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[1] Existing models of baroclinic tides are based upon the “traditional approximation”,
i.e., neglect of the horizontal component of the Earth’s rotation, leading to a
well-known conclusion that no freely propagating internal waves can exist beyond the
critical latitude and the wave rays are symmetric to the vertical. However, recent studies
have contended that the situation may change if both the vertical and horizontal
components of the Earth’s rotation are taken into account. With the full account of the
Coriolis force, characteristics of the internal wavefield generated by tidal flow over
uneven topography are investigated. It is found that “nontraditional effects” profoundly
change not only the dynamics of internal waves but also the rate at which the
barotropic tidal energy is fed into the internal wavefield. Discarding the traditional
approximation, internal waves are proved to be able to generate poleward of the critical
Jatitude, rays of which are no longer symmetric and the limiting values of ray angles
become greater or less than 90°, depending on the local latitude and the direction of ray.
More importantly, in contrast to the predictions of models based upon the traditional
approximation, a substantial conversion occurs in the situations when stratification

is so weak that the buoyancy frequency is below the tidal one.
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1. Introduction

[2] It has long been known that existing linear models of
baroclinic tides enable us to easily examine the impact of
different external parameters on the internal tide generation
[Garrett and Kunze, 2007]. However, consideration of
baroclinic tides under the traditional approximation encoun-
ters a serious difficulty that a latitude @ exists, where the tidal
frequency wy equals the inertial frequency, which coincides
with the value of the Coriolis parameter /' (f= 2(2 sin 0, {2 =
7.292 x 107> 57! is the frequency of the Earth’s rotation),
beyond which no real linear solution exists. In other words,
the existence of periodic baroclinic tides above the critical
latitude is prohibited. This contrasts significantly with the
evidence of semidiurnal internal tides above the critical
latitude revealed recently by the experimental data of
Pisarev [1996], Parsons et al. [1996], and Viasenko et al.
[2003]. A likely explanation that lies in the inclusion of the
nontraditional term (the horizontal component of the Earth’s
rotation) was first presented by Gerkema and Shrira
[2005a]. They remarked that internal tides could exist up
to several degrees beyond the critical latitude if nontradi-
tional effects were taken into consideration. However, fur-
ther calculations are still required to support their argument.

[3] Nontraditional effects are currently receiving renewed
attention due to their unique role in ocean dynamics. An
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carly insight into the nontraditional effects is nowadays
accepted, that is, consideration of nontraditional terms can
enlarge the frequency range for internal waves [Saint-Guily,
1970; LeBlond and Mysak, 1978; Miropolsky, 2001;
Gerkema and Shrira, 2005b, and the references therein].
Apart from this fundamental understanding, effects of
nontraditional terms have been discussed in some detail in
recent years. On the basis of some preliminary calculations
Baines and Miles [2000] argued that the inclusion of
“nontraditional” terms can produce a change of the prop-
agation direction of the internal wave energy. Furthermore,
the combined effects of the nontraditional terms and 3 effect
are elucidated by Gerkema and Shrira [2005a]. In their
most significant contribution, Gerkema and Shrira [2005b]
first provided a comprehensive discussion of the vertical
structures of internal waves and found that nontraditional
effects significantly altered not only the wave propagation
but also the conditions for critical reflection for near inertial
internal waves. Besides these theoretical works, a number of
important field experiments have been carried out by Van
Haren and Millot 2004, 2005] and Van Haren [2006], who

" provided substantial evidence for the existence of nontradi-

tional effects from observations in the Mediterranean Sea
and Irminger Sea. (

[4] Thus attributes of the internal tides created by non-
traditional effects are becoming of special oceanographic
interest and deserve an in-depth and quantitative discussion.
Given this interest in oceanography, a primary and specific
objective of this paper is to clarify the role of nontraditional
terms in dissimilar gradients of internal beams and their
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* ynique role in tidal conversion. This may help enhance our
fundamental understanding of the dynamics of internal
tides. The paper is organized as follows. In section 2, the
problem of internal wave generation is formulated by taking
the horizontal component of the Earth’s rotation into con-

_sideration. General solutions of internal waves produced by
tidal flow over topographies are derived in section 3, and
properties of the solutions are discussed. In section 4 the
tidal conversion caused by a Gaussian topography is calcu-
fated and compared with the results under the traditional
approximation. Section 5 concludes the paper.

