the summation
is done on all neighboring cells of P0. The contributions
to the coefficient matrix are the mass matrix, ‘upwind’ part
of the convective term and the ‘normal diffusion’. The
source term bp0

in (13) has three contributions, the pressure
gradient, the ‘cross diffusion’ and the departures of the con-
vective flux from the upwind differencing (deferred
correction).

In the SIMPLEC algorithm, the pressure-correction
equation is derived from the continuity Eq. (1)

Xcell faces

j

1

a0CP 0

 !
jðrp0Þj � Ajnj ¼

Xcell faces

j

_mj ð14Þ
Pj

P0

face center 

1

2

cell center 

τ

τ

Fig. 1. Stencil used in the discretization. The dashed line is perpendicular
to the cell face. It is not necessarily parallel to the line connecting cell P0

and cell P1.
where p 0 is the pressure correction; ‘’ stands for the arith-
metic averaging from cell to face. ‘cell_faces’ indicates that
the summation is done on all faces that belong to cell P0.
The coefficient on the left-hand side of (14) is defined as

a0CP 0
¼ aC

P 0
�
Xnb cells

j

aj
P 0

ð15Þ

where the summation is done on all neighboring cells. A
discretized equation of (14) can be written in a generic form
very similar to (13). The Laplacian operator on the left-
hand side of (14) is also treated similarly as the diffusive
term in the momentum equation. Correction for the mesh
non-orthogonality also has to be considered.

After the pressure correction p 0 is obtained from (14),
the pressure and velocity are corrected by

pm ¼ pm�1 þ p0m

vm ¼ vm�1 � 1

a0CP 0

Xcell faces

p0mj Ajnj

ð16Þ

where m = 1,2, . . . is the pressure-correction loop counter
at time step n. P0 is equivalent to the pressure value at time
step n. When it converges, the value at time step n + 1 is
obtained for both the pressure and the velocity.

After the correction of (16), the coefficient matrix and
source term in (13) are computed using the updated value
of p and v. A new velocity is then obtained by solving
(13) again. This new velocity is then substituted into (14)
to compute a new pressure correction. The pressure-correc-
tion iteration is repeated until the convergence criterion is
satisfied.

For the momentum equation and pressure-correction
equation which can be expressed in a matrix form as
Ax = b, it is required that the residuals to be reduced by
two orders each time the iterative solver is called. Two con-
vergence criteria have to be met before the SIMPLEC loop
ends. The first one is for the momentum equation, i.e.

kb� Axk
maxðkv1k; kv2kÞ

6 1:0� 10�8 ð17Þ

where v1 and v2 stand for the two components of the veloc-
ity vector, respectively. The second one is for the diver-
gence-free condition, i.e.

1

V cell

Xcell faces

j

_mj

�����
�����

 !
max

6 1:0� 10�4 ð18Þ

The selection of these criteria is based on experiences
and parameters found in published literatures.

Attentions should be paid to the face velocity ~vj in (9) that
is used to calculate the volume flux. This velocity cannot be
approximated by an arithmetic average of the values in the
neighboring cells. Instead, a Rhie–Chow interpolation,
which introduces some dependency on the pressure, is used.
More details of this interpolation can be found in [20].

Iterative methods are implemented to solve the algebraic
equations. For the momentum equation, a generalized
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conjugate residue (GCR) solver is used whereas for the
pressure-correction equation, a conjugate gradient (CG)
solver is used. A Jacobi pre-conditioner is applied to both
solvers to speed up the convergence.

The ‘order of accuracy’ in the aforementioned discreti-
zation needs to be addressed here. The so called ‘second
order’ in space is only valid on a uniformed mesh (e.g.
equilateral triangles), which is not possible in the numerical
simulation of this paper. On a mesh which is neither homo-
geneous nor orthogonal, the effective order of accuracy is
lower than its idealistic value. The overall order of accuracy
for this numerical scheme is more complicated since the
split error in the pressure-correction method also has to
be taken into account. The authors of this paper believe
that (but with no rigorous proof) for the velocity field,
the spatial accuracy is between first and second order and
the temporal accuracy is of second order. As to the conser-
vation property, finite volume method is built to conserve
mass and momentum. However, in reality, mass and
momentum are only conserved approximately (and not

exactly). The reason behind this is that for the pressure-
correction method such as SIMPLEC, it is very hard to sat-
isfy the divergence-free condition exactly (to machine
precision).
N2

N1

nf
n

nf
n+1

Af
n+1

Af
n

t = n t

t = (n+1) t

gN1 tΔv

gN2 tΔv

Δ

Δ

Fig. 2. Moving control volume and the mesh velocity that satisfies SCL.
2.3. Moving-mesh and space conservation law

