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Abstract

A fully nonlinear and dispersive model within the framework of potential theory is developed for interfacial (2-layer)
waves. To circumvent the difficulties arisen from the moving boundary problem a viable technique based on the mixed
Eulerian and Lagrangian concept is proposed: the computing area is partitioned by a moving mesh system which adjusts
its location vertically to conform to the shape of the moving boundaries but keeps frozen in the horizontal direction.
Accordingly, a modified dynamic condition is required to properly compute the boundary potentials. To demonstrate
the effectiveness of the current method, two important problems for the interfacial wave dynamics, the generation and
evolution processes, are investigated. Firstly, analytical solutions for the interfacial wave generations by the interaction
between the barotropic tide and topography are derived and compared favorably with the numerical results. Furthermore,
simulations are performed for the nonlinear interfacial wave evolutions at various water depth ratios and satisfactory
agreement is achieved with the existing asymptotical theories.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that in computation of free surface (interface) flows accurate modeling of the moving
boundary is an extremely challenging problem in CFD as the position of the moving boundary at a given time
is unknown a priori and must be calculated as part of the solution. To alleviate the involved computational
burden, two distinct techniques are proposed for approximating the moving boundary: front capturing and
front-tracking.

The ‘front-capturing’ technique is based on fixed spatial domains and characterized by treating the interface
as a high variation region with no explicit elements to represent the interface. Examples of this technique
including the ‘volume-of-fluid’ method [1] and the ‘level-set’ method [2], both use an auxiliary scalar field,
which is updated by solving a scalar transport equation, to determine the location of the interface. With these
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methods it is easier to model complex flow phenomena such as cavitation and wave breaking without requiring
fundamental changes to their algorithm. However, a major disadvantage of these methods is undisputed that
the interface diffusion over several cells can result in loss of precision.

By contrast, the ‘front-tracking’ method [3–5] generally treats the surface (interface) as a linked set of point
forming an unstructured mesh which moves through a stagger Eulerian grid and deforms as the simulation
advances in time. This strategy has a significant advantage: the surface profile preserves its nature as a
well-defined delineated interface without any smearing of its profile, which ensures the ‘front-tracking’
approach more accurate than the ‘front-capturing’ technique. However, to account for topological changes
in the interface, the implementation usually becomes more complex such that additional computational
resources are required. Recently, the ‘front-capturing’ and ‘front-tracking’ techniques for finite element com-
putations are also developed successfully [6,7], nevertheless, implementations for the mesh algorithm and com-
putational process remain still quite burdensome.

Within the framework of potential theory, this study attempts to provide a novel and efficient technique to
track the moving boundaries with less effort. Essential parts of the numerical method are: application of the
Green’s theorem to solve the Laplace equation, use of the dynamic boundary condition to evaluate the bound-
ary potentials, and application of the total time derivative to account for the displacements of the moving
boundaries. More importantly, it is worthwhile noting that the material derivatives of potentials on the mov-
ing boundaries are irrespective of the horizontal spatial differentiations. This is ensured by the fundamental
characteristic of the meshes which are fixed horizontally but move freely in the vertical direction. In order
to validate the efficiency of this method, analytical solutions for the nonlinear interfacial waves are used to
compare with the numerical results. As a consequence, it is helpful in the ensuing part to give a brief review
on the separate applicability and limitation of the existing asymptotical theories.

The KdV-type models have been widely used for the investigation of nonlinear internal waves and play the
primary role in elucidating the essential features of internal solitary waves [8–11]. However, the often
observed broadening of the wave shapes can not be described by this kind of equations unless the extended
KdV (eKdV) equation is adopted, which includes cubic nonlinearity and has been applied efficiently for the
wave evolution where effects of the cubic nonlinearity dominate that of the quadratic nonlinearity [12,13].
Because of the inclusion of higher nonlinearity, the eKdV model is able to capture wave shapes of the ‘thick’
solitary waves as a maximum wave amplitude A0max = �a1/a2 is reached (a1 and a2 denote the quadratic and
cubic nonlinearity, and the expressions can be found in Section 4.2) [14]. In general, these models are
restricted to weakly nonlinear problem, and the oceanic observations of large amplitude waves (relative to
the water depth) necessitate finite amplitude theories to accurately elucidate the wave properties of strong
nonlinearity.

An important two-layer model extending to the weakly nonlinear eKdV theory was newly derived by Choi
and Camassa (CC) [15], which permits strong nonlinearity but uses weak dispersion approximation. Evolution
equations equivalent to the CC model were formulated by Ostrovsky and Grue [16] for strongly nonlinear dis-
persive waves. In the rigid-lid Boussinesq limit, the strongly nonlinear theories produce a maximum wave with
amplitude A0max = (h1 � h2)/2 (h1 and h2 are the two-layer thickness) which reaches mid-depth and has a ten-
dency of infinite wavelength [15,16]. It is found that the aforementioned weakly (eKdV) and strongly nonlin-
ear (CC) theories agree quite well for 0.4 < h1/h2 < 0.6, while, differences become remarkable outside this
range [14]. Particularly, for a critical problem (h1/h2 = 1 in Boussinesq approximation), both the weakly
and strongly nonlinear theories have suggested that the maximum wave amplitude for the solitary wave solu-
tions vanishes, namely, no steady solitary wave solution exists in this situation. In general, the asymptotic
models have limited applications not only at the critical depth ratio but also at the non-critical depth ratio
if solitary waves of sufficient amplitudes are considered [17].

The above mentioned limitations of the analytical methods motivate us to construct a fully nonlinear and
dispersive model for scrutinizing behaviors of strongly nonlinear interfacial waves at various depth ratios.
Two important processes for the interfacial wave dynamics are investigated to validate the reliability of this
numerical method. First, for the interfacial wave generations by the interaction between the barotropic tide
and topography, the simulations are compared well with the analytical solutions. Then, this model is applied
for the interfacial wave evolutions. Weakly and strongly nonlinear interfacial solitary waves are recomputed at
the non-critical depth ratios, arriving at the results described by the asymptotical theories. Finally, special
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attentions are directed to the transient processes of nonlinear interfacial waves at the critical depth ratio and
the wave properties in such a unique situation are studied preliminarily.