2. Formulation

- [s] The linearized equations governing the motion of a
density-stratified Boussinesq fluid of ambient density po(z)
on the f-plane with full account of the Coriolis force can be
expressed as:

~ 1 1
o+ fiw = ——ps, Vi +fiu=——py,
Po Po

1
_ﬁtu :."—Pz*ﬂg, ux+vy+wz:O7
’ Po Po
@Nzw

g

Pe= (1)

in which & denotes the constant buoyancy frequency; p is
the perturbed density; p is the pressure; g is the gravitational
acceleration; x (west-east), y (south-north) and z (vertical,
positive upward with the origin at the undisturbed surface)
are the Cartesian coordinates; u, v, w are the corresponding
velocity components; the Coriolis vector can be represented
as (0, /i, /) = 2Q = 2Q (0, cos#, sinf), in which Q is the
angular velocity of the earth; and 0 is the latitude.

[6] In the traditional approximation, one would take f, =
0 [Eckart, 1960]. Here, one-dimensional topography z =
—H(y) is considered, and hence 9/0x = 0. Thus the model
equation and linearized boundary conditions in the y-z plane
containing only w(y, z, 7) take the form (initially at rest):

(O +12)Wzz + 2wy + (V2 + B + £ wyy = 0,

w(,0,1) = 0, —ho, 1) = UH, = Re|UpH,&"'] (2)

w(y,

where U = Uycoswyt is the velocity of the background flow.

. Applying the Laplace transform with respect to ¢ and the
Fourier transform with respect to y to equation (2) one gets
the following boundary value problem:

(5 + 120 + 20815, — (N + 5+ f2)P = 0

= = ikH (k
W(k, O, S) = 0, W(k, *ho,S) = Uo%% (3)
27T UO Z
W(fl,Z, t) = ‘
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Furthermore, the transformation
_ ke
(p(k7 Z’ S)e Sz+f2

Wwik,z,5) =

leads to the following boundary value problem for ¢:

: . ik
0+ K0 =00(0) =0, o(—ho) =W(~ho)e™™  (5)
where
2 2 2
K2 = _ (N + s )(S +f)+sfh = 2( )kz (6)

(2 +12)

Obviously, ' denotes the slope of internal gravity wave
rays generated by the tide on the nontraditional f-plane.
Returning to the solution of the problem, one can readily
identify that the zero points of function pu(s) are s = = Wy o,
(w1 > wy), satisfying:

g S NALAR L [ ae]
1,2 2 (N2 + 12 +fhz)2

It is easy to check that wi > N? and «? < /% This indicates
that the frequency range of the free propagating internal
waves is enlarged due to the inclusion of the nontraditional
term f,, which is in agreement with LeBlond and Mysak
[1978] and Gerkema and Shrira [2005b].

[7]1 The general solution of equation (5) can be expressed
as ‘

™)

sinkKz ikH (k) S0k,
0 — e
sinKhgy s — iwy

o(z) =~ (8y

Substituting equation (8) into equation (4) and applying the
inverse Laplace and Fourier transforms yield the solutlon of
equat1on (2) as:

sinKz e*€s)gst
sinKhy s — lwo

Uo

w(z) = ——— dsdk  (9)

zkH k) /

where £(y, s) =y — fiz + ho)/(s> + ). For K > 0, the poles
of the integrand in equation (9) are s = iw,, irzwlm(k) and
izwz,n(k) the latter two of which satisfy p’(tiwy,) =

[ (Eiwsy) = (rlkho), (Wi > > Wop > 0, m = 1,2, ...).
Wlth the application of the residue theorem, the integrals
involved in equation (9) can be evaluated and hence
simplified into (for superinertial waves, wy > ),

smh— cos(kn &) ~ wot), £ >0
0

(10)
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Figure 1. Snapshot of the buoyancy field computed from

equation (10) for a Gausswn topography profile. Parameters
are wo = 1.405 x 107 s, N* = 10, hy = 5000 m, Ho = 0.1
ho, v =1, UO—OOIms , —100,t=12h,and6=70°.
The maximal elevation of isotherms is found to be 3.67 m.
To make the radiating internal tide visible, the horizontal
coordinate y, the vertical coordinate z, and the wave
amplitude are normalized, respectively, by the total
horizontal length ¥ = 200 km, the total depth /o and £¢/50.

‘For the subinertial case, the vertical velocity becomes:

mU°Z< ok
W(glwzat) -

where g = u(lwo), = mm/, ,uoho (m =1,2,..),and & =
Y+ [z + ho)(wh -f )-

~ [8] To visualize the solution, a topogra ghy whose shape
has a Gaussian form H(y) = Hoexp(—y /2L%) is chosen.
Here, L parameterizes the horizontal scale of the topogra-
phy. Figure 1 presents the buoyancy field computed from
equation (10) for a Gaussian topography profile at a super-
“inertial latitude § = 70°. It is evident that the internal wave