As it is stated in the introductory section, either inertial
or non-inertial reference frame can be used to treat the
problems with moving parts. In the implementation of Chi-
mera method in [17–19], both frames are used, inertial
frame for the stationary domain and non-inertial frame
for the moving domain. Thus in these simulations, a tenso-
rial transformation has to be performed before the veloci-
ties are interpolated on the interior boundaries. In this
paper, we pursued an alternative strategy which uses only
the inertial frame in conjunction with moving control vol-
umes. The advantages of the current method are twofold.
First, by the introduction of mesh velocity, the conserva-
tive formulation of the Navier–Stokes equations is pre-
served without any additional source term; second, the
tensorial transformation is not needed. In the moving con-
trol volume approach, the space conservation law (SCL) in
(3) has to be satisfied throughout the computation; other-
wise non-physical mass source will be introduced to the
system. The discretized form of (3) can be written as

V nþ1
c � V n

c

Dt
¼
Xcell face

f

ðvg � nÞAf ð19Þ

However, this equation is not solved in the computation
but is a constraint on the mesh velocity and should be sat-
isfied exactly. In order to be compatible with the order of
accuracy in the spatial and temporal discretization, the ap-
proach suggested in [4] is used to calculate the grid velocity.
Please note that on each face of a 2D cell (triangular or
quadrilateral), the face normal vector and area (length)
vary with time. The mesh velocity is defined as a constant

within the time interval of Dt but varies linearly in space
(see Fig. 2). The product of the face normal and face area
are assumed to vary linearly in time. Thus, on each face,
the mass (volume) flux due to the mesh movement can be
approximated by

ðvg � nÞAf �
1

2
ðvgN1

þ vgN2
Þ � 1

2
ðAnþ1

f nnþ1
f þ An

f nn
f Þ ð20Þ

The resultant flux _mf on each face in Eq. (9) is computed
using the grid mesh velocity obtained from (20). Based
on the mesh size and time step used in this paper, the mesh
velocity (flux) calculated from Eq. (20) satisfies the conser-
vation constraint (19) almost to machine precision. This
conclusion is drawn from numerical tests.
2.4. Boundary conditions

To solve the Navier–Stokes equation, boundary and ini-
tial conditions have to be provided. Initial condition is easy
to specify. For incompressible fluid, divergence-free condi-
tion is the only constraint. In this paper, a constant velocity
and pressure field is used as the initial condition. Boundary
condition is more complicated, and sometimes can be the
key factor to an accurate numerical simulation. Some com-
monly used boundary conditions are summarized as fol-
lows. Here we only discuss physical and far-field
boundaries (those truncated for the purpose of computa-
tion), whereas interior boundaries that are introduced in
the Chimera grid method will be discussed in the next
section.

(a) The boundary where velocity is prescribed

On this type of boundary, the normal velocity com-
ponent is specified. As to the tangential component
of velocity, one can either specify it (such as on a
non-slip wall), or its normal gradient (such as on a
slip wall). The normal gradient of pressure correction
is set to zero on this type of boundary, i.e.

op0

on
¼ 0 ð21Þ



Fig. 3. The interior boundary where data is transferred. C0: donor cell of
mesh 2; C1: ghost cell of mesh 1.
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In some references, it is claimed that the boundary
condition (21) is not needed at all. When the velocity
is prescribed, the given velocity can be directly
substituted into the pressure-correction equation.
The authors of this paper believe that these two view-
points are consistent with each other at least in a
discrete sense. The direct substitution of a given
velocity on some faces is equivalent to the exclusion

of the contribution from these faces when discretizing
the Laplacian operator in the pressure-correction
equation. Apparently, this is equivalent to applying
a Neumann boundary condition on these faces.

(b) The boundary where pressure is prescribed

On this type of boundary, pressure is set to a constant
(usually zero). In order to satisfy the continuity
constraint, the velocity is corrected using the gradient
of pressure correction p 0 in such a manner similar to
(16). The implementation of this boundary condition
is addressed in detail by Ferziger and Peric [22]. It is
appropriate to apply such condition on an outlet
which is sufficiently far from the inlet. Since the
pressure is never corrected on this boundary, the
following condition is specified for the pressure
correction:

p0 ¼ 0 ð22Þ

(c) The convective boundary

This type of condition is exclusively designed for out-
lets to suppress reflections. The main purpose of this
boundary condition is to minimize the distortion of
vortices when passing through such boundaries. Usu-
ally, velocity components are obtained by a simplified

one-dimensional NS equation. Pressure gradient is
also set to zero on this type of boundary, same as that
of boundary type (a). Since global mass conservation is
not necessarily guaranteed by applying such condition,
usually the velocities are scaled to satisfy the mass con-
servation globally. The convective boundary condition
can be expressed in a mathematical formula as

o/
ot
þ U conv

o/
on
¼ 0

op0

on
¼ 0

ð23Þ

where / represents the velocity components vi

(i = 1,2) and Uconv is the convective velocity at the
outlet. In the case of uniform inflow, Uconv is equiva-
lent to the inlet velocity. The details regarding the
implementation of this boundary condition can be
found in [22]. Throughout this paper, this type of
condition is applied to the outlet.