2. Mathematical model

This study considers two-dimensional motions of two fluid layers under the Boussinesq approximation. The
upper fluid layer has thickness h1 at rest and constant density q1, and the lower layer has undisturbed thickness
h2 and constant density q2, where q1 is smaller than q2. The relative density difference between the two-layers is
r = (q2 � q1)/q2 (the Boussinesq approximation ensures r << 1). The topography is characterized by H(x)
with a maximum H0. A schematic view of the problem is shown in Fig. 1. It is assumed that the two fluids
are homogeneous and incompressible and that the motion in each of the layers is irrotational such that the
potential theory can be applied. Therefore, the equation governing the flow is Laplace’s equation for the veloc-
ity potential, /, i.e.
Fig. 1.
D/ ¼ 0 ð1Þ

At the free surface two boundary conditions must be satisfied. The first is the kinematic condition,
og
ot
¼ o/

oz
� og

ox
o/
ox

ð2Þ
where g is the surface elevation. The second is the dynamic condition,
o/
ot
þ 1

2

o/
ox

� �2

þ o/
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� �2
" #

þ gg ¼ 0 ð3Þ
where g is the acceleration due to gravity. At the interface, the kinematic boundary condition is similar as that
at the surface, written as,
of
ot
¼ o/i

oz
� of

ox
o/i

ox
; i ¼ 1; or; 2 ð4Þ
where f denotes the interface elevation. The subscripts 1 and 2 represent the upper and lower layers, respec-
tively. In addition to the above kinematic condition, the continuity condition for the normal velocity across
the interface is also required,
o/1

on
¼ o/2

on
¼ V n ð5Þ
Sketch for a two-layer system. h1 (h2): the undisturbed thickness of the upper (lower) layer;H0: the maximum height of the bottom.
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where n is the direction normal to the interface, Vn is the normal velocity of the interface along n. The dynamic
boundary condition at the interface is obtained by balancing the pressure,
Fig. 2.
p1 ¼ p2 ð6Þ
and the pressure is given by the Bernoulli equation, i.e.
pi

qi
þ o/i

ot
þ 1

2
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oz

� �2
" #

þ gf ¼ 0; i ¼ 1; 2 ð7Þ
In consideration of the internal tide generation, the bottom boundary condition reads,
o/
oz
¼ U

oH
ox

ð8Þ
where U is the horizontal component of the tidal current velocity on the bottom surface. For a flat floor, the
term on the RHS of the above equation becomes zero.

3. Numerical method

Usually, when performing a wave simulation one may encounter significant difficulties arisen from the mov-
ing boundary problem. As mentioned in Section 1, a tractable ‘interface-tracking’ technique based on the
mixed Eulerian and Lagrangian concept is employed to circumvent this problem. Before detailing the numer-
ical method, it is necessary to highlight the pivotal idea in advance.

The computing domain is partitioned homogeneously into structured quadrangular meshes suitable for the
boundary configuration, as sketched in Fig. 2. When the surface and interface move to new positions, the
whole area needs to be re-grided, but the total number of the grids keeps unchanged. The fact that the vertical
scale of each grid varies along with the departures of the free boundaries prompts us to apply the Lagrangian
method to calculate the potentials at the boundaries. That is to say, when the dynamic boundary condition is
used to evaluate the potentials, the total time derivative should be applied to account for the movements of the
boundaries. Importantly, an essence should be emphasized that the horizontal scale of each cell does not
change during the whole computing period. This is in line with the Eulerian concept and leads to an absence
of the horizontal spatial differentiations in the material derivatives for the potentials in each Lagrangian time
interval. As a consequence, a modified dynamic boundary condition is required to evaluate the boundary
potentials.
A schematic illustration of the computational grids showing the interior velocity potential vector points and the velocity points.
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3.1. Discretization for the governing equation

In the whole domain, the potential variable, /, is defined exclusively at the geometric center of each unit.
More specifically, for the inner structured grid, / is defined at the cell’s center, while, for the boundary unit,
this unknown variable is specified at the midpoint of each segment. By applying the Green’s theorem, the inte-
gral of the governing equation can be transformed into a contour integral,
Z Z

XiD/dX ¼
I

oXi

o/
ox

dz� o/
oz

dx
� �

¼ 0 ð9Þ
here X and oXi denote the area and boundary of a unit cell, Xi. In keeping with the concept of the finite volume
method, the discretization of the governing equation for an interior cell unit (i, j) (see Fig. 3) can be written as,
/iþ1;j � /i;j

Dx
cos2 vn

iþ þ
/i�1;j � /i;j

Dx
cos2 vn

i�

� �
Dzn

i þ
/i;jþ1 � /i;j

Dzn
i

þ
/i;j�1 � /i;j

Dzn
i

� �
Dx ¼ 0 ð10Þ
where Dx and Dzn
i represent the grid spacing in the x and z directions, respectively; the superscript n denotes

the time step; symbol vn
i� describes the angle between the local and orthogonal coordinates at the left and right

sides of the cell center,
cos vn
i� ¼

Dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ zn

i�1;j � zn
i;j

� �2
r ð11Þ
where zn
i;j denotes the vertical coordinate of the cell (i, j)’s center. Apparently, equations (9) and (10) do not

contain the time variable, indicating all of the potentials in the interior should be calculated simultaneously
in each time interval through solving a large sparse matrix with the known and time-dependent boundary
potentials served as coefficients of the matrix. After all of the interior potential variables (including those
on the two sides of interface) are determined, the boundary potentials as well as the displacements of the mov-
ing boundaries can thus be evaluated by using the kinematic and modified dynamic conditions.

3.2. Tracking the moving boundaries

Usually, to calculate the displacement of free surface, the most direct approach is to make use of the kine-
matic condition. Fig. 4 sketches the movement of the free surface, z=g(t), from time t = t0 to t1. During this
time interval a surface particle initiated at x = x0 is assumed moving from z0 = g(x0, t0) to z2 = g(x1, t1). The
Fig. 3. Discretization of an interior cell (i, j).