rays originate from the topography and propagate poleward

and equatorward with different angles. This is utterly

different from the traditional understanding for internal
waves. The maximal elevation of the isotherms ¢, is found
to be 3.67 m and hence the amplitude of the vertlcal velocity
(W = wol,) is accordingly 5.16 x 10~ ~* ms™!. Further-
more, from the continuity equation, one can easﬂy find that
the relationship between the amplitudes of the meridional
and vertical velocities satisfy v,, = w;,/| Ruin| (notice that &/
x = 0 and |R ;| denotes the mlmmum of the ray slopes),
which leads to v,, = 2.73 x 107> ms™ Snmlarly, one can
also identify from the first equation of equation (1) that the
maximal zonal velocity satisfies u,, = (i, — fiWm)wo =
2.64 x 107> ms™"
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[9] On the other hand, in processes of equation (9), one
may find the other part of the solution which comes from
the poles s = *iwy (k) if wo > 1,

[s'e]
Uy — mnz
W (z 1)+t / ikH (k) sin —
@)= o (D) (0)sin "
—00
k(i) piwimt ikE(iwim) p—iwimt
e . e ve ' e dk
(iwim — iw0)Kly—y,  (—iwim — iwo)Ksl o,

(12)

where the differentiation of K with respect to s can be
evaluated from equation (6),

(2 PN+ RS

K,=s 3
(&> +f)K

(13)

and the superinertial poles wlm(k) can be obtained from the
relation p“(iwy,,) = (malkhey £+m=1,2,...),

Ayt = LS ;:ff
gk (kho) |
1+ 1+4fo12 [1 i (m/kho)z] +1* (14)
(W —f2+52)
Hkn )smﬁ cos(kn&y + wot), & >0
o (11)

U m . mmz
Zﬂ'h—sz (—1) +1M—n;H(km) Sm%‘ COS(kmfl - w()t), 51 <0

The integrand involved in equation (12) takes on an
asymptotic form as ¢ becomes large, which is determined
entirely in terms of where the phase (k) = A§(iwm) £ Wimt
is stationary, that is, dyy/dk = 0. Therefore the stationary
points, +k,, of the integral should satisfy the following
relation: ' :

dwlm é(lwlm)
4 m _ Sm)
dk t *

kd .
?Zz%”c(’““’”) (15)

With the application of the stationary phase method (see for
instance, Nayfeh [1973] and Lighthill [1978]), the transient
part of w' from the stationary points k, for large ¢ can be
given by

y H (k)
|¢"(kp) | Ks(zwm,k‘z7

o kobn—mntHisgny! ())

sinﬂw—z
-

UO = m
Wi =223 (-1
0 m=1

{ ei(k,,s,,, . t+asgne) (k, ) )
X

Wm — Wo Wy + Wo

} (16)
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= wlm(kp)> é-m =
be an even function. It is evident from the above equation
that the remarkable feature of the transient part of the
solution is of order =2, which makes the amplitude tend to
zero as t — 00. As a result, in a long time period the steady
part of the solution which can propagate a large distance
with a permanent form is of more physical interest than the
transient part .

3. Limiting States of the Internal Beams

[10] As mentioned in the introduction, although the role
of nontraditional terms has been of increasing research
interest in recent years, some more dynamics of internal
waves, including the limiting states of the internal beams
and the tidal conversion in full account of the Coriolis force,
is still poorly understood. There is therefore a strong
justification to more closely investigate the special proper-
ties of internal waves caused due to nontraditional effects.

[11] 1Itis apparent from equations (10) and (11) that along
the lines K,z = + k,,£1, (Where K,,, = mm/hg) the wave phase
keeps constant. These lines are readily identified as
the characteristics of internal waves of frequency wgy or
the internal wave rays. In keeping with the standpoint of the
stationary phase [Lighthill, 1978], the wave energy is prop-
agating nowhere but almost concentrating on these charac-
teristic lines where the wave phase is stationary, which is
shown apparently in Figure 1. Outside this range, the wave
oscillations get evanescent rapidly. One remarkable property
of internal tides is that the rays emitted from the topography
make a fixed angle with the horizontal. Under the traditional
approximation, the ray slopes are known as:

Rip ==+ (17)

However, the presence of the horizontal component of
Earth’s rotation modifies the ray slopes to:

‘ Ao\ ) _1
w-(woglp) o mefargln)

An impression one can have from equations (17) and (18) is
that ray slopes differ fundamentally from those under the
traditional approximation due to the inclusion of fr, as
confirmed by Gerkema and Shrira [2005b].

