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Abstract
Electrowetting is one of the most effective methods to enhance wettability. A significant change of contact
angle for the liquid droplet can result from the surface microstructures and the external electric field, without
altering the chemical composition of the system. During the electrowetting process on a rough surface, the
droplet exhibits a sharp transition from the Cassie–Baxter to the Wenzel regime at a low critical voltage. In
this paper, a theoretical model for electrowetting is put forth to describe the dynamic electrical control of the
wetting behavior at the low voltage, considering the surface topography. The theoretical results are found to
be in good agreement with the existing experimental results.
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1. Introduction

The manipulation of the microfluidics is one of the most important applications in
microelectromechanical systems (MEMS), such as the lab-on-a-chip and biomed-
ical microdevice systems [1–4]. The classical effect of electrowetting on dielectric
(EWOD) [5, 6] is to make a droplet flatten and spread by applying voltage between
the electrodes in the droplet and under the dielectric coating. As the electrical con-
trol of the microfluidic motion is significantly more promising for microdevices and
easy to manipulate, electrowetting has attracted much research interest [7–13].

When a liquid droplet is placed on a solid surface, it remains as a drop exhibiting
a specific contact angle between the liquid and solid phase or spreads across the
surface to form a wetting film. In 1805 Young described the contact angle θ0 for
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a smooth surface at the three-phase contact line [14], deriving it from the force
equilibrium in the horizontal direction by the interfacial tensions at the solid–vapor
(γsv), liquid–vapor (γlv) and solid–liquid (γsl) interfaces:

cos θ0 = γsv − γsl

γlv
, (1)

which is generally called Young’s equation. The origin of surface tension γ can be
explained at the molecular level [15].

The topography patterns on surfaces play a crucial effect in wetting in natural
systems [16, 17], such as the configuration of lotus leaves. The roughness effect is
classically described by Wenzel’s law [18] as:

cos θ = R cos θ0, (2)

where θ is the contact angle on rough surfaces and R is the roughness factor, given
as the ratio of actual to apparent (geometric) solid–liquid contact areas:

R = Asl(actual)

Asl(apparent)
. (3)

For the case in which the surface is heterogeneous with fractions of open air [19,
20], an alternative model for the composite surface was developed by Cassie and
Baxter [21]. If f1 is the total area of solid–liquid interface and f2 the total area of
liquid–air interface in a plane geometrical area of unity parallel to the rough surface
(f1 + f2 = 1), then the contact angle θc for the composite surface is expressed by

cos θc = f1 cos θ0 − f2. (4)

If the contact angle is large and the surface is sufficiently rough, the apparent contact
angle from equation (4) becomes [22]:

cos θc = Rf1 cos θ0 − f2. (5)

These models are widely used in the analysis and preparation of the solid–liquid–air
composite surfaces, especially for the superhydrophobic surfaces.

Electrowetting is the phenomenon of enhancing the wettability of a solid surface
by applying an external voltage across the solid–liquid interface [22]. Lippmann
was the first to conclude that the electrocapillary force at the interface could be
modified by external static charges [24]. The Lippmann equation was extended
to the well-known Lippmann–Young equation [12], which is currently adopted
as the basis for almost all discussions regarding electrowetting. Because of the
miniaturization tendency in MEMS, the large surface area-to-volume ratio of the
microdevices causes serious surface effects in the electrowetting. The results of
electrowetting experiments on rough surfaces show that the cosine of the appar-
ent contact angle is proportional to the square of the increasing voltage. However,
there is always a critical voltage which is usually low in these experiments. The rate
of change of the cosine of the contact angle before this critical voltage is smaller
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than after. Besides, the Lippmann–Young equation cannot describe the contact an-
gle variation on rough surfaces. The Wenzel and Lippmann equations have been
combined to describe the contact angle change after the critical voltage on rough
surfaces [25]. As far as we know, there is no theoretical model to describe the elec-
trowetting phenomenon on a rough surface before this critical voltage. In this paper,
we attempt to establish an electrowetting model to describe the electrowetting be-
havior at a low voltage, including the influence of the surface microstructure. Our
work is compared with the existing experimental results in the published literature.
For the nomenclature used in this study, the reader is referred to Appendix A.