Fig. 4. A schematic drawing for the movement of the surface in the time interval (t0, t1).
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position z1 = g(x0, t1) denotes the height of surface g(t1) at the coordinate x = x0. By bearing the basic feature
of this model in mind that the moving mesh system is fixed horizontally, we are motivated to bridge a relation
between z0 = g(x0, t0) and z1 = g(x0, t1), which can be readily derived from the kinematic condition,
gðx0; t1Þ ¼ gðx0; t0Þ þ Dt
o/
oz

� �
z0

� og
ox

o/
ox

� �
z0

( )
ð12Þ
where subscript z0 denotes the quantities at the location z0 = g(x0, t0). On the other hand, the above relation
can be constructed as well from the geometrical relationship between the three points depicted in Fig. 4. It is
not difficult to identify from Fig. 4 the following equalities:
z2 � z0 ¼
o/
oz

Dt;

z2 � z1 ¼
z2 � z1

Dx
Dx
Dt

Dt ¼ og
ox

o/
ox

Dt ð13Þ
The above first equation means that the variation of vertical coordinates of a free surface particle equals the
product of the vertical velocity and time interval. This is in accordance with the Lagrangian description of the
movement of a particle. The latter one is easily understandable from the definition of the gradient. Further-
more, the distance between the heights z0 and z1 can be expressed as,
z1 � z0 ¼ ðz2 � z0Þ � ðz2 � z1Þ ð14Þ

By substituting Eq. (13) into (14), the kinematic condition Eq. (12) can then be recovered. The finite difference
form of (12) can be given by,
gnþ1
iþ1=2 ¼ gn

iþ1=2 þ
2Dt
Dz

/n
iþ1=2;js

� /n
iþ1=2;js�1=2

� �
� Dt

2Dx2
gn

iþ3=2 � gn
i�1=2

� �
F n

iþ1=2;js
ð15Þ
where
F n
iþ1=2;js

¼ 1

2
½T n

iþ1ð/
n
iþ3=2;js

� /n
iþ1=2;js

Þ þ T n
i ð/

n
iþ1=2;js

� /n
i�1=2;js

Þ� ð16Þ
The subscript js denotes the quantity located at the surface and T n
i is equivalent to the part at LHS of Eq. (11)

which represents the rotated effect of the coordinates. It is apparent that the free surface can be traced explic-
itly with the employment of the quantities, including the horizontal and vertical velocities and the surface
slope at last time moment. After the location of surface at the next time level is determined, the potential func-
tion at the new site of surface can hence be evaluated by using the dynamic boundary condition. Note that the
procedure for locating the interface is exactly the same as that for the surface. Consequently, there is no need
to recapitulate it here.
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3.3. Moving mesh algorithm

As mentioned earlier, the mesh is treated as moving along with the surface and interface in the vertical
direction. When the moving boundaries are displaced to new sites, the computing domain should be re-grided,
however, the total grid number keeps unchanged. With Nz,u and Nz,l representing the total grid numbers of the
upper and lower layers in the vertical direction, the unit vertical grid spacing Dzn

i can then be expressed as,
Dzn
i ¼

h1þgn
i �fi

Nz;u
for the upper layer

h2þfn
i �Hi

Nz;l
for the lower layer

8<: ð17Þ
where gn
i , fn

i and Hi represent, in turn, elevations for the surface and interface at the nth time step, and height
of the bottom boundary. With Dzn

i to hand, the vertical coordinate of the cell center zn
i;j can be described by,
zn
i;j ¼

Dzn
i � jþ h2 for the upper layer

Dzn
i � jþ Hi for the lower layer

	
ð18Þ
The above two equations show that the vertical coordinate of each grid is ascertained by the instantaneous
locations of the surface and interface. Once the positions of the moving boundaries are determined at the
beginning of each time step, the computing area is repartitioned accordingly via solving Eqs. (17) and (18),
and the transformation for the spatial differences of the potentials in the domain, Eq. (11), is recalculated.

3.4. Evaluation for the surface potential

To properly evaluate the velocity potential on the moving surface, a relevant expression for the dynamic
condition is necessary which is crucial in accounting for the impacts of the boundary’s displacement. Accord-
ing to the Lagrangian concept, the formal description of the material derivative for any scalar quantity
(including the potential function /) can be expressed as,
d/
dt
¼ o/

ot
þU � r/ ð19Þ
in which U is the velocity vector. It deserves emphasis that the essential characteristic of this numerical model
requires the horizontal coordinate of each grid to keep unchanged during the whole computing period. This
means that when dealing with the total time derivative of the potential variables which are frozen horizontally
(e.g. g(x0, t0) and g(x0, t1) in Fig. 4), one needs to consider only the spatial variation of this quantity in the
vertical direction. In other words, the spatial derivative with respect to x should be dismissed from the above
Lagrangian expression. Thus, the total time derivative of / should be written as,
d/
dt
¼ o/

ot
þ v

o/
oz
¼ o/

ot
þ o/

oz

� �2

ð20Þ
Furthermore, the local variation of / with respect to t, o//ot, involved in Eq. (20) can be determined directly
from the dynamic boundary condition, i.e.,
o/
ot
¼ � 1

2
Uj j2 � gg ¼ � 1

2

o/
ox

� �2

þ o/
oz

� �2
" #

� gg ð21Þ
It is worthy of remark that the term of o//ox in Eq. (19) represents different physical meaning from those in
Eq. (21). The former denotes the spatial variation of the scalar quantity (/) in the horizontal, which vanishes
provided this scalar quantity has not been displaced horizontally. Differently, the latter in Eq. (21) represents
the local horizontal component of the velocity vector, which is effective for both the Eulerian and the Lagrang-
ian concepts. Thus, this term can not be discarded from Eq. (21) even for a fixed position. Substituting Eq.
(21) into (20) yields the practical dynamic condition for the potential variables on the moving surface,
d/
dt
¼ 1

2

o/
oz

� �2

� o/
ox

� �2
" #

� gg ð22Þ
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The corresponding difference equation is,
/nþ1
iþ1=2;js

¼ /n
iþ1=2;js

þ 2Dt
Dz2

/n
iþ1=2;js

� /n
iþ1=2;js�1=2

� �2

� Dt
2Dx2

F n
iþ1=2;js

� �2

� Dt � ggn
iþ1=2 ð23Þ
Obviously, in each Lagrangian time interval, the surface potentials at the new position z1 = g(x0, t1) can be
described explicitly in terms of the variables at the original position z0 = g(x0, t0).