2.5. Implementation issues related to the Chimera grid

2.5.1. Construction of inter-grid links
In order to implement the pressure-correction scheme

on a Chimera grid, information transfer is needed between
sub-domains. To exchange data on the interfaces of these
domains, inter-grid links have to be built after the grids
are generated independently. The ‘link-building’ procedure
is to identify the donor cell for each ghost cell (on which
boundary condition is imposed) of the interior boundaries
(see Fig. 3). Since no irregular mesh motion is involved in
this paper, a repetitive ‘hole-cutting’ is not needed. In this
paper, a ‘neighbor to neighbor’ searching scheme is used to
build the links. This algorithm is very efficient compared
with a complete search. For the details of this method,
please refer to [15].

2.5.2. Data transfer on the interior boundaries

A key step in the pressure-correction scheme on a Chi-
mera grid is to impose correct boundary condition on the
interior boundaries. These boundaries are neither physical
ones nor the ones artificially truncated for computational
purpose, thus the boundary condition on them is quite dif-
ferent from those described in Section 2.4. A Schwarz alter-
nating procedure is followed to couple the solutions from
individual component grids. The Schwarz method states
that the data between sub-domains that overlapping each
other are exchanged in the form of Dirichlet condition on
the interior boundaries. Here the data on these boundaries
are obtained through an interpolation from the solution of
the donor cells.

For one single PDE, the implementation of Schwarz
alternating procedure is straightforward. However, the
incompressible Navier–Stokes is a system of PDEs that
consists of the momentum and the continuity equations.
Moreover, the pressure-correction algorithm described in
Section 2.2 has introduced more auxiliary variables besides
the primary ones (velocity and pressure), such as the pres-
sure correction p 0 and mass flux _mf , etc. This makes the sit-
uation more complicated. In order to do it in a consistent
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manner, one has to be very careful when interpolating the
auxiliary variables. Auxiliary variables should be interpo-
lated and exchanged when necessary, but these exchanges
of information could lead to the decoupling of primary
variables (velocity and pressure).

Since the data transfer between sub-domains are done
iteratively within one time step. This iterative procedure
can be incorporated into the SIMPLEC loop where the
velocity–pressure coupling is achieved. The major steps in
this algorithm are summarized as follows:

(1) Read mesh connectivity, compute geometry and
build inter-grid links for later use.

(2) Start the computing from an initial guess of pressure
and velocity.

(3) Solve the momentum equation based on the guessed
pressure field.The velocity values on the interior
boundary (ghost cells) are obtained by interpolating
from their donor cells. This interpolation can be
expressed in a mathematical formula as (see Fig. 3)

/k
i jC1
¼ /k�1

i jC0
þ ðr/iÞ

k�1jC0
�~r01 ð24Þ

where i = 1,2; /i denotes the two velocity compo-
nents and k is the inner iteration counter.

(4) Solve the pressure-correction equation.The pressure-
correction values on the interior boundary (ghost
cells) are determined by the following two-steps:
a. A temporary pressure values on these cells are

obtained by interpolating from their donor cells.
b. Subtract the values of current pressure from the

temporary pressure and the result is treated as a
Dirichlet condition prescribed on the ghost cells
for the pressure-correction equation.
This interpolation can be expressed in a mathe-
matical formula as
~pkjC1
¼ pk�1jC0

þ ðrpÞk�1jC0
�~r01

p0kjC1
¼ ~pkjC1

� pk�1jC1

ð25Þ
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Fig. 4. Domain decomposition and boundary conditions for the simula-
tion of the flow over a circular cylinder.
(5) Correct velocity and pressure, respectively.
(6) Check if the convergence criteria are met. If not,

replace the initial values of pressure and velocity with
the current one and go to (3); if yes, then exit from
this iteration and advance to the next time step.

(7) Repeat (3)–(6) until the terminating time is reached.

In step (3), the transfer of velocity v between sub-
domains is done by using a direct interpolation. However,
the situation is more complicated in step (4) regarding the
transfer of pressure correction p 0. Through numerical test, it
is found that a direct interpolation of p 0 only works well for
steady flows (such as a lid-driven cavity). It will lead to a
decoupling of pressure in the overlapping region when
unsteady flow (such as the vortex shedding) is computed.
The authors believe that the failure of the direct interpola-
tion approach is caused by the accumulation of error in the
solution of p 0. The remedy to this is proposed in step (4)
and is verified by the numerical examples in the next sec-
tion. The philosophy behind this method is to ‘glue’ the
pressures of different sub-domains to each other more
tightly. A pressure-correction value is assigned to the inte-
rior boundary (ghost cells) such that after this correction,
the pressure on that boundary will reach the value obtained
by interpolation (using the latest pressure and pressure gra-
dient) from its donor cell which belongs to another sub-
domain. A discussion on this phenomenon and our remedy
is presented in [23] by the first author.