2. Theory

The most popular experimental configuration of electrowetting is shown in Fig. 1.
The shape of droplet without applied voltage is shown in Fig. 1 by the dashed line,
while the shape with applied voltage is shown by the solid line. EWOD enables
manipulation of liquid droplets by electrically controlling surface wettability, man-
ifested by the contact angle between the liquid and dielectric coating. If the sessile
droplet is large enough, it will tend to flatten under the influence of gravity. We
neglect the gravity in this paper as the droplet diameter is much smaller than the
capillary length [26], which is 2.7 mm for water. At this length scale, the surface
tension is at the dominant status to the shape of the droplet. In the absence of exter-
nal electric fields, the behavior of droplet is determined by surface tension alone.

2.1. Electrowetting on Smooth Surfaces

In 1875, through the study on the interface between the electrolyte solution and
hydrargyrum (also known as mercury), Lippmann [24] put forward the equation

σsl = −
(

∂γsl

∂U

)
µ,P,T

, (6)

Figure 1. Electrowetting behaviour of a conductive liquid on a dielectric film. The external voltage,
which causes the droplet to spread, is applied between a thin Pt wine electrode and a well conductive
membrane on the glass.
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where σsl is the surface charge density at the solid–liquid interface and U is the
voltage difference applied across the interface. Equation (6), which is called the
Lippmann equation, describes the relation between solid–liquid surface tension,
voltage and surface charge at a constant temperature T , pressure P and chemical
potential µ. Under special conditions, Lippmann’s equation can be deduced from
the Gibbs adsorption formula and the Nernst formula [27]. When the Lippmann
equation is applied in the case of EWOD, the dielectric layer is considered as part
of the effective solid–liquid interface [13]. Then integrating equation (6), assuming
the capacitance is independent of the voltage, yields

γsl = γsl0 − 1

2
CU2, (7)

where γsl0 is the surface tension at the point of zero charge, and for a simple planar
surface the capacitance per unit area is C = εε0/d , where d is the thickness of the
insulator film in the electrowetting, and ε and ε0 are the dielectric constants of the
insulator film and vacuum, respectively. When equation (7) is substituted into the
classic Young’s equation, the famous Lippmann–Young equation, which predicts
the contact angle θe for electrowetting, is derived:

cos θe = cos θ0 + η, (8)

where θ0 is the contact angle without any voltage and η = εε0U
2/(2dγlv) is a di-

mensionless electrowetting number, which represents the ratio between electrostatic
energy per unit area and the surface tension [12]. Equation (8) is used only for a
smooth surface. It must be mentioned that as the electric double layer is formed at
a metal–electrolyte interface, the electric field at a metal–electrolyte interface can
induce a change in surface tension [6]. However, electrowetting on conductive sur-
faces has the limitation of the electron transfer from the electrode to redox-active
species in the liquid, so the EWOD for general applications has been developed
rapidly in the recent years. As the electrolyte solution is treated as a perfect con-
ductor, the property of the dielectric layer mainly determines the storage of the
electrostatic energy [13]. In this paper, our attention is focused on the EWOD.

2.2. Extended Electrowetting Equation

In an electrowetting experiment, one can achieve from superhydrophobicity to
almost complete wetting for liquids on microstructured surfaces [28]. Another im-
portant phenomenon is also reported, i.e., the apparent contact angle will reduce
suddenly at a critical voltage, because the liquid penetrates into the grooves [25,
28]. The rate of change of the cosine of the contact angle is different before or after
this critical voltage. The apparent contact angle change after the critical voltage can
be predicted by the combined expression of Wenzel and Lippmann equations.