3.5. Algorithm for the interfacial conditions

The velocity potentials on the interface can not be determined directly as those on the surface, but need to
be evaluated simultaneously with the inner potential variables through solving a large sparse linear system.
There are two conditions for relating the potential variables on the two sides of the interface with the inner
potentials, one of which is the continuity of normal velocity across the interface:
o/
oz

� �
fþ
� of

ox
o/
ox

� �
fþ
¼ o/

oz

� �
f�
� of

ox
o/
ox

� �
f�

ð24Þ
here subscripts f+ and f� stand for the variables at the upper and lower sides of the interface, respectively.
Then, the first equation in the discrete form for solving the interfacial potentials can be expressed as,
/iþ1=2;jiþ3=2 � /iþ1=2;jiþ1 � /iþ1=2;ji
þ /iþ1=2;ji�1=2 ¼

Dz
4Dx2

ðfiþ3=2 � fi�1=2ÞðF iþ1=2;jiþ1 � F iþ1=2;ji
Þ ð25Þ
where the subscript ji and ji+1 represent the quantities situated at the lower and upper sides of the interface,
respectively. On the other hand, similar as Eq. (20), the material derivatives of the velocity potentials in the z-
direction at the two sides of the interface can be given by,
d/
dt

� �
fþ
¼ o/

ot

� �
fþ
þ o/

oz

� �2
" #

fþ

;
d/
dt

� �
f�
¼ o/

ot

� �
f�
þ o/

oz

� �2
" #

f�

ð26Þ
Furthermore, making use of Eqs. (6) and (7) gives the following dynamic boundary condition on the interface:
o/
ot

� �
fþ
� o/

ot

� �
f�
¼ 1

2

o/
ox

� �2
" #

f�

þ o/
oz

� �2
" #

f�

� o/
ox

� �2
" #

fþ

� o/
oz

� �2
" #

fþ

( )
þ rgf ð27Þ
By eliminating [o//ot]f+ and [o//ot]f� from Eqs. (26) and (27), the second equation describing the relationship
between the interfacial potentials on the two sides of interface can be rendered as,
d/
dt

� �
fþ
� d/

dt

� �
f�
¼ 1

2

o/
ox

� �2
" #

f�

� o/
oz

� �2
" #

f�

� o/
ox

� �2
" #

fþ

þ o/
oz

� �2
" #

fþ

( )
þ rgf ð28Þ
with the following discrete form,
/nþ1
iþ1=2;jiþ1 � /nþ1

iþ1=2;ji
¼ /n

iþ1=2;jiþ1 � /n
iþ1=2;ji

þ Dt � rgfn
iþ1=2 þ Dt

2Dx2 F n
iþ1=2;ji

� �2

� F n
iþ1=2;jiþ1

� �2
� �

þ 2Dt
Dz2 /n

iþ1=2;jiþ3=2 � /n
iþ1=2;jiþ1

� �2

� /n
iþ1=2;ji

� /n
iþ1=2;ji�1=2

� �2
� � ð29Þ
By coupling Eqs. (25) and (29) with Eq. (10), the unknown potential variables on the two sides of the interface
can then be evaluated simultaneously with those in the interior of the domain.

3.6. The lateral boundary conditions

At the two lateral sides of the computing area the non-reflecting boundary condition is needed to prevent
the waves from reflecting from the boundary into the domain. A Sommerfeld condition [18] is very appropri-
ate in this case, given by,
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o/
ot

� �
l

þ C
o/
ox

� �
l

¼ 0 ð30Þ
where subscript l denotes the quantities at the lateral boundaries. C represents the wave celerity of an incoming
wave. For the sake of simplicity, the random wave speed C is replaced by the linear wave speed C0,
C0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rgh1h2

h1 þ h2

r
ð31Þ
Note that to calculate the potentials at the lateral boundary for the next time step, the material derivative of
the potential in the vertical direction Eq. (20) is still useful. By combining Eq. (30) with (20), expression for
calculating the potential at the lateral boundary after one time step can be formulated as,
d/
dt

� �
l

¼ o/
oz

� �2
" #

l

� C0

o/
ox

� �
l

ð32Þ
or written in the discrete form as,
½/�l;t1 ¼ ½/�l;t0
þ Dt

o/
oz

� �2
" #

l;t0

� C0Dt
o/
ox

� �
l;t0

ð33Þ
Clearly, the above implementations are applicable only if the linear waves are taken into accounts. As a matter of
fact, the nonlinear waves occur more frequently than the linear waves, therefore a damping zone should be added
at the end of the domain to eliminate the effects of strong nonlinearity. Such a damping zone, as introduced by,
e.g. [19] is a very effective and robust method for preventing wave reflections from the domain boundaries.

In general, the computational procedure for tracking the moving boundaries can be summarized as follows.
Firstly, we use the initial values, including the potentials in the interior and those at the boundaries together
with locations of the moving boundaries, to evaluate the potentials at the next time step. When all of the
potentials and their vertical component of fluxes at the moving boundaries are determined, the new sites of
the moving boundaries can then be derived from the kinematic condition. By proceeding iteratively with
the above routings, one can thus acquire the integral time series of the sites of the moving boundaries.

3.7. Stability of the method

As is clear previously, the boundary potentials are worked out in an explicit manner which is potentially
more convenient for implementation than the implicit method. On the other hand, this does, however, neces-
sitate us finding a stability restriction to avoid the occurrence of the instability and ensure the computation
uninterruptedly. Practically, in the case of fixed grids the stability for the equation containing the time deriv-
ative term and convective term is given by the CFL-restriction, which in one-dimension reads
Dt
Dx

o/
ox





 



 6 1 ð34Þ
Although the mesh system of this model is not fixed but moves vertically with the moving boundaries, the CFL
condition may still be of relevance for making a criterion for the temporal scales due to the grids are fixed
horizontally. According to the wave theory, the stability condition for a progressing wave that prohibits
the occurrence of wave breaking is the flow velocity, |o//ox|, less than the wave celerity, C. Furthermore, it
is easy to deduce that the probable maximum wave celerity in a two-layer fluid system can be described by
the maximum nonlinear speed of the surface wave, that is,
Cm ¼
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðh1 þ h2Þ

p
ð35Þ
Therefore, the criterion for the time step can be given by,
Dt 6
Dx
Cm
¼ 2Dx

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðh1 þ h2Þ

p ð36Þ
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For instance, considering a two-layer fluid system with total depth 1000 m, if the horizontal spatial scale of a
unit grid is set as 150 m, the upper limit for the time step is hence 1 s.

4. Numerical results

For the purpose of demonstrating the effectiveness of this numerical method, two fundamental problems for
the interfacial wave dynamics, the generation and evolution of the interfacial waves, are studied. Firstly, the
interfacial wave generations by the interplay between the barotropic tide and topography are studied both ana-
lytically (see Appendix A) and numerically, and good agreement between the two methods is found. For the next
problem, the nonlinear interfacial wave evolutions at various water depth ratios are modeled, and the numerical
results are compared favorably with the existing weakly and strongly nonlinear interfacial wave theories.