The process of information exchange between sub-
domains is summarized as follows. Eqs. (24) and (25) are
applied to all interior boundaries (such as C12 and C21 in
Fig. 4). The solution of sub-domain X1 is obtained based
on the boundary information interpolated from sub-
domain X2 and vise verse. The data exchange is done
through a Schwarz alternating procedure.

For Chimera grid method, global conservation is an
important issue that should be addressed. For incompress-
ible flows, global mass conservation is a necessary condi-
tion for the existence and uniqueness of a smooth
pressure field. Thus it is crucial for any numerical scheme
that solves the incompressible NS equation to conserve
mass. Since the treatment of the interior boundary condi-
tion aforementioned is non-conservative in nature, it seems
that some corrections are needed. However, after further
investigation, it is found that such correction is not neces-
sary in the modified pressure-correction algorithm pro-
posed in this paper. These interior boundaries are very
similar to those where pressure is prescribed (see category
b of Section 2.3). The only difference is that the pressure
correction is set to some non-zero value (which varies with
the inner iteration number m) to ‘glue’ the pressure field of
different sub-mains together on the internal boundaries. On
these boundaries, the mass flux _mf is corrected iteratively
until the convergence criterion is met. It is seen that in this
algorithm, mass conservation is satisfied approximately
both locally and globally everywhere in computational
domain (if the convergence criterion is stringent enough).
The only remaining issue is that whether the velocity vector

computed by interpolation is compatible with this mass
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flux. From our experiences on the numerical test conducted
in this paper, the answer is yes. Non-physical ‘boundary
layer’ of velocity is not observed near these interior
boundaries.

The order of accuracy in the interpolation is another
important issue for numerical methods on Chimera grid.
In the traditional (structured) Chimera methods (such as
[13,14]), it is very common that the order of accuracy in
the interpolation is higher than that in the discretization
of the Navier–Stokes equations. In this paper, however,
these two are of the same order (second order). There
are several reasons for our choice. First, the cost of qua-
dratic reconstruction is much higher in terms of CPU
time and memory. In the framework of unstructured
finite volume method, it requires the connectivity infor-
mation of the ‘second-level’ neighbors. Thus the matrix
which is inverted on each cell has a larger size (3 by 3
for linear and 5 by 5 for quadratic reconstruction for
2D problems). Second, for unstructured mesh, it is very
easy to refine the mesh locally near the overlapping
region with only a minor increase in the total cell num-
ber. Third, through numerical tests, it is shown that no
significant improvement on the solution quality in the
overlapping region is observed by simply replacing the
linear reconstruction with a quadratic reconstruction in
the interpolation of velocity and pressure correction
(Eqs. (24) and (25)).

The issue of overlapping length also needs to be
addressed here. It is reported in some references (such as
[24]) that the convergence of Schwarz alternating method
does depend on the overlapping length. In all simulations
conducted in this paper, the width of the ‘ring-shaped’
overlapping region is approximately 0.45 (which is about
the five grid size locally). Our major concern regarding
the overlapping length is the stencil which is used in the
interpolation. For a least-square reconstruction, a layer
of three grid points is enough; for a quadratic reconstruc-
tion it is safe to have a layer of five grid points. We did
not find any problem with the current length of five points
in all subsequent simulations. As to the influence of the
overlapping length on the convergence, more investigations
are still needed.

3. Numerical experiments

3.1. Flow over a stationary circular cylinder

The first example is laminar flow over a stationary circu-
lar cylinder. The Reynolds number of this simulation is
based on the diameter of the cylinder D and the inlet veloc-
ity. This problem is inherently unsteady when the Reynolds
number is larger than a critical value of approximately 50.
For simulations at a Re number higher than the critical
value, unsteady vortex shedding can be triggered by
machine error alone even if the boundary conditions are
perfectly symmetric and no artificial perturbation is added
to the initial condition. Simulations are performed at
Re = 100 and 200. Vortices that shed periodically from
the cylinder have to pass through the interior (interpola-
tion) boundaries of the Chimera grids. This makes it a non-
trivial test to our numerical scheme.

The computational domain consists of two overlapping
sub-domains are shown in Fig. 4. The larger domain X1 is
a 30D · 20D rectangle subtracting a circular ‘hole’ of
radius 2D. The smaller one X2 is a circular domain of
radius 2.45D subtracting the circular cylinder of radius
0.5D. The three circles aforementioned share a common
center at the origin. The size of this computational
domain is chosen so as to minimize the blocking effect
but with minimal number of computational cells. After
comparing with domain sizes used in other literatures
(such as [25–29]), we believe that the current size is a
moderate one.

Sub-domain X1 is meshed with 12,586 triangular cells.
Sub-domain X2 is meshed with 1260 rectangular cells and
4830 triangular cells. The reason for using such a hybrid
mesh is to resolve the boundary layer more accurately.
The mesh size on the cylinder surface is 0.025 (with 125
grid points on the circumference). In the normal direction,
the distance between the surface and the first grid point is
0.01. The sub-meshes of the two domains and the compos-
ite mesh are presented in Fig. 5. For the purpose of com-
parison, a single mesh that consists of 1260 rectangular
cells and 18,722 triangular cells is also generated. The res-
olution of this mesh is comparable with the composite
(Chimera) mesh of Fig. 5 and the same vortex shedding
problem is computed on this mesh. These highly inhomoge-
neous and anisotropic meshes are pre-processed through a
spring-analogy smoothing before they are actually used in
the code. Mesh quality has been improved to some extent
after such treatment.