On the basis of the macroscopic balance condition of the horizontal force com-
ponents at the three-phase contact line, the conventional electrowetting equation is
derived. The latest studies about how electrostatic fields alter the contact angle in
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electrowetting show that in the vicinity of the three-phase contact line, the electric
force via the Maxwell stress is balanced by the Laplace pressure, i.e.,

�el(r̄) = 2γlvκ(r̄), (9)

where �el(r̄) = ε0
2 Ē(r̄)2 is the Maxwell stress, Ē(r̄) is the local electric field, PL =

2γlvκ(r̄) is the Laplace pressure, κ(r̄) = (1/r1 + 1/r2)/2 is the mean curvature,
and r1 and r2 are the two principal radii of curvature of the surface. Its effect is
just to locate the contact angle around the contact line and its influence distance
from the contact line only approximately equals the thickness of the dielectric layer
[8, 29, 30]. As the contact angle studied in this paper is at the macroscopic scale,
the approach to minimize the free energy of the system is also used to extend the
electrowetting equation to rough surfaces.

Here the way Cassie and Baxter treated a composite surface is used to extend
the classical electrowetting equations to microstructured surfaces. For simplicity,
the optimized rough surface with hemispherically topped cylindrical asperities for
superhydrophobicity [31] is shown as an example in our model (Fig. 2). The total
system energy including both the surface and electrostatic energies becomes

Etot = γlvAlv + (−γsvAsl + γslAsl) − EeAsl, (10)

where Ee is the electrostatic energy per unit area. Here the contact area is divided
into two parts at the composite interface. One part is for the solid–liquid interface,
and the other is for the liquid–air interface:

Etot = γlvAlv + [(−γsv1Asl1 + γsl1Asl1) − EeAsl1]
+ (−γsv2Asl2 + γsl2Asl2). (11)

The variation of the liquid–vapor interfacial tension is very small, about 2% when
an electric field with a magnitude of 106 V/m is applied [32], and can be neglected.

Figure 2. Electrowetting on an optimized rough surface with hemispherically topped cylindrical as-
perities. The air remains in the grooves, and the roughness in the solid–liquid contact area is R1.
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Thus, the electric energy effect is mainly on the solid–liquid interface. Because γsv2
is zero and γsl2 is simply γlv at the part of the grooves with the air [22], equation (11)
becomes

Etot = γlvAlv + [(−γsv1Asl1 + γsl1Asl1) − EeAsl1] + γlvAsl2. (12)

At the equilibrium dEtot = 0, and combining the geometrical consideration of the
contact angle, we obtain

cos θc = dAlv

dAsl
= dAsl1

dAsl

(
γsv1 − γsl1

γlv
+ Ee

γlv

)
− dAsl2

dAsl
, (13)

which is the same as the Cassie–Baxter equation, taking f1 = dAsl1/dAsl, f2 =
dAsl2/dAsl [21]. Substituting the Young equation into equation (13), it becomes

cos θc = f1

(
cos θ0 + Ee

γlv

)
− f2. (14)

The solid–liquid contact area is generally not smooth, therefore, the roughness fac-
tor R1 of the solid–liquid part [22] is added in equation (14), which yields

cos θc = R1f1

(
cos θ0 + Ee

γlv

)
− f2. (15)

Though the top of the asperities is not always smooth, for simplicity and without
loss of generality, Ee approximates to the value of a plane surface here. The electric
effect on the asperity having a small rough top is discussed in Appendix B. The
value of Ee for an isotropic planar film is

Ee =
∫ d

0

1

2
ED dz, (16)

where z is the coordinate perpendicular to the film surface, E is the electric field and
D is the electric displacement with D = εε0E. Therefore, the electrostatic energy
per unit area at the interface is

Ee = εε0U
2

2d
, (17)

and now equation (15) can be written as

cos θc = R1f1

(
cos θ0 + 1

2

εε0U
2

dγlv

)
− f2. (18)

Then, by substituting the dimensionless electrowetting number η in equation (18),
we obtain

cos θc = R1f1(cos θ0 + η) − f2. (19)

Equation (19) is the extended Lippmann–Young equation based on the Cassie–
Baxter model, which can be applied to the electrowetting phenomenon on a rough
surface. When the external electric field effect is removed, η = 0, and equation (19)
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reduces to the Cassie–Baxter equation with sufficient roughness (equation (5)). If
the surface is just heterogeneous, then R1 equals unity, and equation (19) reduces
to equation (4). In the case that the surface is rough but without trapped air, f2 is
zero, and equation (19) reduces to the Wenzel equation. Similarly, when the surface
is smooth, the equation reduces to the Lippmann–Young equation (8).