4.1. Simulations for the interfacial wave generations

As a first step, the generation processes of interfacial waves are simulated and the numerical results are
compared with the analytic results obtained in Appendix A. For a weak Gaussian topography, the environ-
mental parameters are outlined as follows: r = 0.003, h1(h2) = 100 m (100 m), U0 = 0.1 ms�1, and T = 3 h
(here T is the tide period). Additionally, the max height and characteristic horizontal scale of the topography
are set as H0 = 10 m and b = 2000 m, respectively.

Fig. 5 gives an example of the generation process of the interfacial wave, where the linear features are pre-
dominant. It is evident that during each tidal period T, one entire wavelength of interfacial wave is generated
and propagates outside from the source position. To make quantitative verifications for the numerical results,
more simulations are performed under various topographic and tidal conditions, and the results are compared
with the analytical predictions. Fig. 6a plots the dependencies of K on Fr, where excellent agreement between
the two kinds of results is clear for e = 0.05. As e rises to 0.15, a certain discrepancy emerges, likely for the
analytical model has limited applications for strong topographies.

Fig. 6b shows a plot of K versus db for period T = 3 and 12 h, where two remarks can be raised. First, it is
apparent that the simulated wave height K exhibit reasonable agreement with the analytical results. Second,
the simulated value of the critical topographic length bc is found to be 2.95 (11.79) km as T = 3 (12) h, which is
exactly identical to that predicted by the analytical formulation bc =

p
2C0/x0 (see Appendix A).

In order to manifest this numerical model capable of dealing with the generation of strongly nonlinear
interfacial waves, a case of smaller depth ratio and stronger topography is examined. The history of the
Fig. 5. An example of the interfacial wave generation induced by tidal flow over a Gaussian topography. The normalized topographic
height is e = H0/(h1 + h2) = 0.05, the dimensionless thickness of the upper layer dh = h1/(h1 + h2) = 0.5, the Froude number Fr = U0/
C0 = 0.0825, and the tidal period T = 3 h. k0 = C0T is the wave length of the linear interfacial wave. C0 is calculated from Eq. (31).



Fig. 6. The dimensionless wave height K versus the Froude number Fr (a), and horizontal topographic length b (b). Comparison between
the numerical and analytical results.
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interfacial displacement is depicted in Fig. 7, where the depth ratio, relative topography magnitude and Fro-
ude number are, dh = 0.1, e = 0.8, Fr = 0.307, respectively. As seen from Fig. 7, weak undulances are initially
created over the sill and then evolve into a train of solitary waves as the tidal flow slackened and turned, which
coincides with the observations provided by many researchers [20,21].

It has been demonstrated in Appendix A that resonance effects may arise from the wavelike topographies
provided the wavenumber of the topography and the interfacial wave are identical. Here, simulations are per-
formed (Fig. 8) to substantiate this conclusion. A tide of period T = 1 h is considered, such that the theoretical
wavelength of the interfacial wave is 4365 m according to the known formula for the linear interfacial wave in
a two-layer fluid. To identify the resonance effect series of truncated sinusoidal topographies (e = 0.025) with
different wavenumbers are selected. The reason for choosing the truncated sine topographies is to avoid the
numerical instability near the lateral boundaries caused by the resonance effect. For the sake of clarity, only
two examples are pictured to evidence the resonance effect, in which the wavenumbers of the topographies are
2000 m and 4000 m, respectively, as shown in Fig. 8a and b. Obviously, the interfacial wave generated in Fig.
8b, where wavelength of the topography (4000 m) close to that of the interfacial wave, exhibits intensive mag-
nitude in contrast with the weak example illustrated in Fig. 8a. This shows unambiguously that the resonance
effect has emerged even for a truncated topography as long as the wavenumber close to the inherent value of
the interfacial wave.

4.2. Simulations for the interfacial wave evolutions

In this section, we would like to get some perspectives on the interfacial wave evolutions. One way of illus-
trating the usefulness of the current fully nonlinear numerical model is to compare solitary wave solutions with



Fig. 7. An example of the generation process of the interfacial solitary waves. The normalized topographic height is e = H0/
(h1 + h2) = 0.8, the dimensionless thickness of the upper layer dh = h1/(h1 + h2) = 0.1, the Froude number Fr = U0/C0 = 0.307, and the
tidal period T = 12 h.

Fig. 8. The generation processes of interfacial waves induced by tidal flows over truncated sinusoidal topographies. The horizontal
topographic length scales are 2000 m (a), and 4000 m (b). The water depths h1 = h2 = 100 m, and the interfacial wave length k0 = 4365 m.
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available results by asymptotic theories for such waves, i.e., the KdV theory and the eKdV theory, as men-
tioned in Section 1. The solitary wave solution for an elevation with amplitude A0, which is the case when
h1 > h2, may be found in (see e.g. [14]; and the references therein):
fðx� CtÞ ¼ A0

aþ ð1� aÞcosh2½ðx� CtÞ=k�
ð37Þ

C ¼ C0 þ
a1

3
A0 þ

a2

6
A2

0 ð38Þ

k2 ¼ 12b

a1A0 þ 1
2
a2A2

0

ð39Þ

a ¼ �a2A0

2a1 þ a2A0

ð40Þ
Here C0 is the linear phase speed. The coefficients a1, a2 and b describe the quadratic and cubic nonlinearities
and the dispersion, respectively. For a two-layer system with a rigid lid and no mean flow, in the Boussinesq
approximation,
a1 ¼
3

2
C0

h1 � h2

h1h2

ð41Þ

a2 ¼
3C0

ðh1h2Þ2
7

8
h1 � h2ð Þ2 � h3

1 þ h3
2

h1 þ h2

� �� �
ð42Þ

b ¼ C0

6
h1h2 ð43Þ
Note that when a2 reduces to zero the classical sech2 solution of the KdV equation is recovered from Eqs.
(37)–(40).