In the current simulation, the mesh velocities of both
sub-domains are zero. The time-step is taken to be 0.002
and the resultant maximum CFL number is approximately
0.4. The results obtained using the method proposed in this
paper are summarized as follows.
3.1.1. Pressure, drag and lift coefficients and the flow field of

the non-rotating case

An instantaneous pressure field (which is recorded after
the periodic pattern has been established) for Re = 100 is
plotted in Fig. 6. It is seen that the solution in the overlap-
ping region is of satisfactory quality. This result is obtained
using the modified interpolation scheme of (25). For an
unsteady problem like this, a direct interpolation could
lead to a slightly decoupled pressure field in the overlap-
ping region. For further discussions on the reason behind
this phenomenon, please refer to [23]. In all subsequent
simulations conducted in this paper, the pressure correc-
tion on the interior boundaries is computed using (25).

The drag and lift forces are computed by the integration
of the forces along the surface of the cylinder. The drag and
lift coefficients are then computed by



Fig. 5. Sub-grids and the composite grid for the computation of flow over a circular cylinder; (a) background grid; (b) grid around the circular cylinder; (c)
composite (Chimera) grid.

Fig. 6. Instantaneous pressure field of the flow over a fixed cylinder at
Re = 100.
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Cd ¼
F x

1
2
q0U 2

1

Cl ¼
F y

1
2
q0U 2

1

ð26Þ

where Fx and Fy are the stream-wise and transverse compo-
nents of the force exerted on the cylinder. The time history
of Cd and Cl for Re = 100 and 200 are shown in Fig. 7. The
frequency of vortex shedding is determined by taking the
FFT of the lift coefficient. The Strouhal number is defined
as

St ¼ fD
U1

ð27Þ

where f is the shedding frequency and D the diameter of the
cylinder.

The drag and lift coefficients and Strouhal number are
listed in Table 1. For the purpose of comparison, data from
some other references are also included in the table. From
this table, it is clearly seen that our result using a Chimera
grid matches well with both the solution on a single grid
and those from other literatures.

Fig. 8 shows the time-averaged pressure coefficient
Cp ¼ 2ðp � p1Þ=q0U 2

1 along the cylinder surface at
Re = 100. A good agreement with the well-established data
of Park et al. [30] is clearly seen from this figure.
Instantaneous streamlines and vorticity contours at
Re = 100 are plotted in Figs. 9 and 10, respectively.
Together with the evidences shown in Table 1, it is



1002 X. Zhang et al. / Computers & Fluids 37 (2008) 993–1010
confirmed that vortices pass the two interior boundaries
with only minor distortion. This example demonstrates
the excellent performance of the present numerical scheme
in handling unsteady vortex shedding.
Fig. 8. Averaged surface pressure coefficient Cp as a function of the angle
h(h = 0� corresponds to the stagnation point, h = 180� corresponds to the
base point.) for the flow over a fixed cylinder at Re = 100. Black dots
denote present results and solid line denotes the data from Park et al.

Table 1
Drag, lift coefficients and Strouhal number of the flow over a fixed circular cy

Re = 100

Cd Cl

Present: Chimera grid 1.36 ± 0.01 ±0.34
Present: Single grid 1.36 ± 0.01 ±0.33
Braza et al. [25] 1.3 ± 0.015 ±0.25
Calhoun [26] 1.33 ± 0.01 ±0.30
Liu et al. [27] 1.36 ± 0.01 ±0.34
Pan and Damodaran [13] – –
Rogers and Kwak [28] – –
Rosenfeld et al. [29] – –

Fig. 7. Time history of drag and lift coefficients for the flow over a fixed
cylinder at Re = 100 and Re = 200.
To check the quality of prediction in the overlapping
region, the transverse velocity, pressure and vorticity along
the horizontal centerline are extracted at an instant when
the lift coefficient Cl is at the peak value. They are plotted
as a function of the X-coordinate in Figs. 11–13, respec-
tively. It is found that the largest difference for the trans-
verse velocity and pressure from domain X1 and domain
X2 occurs in the overlapping area behind the cylinder
(labeled as ‘overlapping 2’ in these figures) and close to
the interior boundary C21. The largest difference is 7%
and 5% for the transverse velocity and pressure, respec-
tively. Away from the boundary C21 within the overlapping
area, the difference is much smaller (<2%). From Fig. 13, it
is seen that the difference in vorticity is reasonably small
within the overlapping area. The largest difference in vor-
ticity occurs near the boundary C12 (about 14%). Since
the vorticity magnitude is quite small in this region, the rel-
ative difference is magnified by division.
3.1.2. Mesh-independent tests