As the potential difference between the two phases is increased, at some critical
voltage the liquid wicks into the grooves of the composite surface. Consequently,
this extended equation is suitable under this critical voltage which is generally low,
as the droplet is still levitated on the asperities of the surface.

3. Results and Discussion

Figure 3b presents the electrowetting experimental results from Herbertson et al.
[25] on a micro-patterned layer of SU-8 photoresist with an amorphous Teflon®

coating. The electrolyte solution is deionized water with 0.01 M KCl. The voltage
is applied from 0 V to 130 V. In this experiment, it is observed that before 45 V the
contact angle changes only little, but after this voltage the contact angle changes
appreciably. The size of the microstructure at the surface is given in Ref. [25]. The
complete structure consists of cylindrical pillars 7.0 ± 0.5 µm in diameter with a
center-to-center separation of 15 µm and a thickness of 6.5 ± 1.3 µm and on a base
layer with a thickness of approximately 8.5 µm (Fig. 3a). The water contact angle
on a plane Teflon® AF film is 113.9◦. The results in Fig. 3b show the change in
contact angle in the voltage cycle from 0 up to 130 V and back to 0 V in the exper-
iment. The data shown in the bottom plot represent the contact angle change with
increasing voltage, and the data in the top plot represent the contact angle change
under decreasing voltage. There is a critical voltage, where there is a change in
the slope of the data in the electrowetting process under increasing voltage. The
wetting behavior transitions from the Cassie–Baxter to Wenzel regime at this volt-
age. We compare the theoretical values from the extended electrowetting equation
(equation (19)) to these experimental results [25] before the critical voltage. As the
liquid does not wick into the grooves in the Cassie–Baxter model, the effect of small
bridges among the cylinders in the electrowetting experiment can be neglected be-
fore the critical voltage.

The two area fractions are f1 = 7.0 µm/15 µm = 0.467, f2 = 1 − f1 = 0.533
from these experiments [25] and, as the top of SU-8 microstructure is flat, the
roughness of the solid–liquid contact area R1 is equal to the roughness of the top
asperity (Rtop) here, which can be derived from the Cassie–Baxter equation (equa-
tion (5)), as cos 144.3◦ = R1f1 cos 113.9◦ − f2 in Ref. [25]. It is calculated that
R1 = Rtop = 1.474. In Fig. 4, the experimental results [25] in the Wenzel regime
(45–130 V) are fitted by a line, as the contact angle under these voltages can be
described by the combined Wenzel and Lippmann equations [25]:

cos θe = R

(
cos θ0 + 1

2

εε0U
2

dγlv

)
. (20)
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Figure 3. (a) SEM image of the pillars on the dielectric film [25] and the schematic of the microstruc-
tures. (b) Change of contact angle in the voltage cycle from 0 up to 130 V and back to 0 V in the
experiment [25].

Equation (20) is applied to the electrowetting after the critical voltage. The cosine
of the contact angle is directly proportional to the squared voltage, thus the slope
can be obtained as Rεε0/2dγlv = 4.70 × 10−5, and the intercept is −0.909. As the
contact angle on the plane surface is 113.9◦, the roughness R of the whole surface
can be derived as 2.24 via the Wenzel equation (equation (2)), from −0.909 =
R cos 113.9◦. Thus, we can obtain the coefficient before the squared voltage in the
dimensionless electrowetting number η as:

εε0

2dγlv
= 2.10 × 10−5. (21)

Substituting all these parameters into equation (18), the theoretical values are shown
in Fig. 5 and are compared with the experimental results from 0 V to 45 V [25]. In
Fig. 5, the straight line represents the predicted values obtained from the extended
electrowetting equation, and the small square boxes are taken from the experimental
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Figure 4. The linear fit of the experimental results [25] in the Wenzel regime.

Figure 5. The straight line represents the theoretical values from the extended electrowetting equation;
the small square boxes are the experimental results [25] in the Cassie–Baxter regime.

results in Fig. 3b before 45 V. The theoretical values almost predict the experimental
results in Ref. [25].