Fig. 9 present three cases illustrating evolution process of an initially truncated sinusoidal interfacial wave
in various water depth ratiosh1/h2, which are 2, 0.5 and 1, respectively, in (a), (b) and (c). The normalized ini-
tial wave amplitudes A0/(h1 + h2) are 1/15 (a), 1/15 (b) and 0.05 (c). As seen clearly in Fig. 9a, the frontal part
of this harmonic wave becomes narrower with increasing the wave height, until the nonlinearity is balanced by
the dispersion effect and ultimately a soliton-like wave is shaped. As is well known from the KdV theory the
polarity of a solitary wave is largely dependent on the quadratic nonlinear coefficient a1: a1 > 0 corresponds to
a solitary wave of elevation, and a1 < 0 to one of depression. By invoking Eq. (41) one finds that in this case a1

is positive for h1/h2 greater than unit. Thus, the simulated solitary wave profile exhibiting upward polarity
agrees well with the KdV theory. Similarly, one solitary wave of depression is clearly seen in Fig. 9b, as a result
of the negative a1.

In Fig. 9c, the water depth ratio h1/h2 equals 1, and, as a result, a1 reduces to zero, leading to the interfacial
wave keeps almost in harmonic. The persistence of an approximately harmonic state can be accounted, in
principle, for the fact that the incident wave is substantially weak, that is, the subtle higher nonlinearity is
insufficient to have a pronounced effect on the appearance of the wave profile. When the normalized initial
wave amplitude exceeds 0.15 as discussed in the latter context, a very distinctive wave configuration may
be shaped due to the increased effect of the higher nonlinearity. In general, the simulated wave configurations
showing strong dependence on the water depth ratios have provided a striking agreement with the KdV
theory.

For more solitary wave solutions the wave profiles are plotted in Fig. 10 and compared with the KdV and
eKdV theories, where the fundamental differences between the fully nonlinear and weakly nonlinear models
are illustrated. For a weak normalized wave amplitude, A0/(h1+h2) = 0.05, the KdV, eKdV and fully nonlin-
ear models are in approximate agreement, as shown in Fig. 10d. However, significant discrepancies between
the three solutions emerge for relatively larger wave amplitude. Both of the weakly nonlinear methods under-
estimate the wave width until A0/(h1 + h2) up to 0.22 (Fig. 10b), where the eKdV solution agrees remarkably
well with the fully nonlinear solution. When A0/(h1 + h2) exceeds 0.22 (Fig. 10a) the eKdV solution overesti-
mates the wave width while the KdV solution still maintains a quite small wave width. This variation of



Fig. 9. Examples for the evolution processes of initially truncated sinusoidal interfacial waves. The water depth ratio h1/h2 is 2 (a), 0.5 (b)
and 1 (c). The normalized initial wave amplitudes A0/(h1 + h2) = 1/15, 1/15 and 0.05, respectively, in (a), (b) and (c).
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differences of wave widths between the weakly and fully nonlinear solutions depicted in Figs. 10 shows a nota-
ble agreement with that made by Helfrich and Melville (see [14, Fig. 5]).

Next, phase speeds for the solitons are measured and compared with the weakly and strongly nonlinear
theories. As previously, the phase speed of a solitary wave estimated by the eKdV theory is known to satisfy



Fig. 10. Profiles of the solitary waves obtained by the numerical model (filled squares), eKdV (solid line) and KdV (dashed line) theories.
h1/h2 = 4 in all cases. The normalized initial wave amplitude, A0/(h1 + h2), = 0.23 (a), 0.22 (b), 0.11 (c), and 0.05 (d).
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Eq. (38). In addition, the phase speed for strongly nonlinear interfacial wave has also been derived [15,16],
given by (in the Boussinesq limit):
V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rgðh1 � AÞðh2 þ AÞ

h1 þ h2

s
ð44Þ
Comparisons of the solitary wave speeds between the solutions obtained from the KdV, eKdV, strongly
nonlinear (CC) theories and this numerical model are presented in Fig. 11. In Fig. 11a where the depth ratio
h1/h2 = 4, the simulated wave speeds agree well with the CC solutions, and also close to the eKdV solutions
but differ notably with the KdV solutions. In Fig. 11b, the depth ratio h1/h2 = 2 and the results between the
simulations, CC solutions and eKdV solutions are indistinguishable. Helfrich and Melville have suggested that
the eKdV theory and the fully nonlinear theory agree quite well for 0.4 < h1/(h1 + h2) < 0.6 and differences
grow outside this range (see [14]). Note that the depth ratio h1/(h1 + h2) in Fig. 11b exceeds the aforemen-
tioned upper limit to a small extent, but, however, the eKdV and fully nonlinear theories are still in striking
agreement.

As mentioned in Section 1 the wave shape of ‘thick’ solitary wave can not be delineated by the KdV solu-
tion, but can be captured by eKdV and strongly nonlinear theories. According to the eKdV theory, as the
upper limit (a ? 1) is approached the wave begins to broaden until the maximum wave amplitude
A0max = �a1/a2 is reached. However, a different maximum wave amplitude is produced by the strongly non-
linear (i.e. CC) theory, which is A0max = (h1 � h2)/2. Thus, it is of interest to compare the maximum wave
amplitudes between the eKdV theory, CC theory, and this fully nonlinear model. The evolution of an initial
solitary wave with normalized amplitudes 2A0/(h1 � h2) = 16/9 is displayed in Fig. 12, where the water depth
ratio is h1/h2 = 4. (At this water depth ratio, the maximum wave amplitudes suggested by the eKdV and CC
theories, are 48h2/41 and 3h2/2, respectively.) One can find clearly from Fig. 12 that the wave decreases its
amplitude rapidly at the initial stage and eventually develops a flat-crested wave shape with a maximum wave
amplitude, A0max = (h1 � h2)/2, precisely the same as that suggested by the CC theory.

Furthermore, it has been stressed in Section 1 that in keeping with the existing asymptotic theories no
steady solitary waves can exist in a system at the critical depth ratio. Also, characteristics of the transient inter-
facial waves at such a depth ratio are still unclear so far. As a consequence, it seems of special interest to give a
preliminary elucidation for the wave properties at the critical depth ratio with the employment of the current
fully nonlinear method. Fig. 13 presents an example of evolution process of an initially truncated sinusoidal
interfacial wave where the normalized initial wave amplitude A0/(h1 + h2) = 0.2 and the water depth ratio h1/
h2 = 1. It is clear that the leading half part of the incident wave broadens with decreasing amplitude, as does
the rear half. However, there are some differences. Unlike the leading half, the latter grows into a nearly flat-



Fig. 11. Soliton speeds normalized by the linear rate: Comparison between the KdV theory (dotted line), eKdV theory (dashed line), CC
theory (solid line), and the simulations (stars). The depths ratio h1/h2 = 4 (a) and 2 (b).
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crested wave shape. At the wave crest short solitary waves emerge at the outset and ultimately vanish, which
propagate with slower speeds relative to the long wave.