Mesh-independent test is carried out by doing the simu-
lation at Reynolds number of 200 on three different
meshes. The mesh which is used to obtain the hydrody-
namic force in the previous section is denoted as the med-
linder at Reynolds number 100 and 200

Re = 200

St Cd Cl St

0.168 1.34 ± 0.03 ±0.66 0.197
0.168 1.33 ± 0.04 ±0.65 0.198
– – – –
0.175 – – –
0.164 – – –
– 1.37 ± 0.04 ±0.63 0.192
– 1.23 ± 0.05 ±0.65 0.185
– 1.46 ± 0.05 ±0.69 0.211

Fig. 9. Instantaneous streamlines of the flow over a fixed cylinder at
Re = 100.



Fig. 10. Instantaneous vorticity contours of the flow over a fixed cylinder at Re = 100; solid and dashed lines denote positive and negative contours,
respectively.

Fig. 11. Transverse velocity distribution along the horizontal centerline when Cl is at peak value for the flow over a fixed cylinder at Re = 100; (a)
transverse velocity as a function of X; (b) a close-up near the overlapping area behind the cylinder.

Fig. 12. Pressure distribution along the horizontal centerline when Cl is at peak value for the flow over a fixed cylinder at Re = 100; (a) pressure as a
function of X; (b) a close-up near the overlapping area behind the cylinder.
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ium mesh. This mesh also serves as the standard mesh for
the generation of other two meshes. First, a coarser mesh
is generated by using only 1/2 number of partitions on
the surface and a double wall-distance of the first off-wall
grid point. Then, a finer mesh is generated by using twice
number of surface partitions and 1/2 the wall-distance.
The total number of cells in the coarser, medium and finer
mesh is 12,844, 18,676 and 30,852, respectively.
The computed lift and drag coefficients on these meshes
are listed in Table 2. It is seen that the maximum difference
in Strouhal number is less than 1.5% among the three
results. When comparing the data from the medium mesh
and those from the finer mesh, it is found that the difference
in lift and drag are 3% and 7%, respectively. Although the
result is not mesh-independent by a rigorous standard,
since the difference between these two meshes is reasonably



Fig. 13. Vorticity distribution along the horizontal centerline when Cl is at peak value for the flow over a fixed cylinder at Re = 100; (a) vorticity as a
function of X; (b) a close-up near the overlapping area behind the cylinder.
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small, the rotating cylinder simulation is conducted on the
medium mesh to save computational time.
3.2. Flow over a rotating circular cylinder

Our next examples are flow over a cylinder which rotates
counterclockwise with an angular velocity x = p and
x = 4.0. For these two angular velocities, the tip velocity
ratio q = Dx/2U1 is 1.57 and 2, respectively. The Re num-
ber based on the inflow velocity is also 200, as same as that
of the non-rotating case.

The simulation is performed on the medium mesh which
is used for the stationary cylinder case. The mesh of sub-
domain X1 remains stationary, thus the mesh velocity vg

is zero. For sub-domain X2, the mesh undergoes a solid-
body rotation. Thus in this sub-domain, the velocity for
a solid-body rotation is prescribed on each grid point. On
the surface of the rotating cylinder, fluid velocity is set to
the tip velocity of the cylinder. This velocity is also equiv-
alent to the local mesh velocity. The time step used in this
simulation is 0.002, which is also the same as that in the
stationary case.

An overview of the characteristics in the flow field at
various values of q can be found in [31]. A short summary
is presented here. When the tip velocity ratio is low, this
flow is unsteady. The unsteadiness is caused by the usual
Karman vortex street similar to that in the stationary case.
At a higher value of q (1.91 6 q 6 4.35), a steady solution
Table 2
Drag, lift coefficients and Strouhal number computed using the coarser,
the medium and the finer mesh for stationary cylinder at Re = 200

Re = 200; stationary

Cd_avg Cl_avg Cl_max St

Mesh 1 (coarser) 1.36 0.002 0.72 0.197
Mesh 2 (medium) 1.34 0.007 0.66 0.198
Mesh 3 (finer) 1.37 4.6e�5 0.71 0.20
can be achieved. At even higher values of q (4.34 6
q 6 4.75), a second region of instability appears. Beyond
q P 4.75, the flow become steady again but multiple solu-
tions are observed. For the detailed discussions, please
refer to [31]. In our current study, we only conduct numer-
ical simulations at q equals to 1.57 and 2. These two values
fall into the first unsteady and steady region, respectively.
The numerical results are summarized as follows.