It should be noted that the comparison between the theoretical values and the
experimental data mentioned above is based on a single kind of periodic microstruc-
ture surface. As far as the authors, are aware there are no other suitable experimental
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data to validate our model. More experimental electrowetting data on rough sur-
faces are expected to validate the extended electrowetting equation (19) derived in
this paper.

4. Conclusion

In this work, an extended electrowetting equation is derived from the classic wet-
ting equations for liquids on rough surfaces. This equation can predict the contact
angle change under the electric field before the transition from the Cassie–Baxter
to Wenzel regime. The predicted values from the extended electrowetting equation
agree well with the existing experimental results.
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Appendix A: Nomenclature

A,Asl,Alv,Asv Surface area
C Capacitance
d Height of the insulator film
d ′ Height of the bulge at the asperity top
D Electric displacement
E Electric field
Etot Total energy of the system
Ee Electrostatic energy per unit area
f1, f2 Fraction of the surface
l Bottom length of the asperity profile
l′ Top length of the asperity profile
P Pressure
PL Laplace pressure
R,R1,Rtop Roughness factor
r1,r2 Principal radii of curvature of the surface
T Temperature
U Voltage
γ, γsv, γlv, γsl Surface or interfacial tension
ε0 Vacuum permittivity
ε Dielectric constant of the insulator film
η Electrowetting number
κ Mean curvature of the liquid–vapor interface
µ Chemical potential
�el Maxwell stress
θ, θ0, θc, θe Contact angle
σ Surface charge density



228 W. Dai, Y.-P. Zhao / Journal of Adhesion Science and Technology 22 (2008) 217–229

Figure B1. The sketch of the asperity in the electric field. l and l′ are the lengths of the profiles of
asperities at the bottom and top, respectively. The height of the bulge at the top of the asperity is d ′.

Appendix B: Electrostatic Energy per Unit Area on an Asperity With a Small
Rough Top

In the electrostatic field, the number of electric field lines in an asperity is constant.
For the small difference in the surface areas at the asperity’s top and bottom, the
electric field is slightly smaller at the top than at the bottom. Let the electric field at
the bottom be E0, l and l′ be the lengths of the profiles of asperities at the bottom
and top, respectively (the sketch of the asperity is shown in Fig. B1). Thus, the
electric field at top is E0l/ l′. The thickness of the dielectric film is d , and let the
height of the bulge at the top of the asperity be d ′. The electric field is uniform
except at the raised part at top. It is assumed that the electric field decreases linearly
as:

E = E0
l

l′
+ kd ′, (B1)

where

k = E0

d ′

(
1 − l

l′

)
. (B2)

Thus the electrostatic energy per unit area is

Ee = 1

2
εε0

∫ d ′

0

(
E0

l

l′
+ kd ′

)2

dz + 1

2
εε0

∫ d−d ′

0
E0 dz

(B3)

= 1

2
εε0E

2
0

(
1

3

l

l′
d ′ − 2

3
d ′ + 1

3

l2

l′2
d ′ + d

)
.

At the same time the voltage is expressed as

U =
∫ d ′

0

(
E0

l

l′
+ kd ′

)
dz + E0(d − d ′) = E0

(
1

2

l

l′
d ′ − 1

2
d ′ + d

)
. (B4)



W. Dai, Y.-P. Zhao / Journal of Adhesion Science and Technology 22 (2008) 217–229 229

Therefore, the electrostatic energy per unit area becomes

Ee = 1

2

εε0

d

1 + (1/3)(l/l′)(d ′/d) − (2/3)(d ′/d) + (1/3)(l2/l′2)(d ′/d)

1 + (1/2)(l/l′)(d ′/d) − (1/2)(d ′/d)
U2. (B5)

It is obvious that if d ′ is a small quantity compared with the thickness of the di-
electric film and l/ l′ is always smaller than unity, the electrostatic energy per unit
area is approximately equal to the value for the plane surface, i.e., equation (B5) is
reduced to

Ee ≈ εε0

2d
U2. (B6)