In order to more closely examine the wave properties, the simulated wave profiles are compared for various
initial wave amplitudes and the comparisons are displayed in Fig. 14. It is evident in Fig. 14a that the three
waves have precisely a same wave length at the initial stage, whilst the wave amplitudes are different. Fig. 14b
shows unambiguously that all of these waves become wider with reduced amplitudes contrasting strikingly
with their initial states. In particular, one can notice that the waves of greater amplitudes have slower speeds
and all less then the linear rate. This is in a sharp contrast with those illustrated in Fig. 11, where the nonlinear
phase speed is evidently greater than the linear rate. This result may be partially inferred from Eq. (38), though
which is derived from the weakly nonlinear theory. One can readily recognize from this equation that the wave
speed C decreases with the wave amplitude A0 and less than C0 only if a1 = 0 (note a2 < 0). Likewise, a similar
result can be deduced as well from the equation for the wave celerity of strongly nonlinearity, Eq. (44). In gen-
eral, the above superficial discussion shows that the transient wave properties at the critical depth ratio differ
remarkably from the fundamental characteristics of the nonlinear interfacial waves at the non-critical depth
ratios. The dispersive effect plays a primary role in the evolution of transient interfacial waves in contrast with
the minor effect of the nonlinearity, both tending to reduce the nonlinear wave speed.



Fig. 12. An example for the evolution process of an initial interfacial solitary wave in a two-layer system (h1/h2 = 4). The normalized
initial wave amplitude 2A0/(h1-h2) = 16/9. t0(g/h2)1/2 = 1594.

Fig. 13. An example for the evolution process of an initially truncated sinusoidal interfacial wave in a two-layer system (h1/h2 = 1). The
normalized initial wave amplitude A0/(h1 + h2) = 0.2, the normalized period T(g/h2)1/2 = 1594, and k0 is the wavelength of the linear
interfacial wave.
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4.3. Convergence results

To check the numerical convergence of the method, simulations have been performed for the generation
and evolution of the interfacial waves under different grid points. Firstly, interfacial wave generations over
weak topography are considered. The environmental data are the same as those of Fig. 5. For grid refinement,
four different grids have been used with 400 � 40, 200 � 40, 100 � 20 and 70 � 20 grid points. The results are
compared with the analytical result (Eq. (A.17)) and presented in Fig. 15a. Table 1 shows the maximum errors
for the wave height and wave length relative to the analytical results. It is clear from the plot and table that the
numerical method is convergent with increasing the resolution. Furthermore, the evolutions of an initial sol-
iton for four different grids are performed where the environmental data are akin to those of case (b) in Fig.
10. The results are compared with the eKdV theory (Fig. 15b) and the maximum errors for the wave height are
provided (the wave length of a soliton is infinite which is hence not measured), from which as well the con-
vergence of the numerical method is apparent.



Fig. 14. Wave profiles at time t = 0 (a) and 7T (b): Comparisons between various initial wave amplitudes. The normalized initial wave
amplitude A0/(h1 + h2) = 0.05 (black line), 0.1 (red line), and 0.2 (green line). (For interpretation of the references in colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 15. Convergence of the method. Generation of the linear waves (a), evolution of the solitons (b).
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Table 1
Normalized maximum errors in wave height (Wh) and wave length (Wl) with different resolutions for the plots in Fig. 15a and b.

Grid points 70 � 20 100 � 20 200 � 40 400 � 40

Generations Wh-errors 0.73 0.4 0.093 0.047
Wl-errors 0.15 0.09 0.004 0.008

Evolutions Wh-errors 0.31 0.17 0.02 0.0004
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5. Conclusions

A fully nonlinear and dispersive numerical model for interfacial waves in two-layer systems was proposed
by employing an efficient ‘front-tracking’ method. The essential technique, taking full advantages of the Eule-
rian and Lagrangian concepts, was fulfilled by adjusting vertical scales of the mesh system along with the
instantaneous sites of the moving boundaries but keeping the horizontal coordinates of each grids unchanged.
In such a moving mesh system, a modified dynamic boundary condition thus became indispensable for the
accurate evaluation of the boundary potentials.

Two important processes of interfacial wave dynamics were simulated to validate the reliability and accu-
racy of this numerical method. Firstly, in consideration of the interfacial wave generation the simulated wave
characteristics showed good agreement with the analytic predictions. Further, the interfacial solitary wave
evolutions were modeled in various water depth ratios, aiming at demonstrating the capability of simulating
strongly nonlinear interfacial waves as well as revealing the prominent features of those at the critical depth
ratio. In reproducing the nonlinear interfacial solitary waves at the non-critical depth ratios, excellent agree-
ment was exhibited upon comparing the essential wave features with the asymptotic theories. Moreover, the
propagation and evolution of internal bores (wave amplitude attained the maximum) were simulated success-
fully and the resulting wave amplitude agreed perfectly with the fully nonlinear wave theory, which manifested
the numerical model more competent than the weakly nonlinear theories. Finally, simulations at the critical
depth ratio presented an unusual result different to the common knowledge of the nonlinear waves: the dis-
persive effect was found to play a more significant role than the nonlinearity and the nonlinear wave speed
was decreased to below the linear rate.
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Appendix A. Analytical expressions for the surface and interfacial elevations triggered by the forcing sources at
the bottom

For an inviscid and incompressible fluid, if assuming the motion in each layer is irrotational, the governing
equations can be given by the potential theory as follows:
D/ðuÞ ¼ 0; �h1 < z < 0

D/ðlÞ ¼ 0; �ðh1 þ h2Þ < z < �h1

ðA:1Þ
where superscripts (u) and (l), henceforth, denotes the quantities of the upper and lower layers, respectively. The
linearized boundary conditions on the surface and interface are given by,
gt ¼ /ðuÞz

/ðuÞt þ gg ¼ 0

(
; z ¼ 0

1t ¼ /ðuÞz ¼ /ðlÞz

ð1� rÞ½/ðuÞt þ g1� ¼ /ðlÞt þ g1

(
; z ¼ �h1

ðA:2Þ
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From the fundamental conception for the long internal wave generation by the tide flow over uneven topog-
raphy [22], the bottom boundary condition can be written as,
/ðlÞz ¼ U 0H xðxÞeix0t; z ¼ �ðh1 þ h2Þ ðA:3Þ

here U0 and x0 represent the velocity and frequency of the barotropic tide current, respectively. In order to
obtain the formal solution of this problem, we resort to the Laplace transform with respect to t and the Fou-
rier transform with respect to x defined by,
~�f ðk; sÞ ¼ 1ffiffiffiffiffiffi
2p
p