3.2.1. Tip velocity ratio q = 1.57

The time history of drag and lift coefficients are shown
in Fig. 14. It is well known that for a stationary cylinder,
the frequency of drag is twice as that of the lift. However,
it is seen from this figure that the frequencies of drag and
lift are the same in this rotating case. This interesting phe-
nomenon is also reported in [17]. The Strouhal number in
the rotating case is slightly lower compared with the non-
rotating case at the same Re number. For a counterclock-

wise rotation, a negative lift is obtained due to the Magnus
effect. The averaged drag in the rotating case is significantly
smaller than that in the non-rotating case. The utilization
of a spinning cylinder in flow control and drag reduction
is based on this feature. Some discussions regarding this
application can be found in [32]. The predicted drag and lift
coefficients and Strouhal number are listed in Table 3. For
the purpose of comparison, data from [17] are also
included in the table. Good agreement between our predic-
tion and that in [17] is clearly seen in this table. The aver-
aged drag in this paper is 8% lower and lift is 3% higher
than the results of [17]. The Strouhal number in the current
study is 5% lower.

An instantaneous pressure field is shown in Fig. 15.
Comparing with Fig. 6 of the non-rotating case, it is
observed that the stagnation point is shifted clockwise

due to rotation. The instantaneous streamlines are pre-
sented in Fig. 16. It is seen that the vortex pair is shifted
counterclockwise and the two vortices are compacted
slightly (compared with Fig. 10). Instantaneous vorticity
contours are shown in Fig. 17. It is noted that the Karman



Fig. 14. Time history of drag and lift coefficients for the flow over a
rotating circular cylinder at q = 1.57.
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vortex street tilts upward and the vortices pass through the
outlet at an oblique angle.
Table 3
Drag, lift coefficients and Strouhal number of flow over a circular cylinder
rotating counterclockwise at Re = 200 with x = p and x = 4.0

Re = 200; x = p Re = 200; x = 4.0

Cd_avg Cl_avg St Cd Cl

Present 0.77 �3.98 0.191 0.39 �5.26
Maruoka [17] 0.84 �4.11 0.191 – –
Mittal and Kumar [31] – – – 0.31 �5.29

Fig. 15. Instantaneous pressure contours of the flow over a rotating
circular cylinder at q = 1.57.

Fig. 17. Instantaneous vorticity contours of the flow over a rotating circular
contours, respectively.
3.2.2. Tip velocity ratio q = 2.0

According to the simulation in [31], in this case, the vor-
tex shedding should cease and the solution is steady. How-
ever, the authors in that paper also pointed out that it
could take a long time for the flow to develop to the final
state. They believe that this is the reason why some
researchers in the past have associated their simulation
with vortex shedding. The time history of drag and lift
coefficients of our simulation is shown in Fig. 18. As it is
seen in this figure, at non-dimensional time of 300, some
trace of oscillation still exists. But since the amplitude of
oscillation for both drag and lift are sufficiently small
(<0.02) and the trend of decline is obvious. We believe that
a steady solution could be achieved eventually giving a long
enough simulation time although we did not try that in this
study. Our predicted lift coefficient (averaged value at
t = 300) is only 1% lower than the value from [31]. The dis-
crepancy in the drag is larger (off by 26%). The drag coef-
ficient computed in this paper is 0.39 whereas the value is
0.31 in [31]. Since the drag coefficient is quite small, the rel-
ative error is magnified. At first, we suspected that the rea-
son for the discrepancy is due to the difference in domain
size. According to the analysis in [31], in the case of med-
ium and large value of q, lift is fairly insensitive to the
change in domain size and the drag coefficient shows strong
Fig. 16. Instantaneous streamlines of the flow over a rotating circular
cylinder at q = 1.57.

cylinder at q = 1.57; solid and dashed lines denote positive and negative
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dependence on the distance L between the cylinder and the
outlet. The drag coefficient becomes independence of L

only when L > 75D. The computational result in [31] is
based on a mesh of L = 100D and our simulation is con-
ducted on a mesh of L = 20D. To test this explanation,
we did another simulation with comparable mesh resolu-
tion in the near field and a larger domain of L = 50D.
However, when the solution is almost steady, we found
that the drag coefficient is unchanged. Our second conjec-
ture is that this discrepancy is due to the insufficient mesh
Fig. 18. Time history of drag and lift coefficients for the flow over a
rotating circular cylinder at q = 2.0.

Fig. 19. Pressure contours of the flow over a rotating circular cylinder at
q = 2.0.

Fig. 20. Vorticity contours of the flow over a rotating circular cylinder at
q = 2.0; solid and dashed lines denote positive and negative contours,
respectively.

Fig. 21. Streamlines of the flow over a rotating circular cylinder at
q = 2.0.

Fig. 22. The composite grid for the computation of flow over a rotating
elliptic cylinder.