Z 1

�1
e�ikx dx

Z 1

0

e�stf ðx; tÞdt ðA:4Þ
where the tilde and bar are used to represent the Fourier and Laplace transformations, respectively. Applica-
tion of the joint integral transformations gives the integral solutions,
/ðuÞ ¼ iU0ffiffiffiffi
2p
p
R1
�1

eH ðkÞeikx

gk
1

2pi

R
Br

s2 s2

kgsh kz�chkz
� �

est

G k;sð Þðs�ix0Þ
dsdk;

/ðlÞ ¼ iU0ffiffiffiffi
2p
p
R1
�1
eH ðkÞeikx 1

2pi

R
Br

�est

Gðk;sÞðs�ix0Þ

� s4

k2g2 ðsh kðh1 þ h2Þ � rshkh1chkh2Þ þ s2

kg chkðh1 þ h2Þ
hn

þrsh kh1chkh2�chkðzþ h1 þ h2Þ � Gðk; sÞshkðzþ h1 þ h2Þgdsdk

ðA:5Þ

g ¼ iU 0ffiffiffiffiffiffi
2p
p

g2

Z 1

�1

eH ðkÞeikx

k
1

2pi

Z
Br

s3est

Gðk; sÞðs� ix0Þ
dsdk ðA:6Þ

1 ¼ iU0ffiffiffiffi
2p
p

rg

R1
�1
eH ðkÞeikx 1

2pi

R
Br

sest

Gðk;sÞðs�ix0Þ

�

s4

k2g2 ½ðsh kðh1 þ h2Þ � rshkh1chkh2Þchkh2 � ð1� rÞsh kh1�

þ s2

kg ½chkðh1 þ h2Þchkh2 � ð1� rÞchkh1�
þrshkh1chkh2chkh2 � Gðk; sÞshkh2

8>><>>:
9>>=>>;dsdk

ðA:7Þ
where,
Gðk; sÞ ¼ RðkÞ
k2g2 s4 þ sh kðh1þh2Þ

kg s2 þ rshkh1shkh2;

RðkÞ ¼ chkðh1 þ h2Þ � rshkh1shkh2

ðA:8Þ
Evidently, G(k, s) = 0 gives the dispersion relation of this problem, roots of which satisfy,
s2 ¼ kgshkðh1 þ h2Þ
2RðkÞ � �1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4rRðkÞsh kh1shkh2

sh2kðh1 þ h2Þ

s" #
ðA:9Þ
Note that the above equation exists four pure imaginary roots, which are presumed to be s1 = x1(k)i,
s2 =� x1(k)i, s3 = x2(k)i and s4 =� x2(k)i, respectively, (herein x1 > x2 > 0). Under the shallow water and
Boussinesq approximations (r� 1), we have,
x1 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðh1 þ h2Þ

p
; x2 ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rg

h1h2

h1 þ h2

r
ðA:10Þ
This is the familiar dispersion relations for the surface and interfacial waves in a two-layer fluid. By applying
the Cauchy’s residue theorem, together with the shallow water and Boussinesq approximations, the steady
state solutions of Eqs. (A6) and (A7) can be acquired as,
g ¼
ffiffiffi
p
p

U 0x0ffiffiffi
2
p

gðh1 þ h2Þ
Im � eH ðk1Þeiðx0t�k1 xj jÞ þ eH ðk2Þeiðx0t�k2 xj jÞ
h i

ðA:11Þ

f ¼ �sgnx �
ffiffiffi
p
2

r
U 0x0

rgh2

Im
rh2

2

ðh1 þ h2Þ2
eH ðk1Þeiðx0t�k1 xj jÞ þ eH ðk2Þeiðx0t�k2 xj jÞ

" #
ðA:12Þ
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here the wave numbers k1 and k2 satisfy,
k1 ¼
x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðh1 þ h2Þ
p ; k2 ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rg

h1h2

h1 þ h2

r
ðA:13Þ
Considering a Gaussian topographic profile defined by H(x) = H0exp(�x2/b2), Eqs. (A11) and (A12) can be
rewritten as,
g ¼
ffiffiffi
p
p

U 0x0H 0b
2gðh1 þ h2Þ

Im � exp � b2k2
1

4

� �
eiðx0t�k1 xj jÞ þ expð� b2k2

2

4
Þeiðx0t�k2 xj jÞ

� �
ðA:14Þ

f ¼ �sgnx �
ffiffi
p
p

U0x0H0b
2rgh2

Im
h2

2
r

ðh1þh2Þ2
expð� b2k2

1

4
Þeiðx0t�k1 xj jÞ

h
þ exp � b2k2

2

4

� �
eiðx0t�k2 xj jÞ

i ðA:15Þ
As seen from these two equations, both the surface and interfacial elevations comprise two modes of waves,
the fast and slow modes, phase speeds of which are x0/k1 and x0/k2, respectively. By comparing wave ampli-
tudes of the two kinds of waves, we can readily identify that amplitude of the interfacial wave of the slow
mode is much greater than the other components and hence deserves a detailed examination. By using the fol-
lowing dimensionless variables:
K ¼ A
h1 þ h2

; e ¼ H 0

h1 þ h2

; F r ¼
U 0

C0

; dh ¼
h1

h1 þ h2

; db ¼ bk2 ¼
bx0

C0

ðA:16Þ
amplitude of the interfacial wave of the slow mode takes a dimensionless form as,
K ¼
ffiffiffi
p
p

2
F rdhedb exp � d2

b

4

� �
ðA:17Þ
where C0 represents the linear phase speed of interfacial wave of the slow mode, K the dimensionless wave
amplitude, e the dimensionless topographic height, Fr the Froude number for the ocean tidal current, dh

the dimensionless thickness of the upper layer, and db is the dimensionless horizontal topographic length.
The above equation shows clearly that K is a monotonically increasing function of Fr and e, while takes a max-
imum as d2

b up to 2, where the corresponding critical value is bc =
p

2C0/x0.
In addition, if a bottom feature like a wavelike profile is taken into consideration, it is easy to check that

expression for the wave amplitude may tend to infinite provided the wave numbers of the topography and the
interfacial wave are equal. In other words, a resonance effect that breaks down the linear theory occurs at this
stage.
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