Fig. 23. Time history of drag and lift coefficients for the flow over a
rotating elliptic cylinder during one rotation. Lines denote results of the
current simulation and symbols denote the data from Maruoka.
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resolution near the shear layer which extend to the far field.
Since our mesh in Fig. 4 is generated based on the picture
of Karman vortex street behind a fixed cylinder, the distri-
Fig. 24. Eight snapshots of instantaneous streamlines of the
bution of mesh points is not appropriate for the simulation
of a steady flow at high value of q. To test this conjecture,
another mesh which is adaptive to the current solution of
flow over a rotating elliptic cylinder during one rotation.
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q = 2.0 is generated. In this new mesh, points are densely
concentrated in the region where the absolute value of vor-
ticity is high. But the solution on this new mesh again fails
to ‘correct’ the drag coefficient. The true reason behind the
discrepancy in drag is still not very clear. Similar phenom-
enon is also reported in [33] when the authors in that paper
try to compare their predicted drag with [31] for Re = 200
and q = 3. The authors in [33] claim that the drag predic-
tion at higher value of q is very sensitive to mesh shape

and numerical schemes.
The pressure field at t = 300 is shown in Fig. 19. When

comparing with the case of q = 1.57 (see Fig. 15), the
position of the stagnation point and the orientation of
the contours near this point are very similar. However,
the fluctuation in the wake disappears due to the suppres-
sion of vortex shedding. The vorticity contours are shown
in Fig. 20. It is seen that two narrow-banded regions with
large positive and negative vorticity extend to the far field
behind the cylinder. The streamlines are presented in
Fig. 21. It is well known that for the steady solution at
low Re number (4–40) of the non-rotating case, two sym-
metric separation bubbles are formed at the rear. How-
ever, in this rotating case, only one separation bubble is
observed. It is also noticed that this separation bubble
tilts upwards and sits on the shoulder of the cylinder.
Similar asymmetrical streamline pattern due to rotation
are also reported in [34,35]. A picture with vanishing
lower bubble is given in [35] at the Reynolds number of
60 and q = 1.

3.3. Flow over a rotating elliptic cylinder

Our final example is flow over an elliptic cylinder with
thickness ratio (minor axis to major axis) of 0.5 which
rotates counterclockwise at an angular velocity x = 0.5p.
The Re number based on the major axis is 200 and the
tip velocity ratio is 0.785.
Fig. 25. Three snapshots in b
For this simulation, the whole computational domain is
meshed with 8996 moving cells (including 776 rectangular
cells) and 16,132 stationary cells in the two sub-domains,
respectively. The mesh resolution is comparable with the
medium mesh for the circular cylinder case (see Fig. 22).
The time step is also 0.002. The computed results are sum-
marized as follows.

Numerical results show that the drag and lift coefficients
are perfect periodic solutions. The variation of drag and lift
coefficients versus phase (xt/p) within one period are plot-
ted in Fig. 23. The computational data from [17] is also
plotted on top for comparison. It is seen that the agreement
between these two sets of data is quite satisfactory. From
this figure, it is also seen that the phases of maximum drag
does not coincide with the phases when the major axis of
the ellipse is perpendicular to the inflow direction (i.e.
0.5p and 1.5p). They are slightly shifted. This interesting
phenomenon is also reported in [17].

The streamlines at eight different phases are presented in
Fig. 24. From Fig. 24(b)–(g), it is seen that the upper bub-
ble grows larger and then sheds from the surface. This pro-
cedure is just the same as that of a stationary circular
cylinder. However, from (h) to (a), the evolution of vortex
structure is quite complicated. To explore this more care-
fully, three snapshots in between Fig. 24(h) and (a) are
shown in Fig. 25. The formation of a triple-vortex system
can be seen very clearly from these pictures. In
Fig. 25(a), vortex A (with negative vorticity) is generated
at the trailing edge. In Fig. 25(b), vortex A grows larger
and at the same time attaches to surface and rotates with
it. The movement of vortex A somehow induces the emer-
gence of another vortex B (with positive vorticity). In
Fig. 25(c), vortex C (with positive vorticity) comes into
sight at the back of the ellipse. This newly created vortex
will then merge with vortex B before being convected
downstream. In Fig. 24(b) and (f), a tiny separation bubble
is also observed near the leading edge. However, this bub-
etween Fig. 24(g) and (a).
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ble does not exist for a long time and disappears immedi-
ately due to pressure rise. Similar vortex structures are also
reported in [36] where flows over a stationary elliptic cylin-
der at different orientations are simulated.

4. Summary

In the paper, a numerical simulation of flow over rotat-
ing body is presented. The numerical method used in the
simulation is a modified pressure-correction scheme on
an unstructured Chimera grid. To handle the sub-domain
which undergoes rotation, a moving-mesh control volume
scheme is implemented in an inertial reference frame. A
new interpolation is proposed to transfer pressure correc-
tion on the interior boundaries. Such an interpolation can
ensure a tight coupling of pressure between overlapping
sub-domains.

In the simulation of laminar vortex shedding over sta-
tionary and rotating objects, the hydrodynamic force
computed by this approach agrees well with experimental
and computational results in literatures. These numerical
examples demonstrate the credibility of this method in
computing unsteady flows with and without rotating
parts.

In our future plan, the unstructured Chimera method
will be used to treat more challenge cases where irregular
motions are encountered (such as the flapping wing) or
where the motion is coupled with the dynamics (such as
free-falling objects).
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