[12] To facilitate diagnosing the influence of external
parameters, it is instructive to introduce the following
dimensionless buoyancy and rotation frequencies based
upon the timescale of the tide, i.e., N* = N/w,, Q* = 2Q/
wo As the frequencies of Earth’s rotatlon 0=7292x107°
57!, the nondimensional rotation frequency 2* is approxi-
mately equal to 1. 038 and the critical value of the latitude
satisfying 6, = sin™!(1/Q%) e%uals 74.5° for M, tide which
has a frequency 1.405 x 10 ! It is also noted that for
internal tides of diurnal frequency (e.g., Ky, O etc.) OF is
¢qual to 2 and 6. becomes approximately 30°. Specifically,

the frequency of the semidiurnal A, tide is taken as the
- characteristic timescale of discussion in the ensuing part.

PING AND SINGH: LIMITING STATES OF INTERNAL WAVE RAYS

&(iw,y,), and H(y) ié assumed to

C06011

With these dimensionless variables in hand, the ray slopes
can be rewritten as: :

2 (N*2 — 1) (1 — 0** sin® §) + Q*? cos®
: (1 — Q**sin” )

1 0%sin2g )~
21— 0%gin?g |

A
= Q (i

1 Q% sin20 )‘1

— *? 5in® g) + Q*2 cos? ¢
— Q¥ sin’ 6)’

(19)

1 —Q*2sin? 0

Given the above two meaningful equations, we will show
below the unique behavior of the ray angles created by
nontraditional effects, which significantly alter the tradi-
tional understanding of the dynamics of internal waves.

[13] Comparisons of the ray angles v between with and
without the traditional approximation are graphed in
Figure 2, in which the lines (except the dash-dot lines
denoting the Jimits of the ray angle and frequency) corre-
spond to the right branches of rays and the scattered symbols
to the left branches. Foremost, it is obvious from Figure 2a
that angles of the right branches of rays are mirror-images
(with respect to the horizontal line in this figure, v = 90°) of
the left branches. By contrast, Figures 2b and 2c¢ show
asymmetry in the ray angles created by nontraditional
effects, which accords well with the findings of Durran
and Bretherton [2004] and Gerkema and Shrira [2005b].

[14] Furthermore, v = 90° acts as the limiting value of ray
angles for both the right branch and the left branch
regardless of the nontraditional effect. This is understood
from equation (17), because the denominator vanishes as N*
— 1, while the numerator does not. The traditional approx-
imation thus has the characteristic of a singular limit at N* =
1, which is absent if the term f;, is considered. As is evident
from Figures 2b and 2c, the singularity at N* = 1 mentioned
previously is removed by the nontraditional effects: for
superinertial waves, angles of the right branches can exceed
v =90° if N* less than 1, while those of the left branches are
always greater than 90°; for subinertial waves, the vice
versa is true.

[15] To have a better understanding of how nontraditional
effects affect the ray slopes of the internal waves, five
typical examples of internal wave rays are presented in
Figure 3, where the latitude 6 and nondimensional buoy-
ancy frequency N* are: (1) 74°, 0.2; (2) 74°, 0.958; (3) 74°,
5; (4) 75°, 0.963; and (5) 75°, 3.3, respectively. The results
for the maximal elevations of isotherms ((,,) and amplitudes
of the velocity components (u,,, v,,, w,,) for each case are
given in Table 1, where the formulae for calculating each of
the velocity components are similar as mentioned previously
for Figure 1.

[16] As is clear from Figure 3a, both of the equatorward
rays are seen for superinertial wave with nondimensional
frequency N* less than 1. In Figures 3b and 3c, where the
latitudes are the same as those in Figure 3a, increasing the
buoyancy frequency changes the propagation of the right

‘branch of the rays from equatorward to poleward, while the

left branch remains in the equatorward direction. This is
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understandable from the superinertial case illustrated in
Figure 2b. In Figure 3e where the internal wave is sub-
inertial and the dimensionless frequency N* is greater than
1, the two branches appear to be both poleward. Obviously,
these results show striking differences to the traditional
understanding on the ray angles, and have been recognized
by Durran and Bretherton [2004] and Gerkema and Shrira
[2005b]. On the basis of these fundamental understandings
on the nontraditional effects, one of the major aims of this
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study is to quantitatively examine the limiting values of the
ray angles by abandoning the traditional approximation.

[17] In accord with the traditional approximation, the ray
angle v equal to 90° means that the internal wave prop-
agates vertically and has no effect in the horizontal direc-
tion. The corresponding singular limit for the dimensionless
buoyancy frequency N = 1. However, if the nontraditional
effect is considered, the internal wave at such a value for N*
can still propagate to the horizontal due to the asymmetry
attributes (seen from Figures 3b and 3d). The critical value
of N* where v = 90° in this situation can be easily derived
from equation (18) as:

N#2 =1 —Q**sin” 0 (20)

For a given latitude less than the critical value 6 < 6.,

-~ N* < N* means that the ray angles are greater than 90°,

while N* > N* means that one of the rays is equatorward
and the other propagates poleward. On the contrary, for a

supercritical latitude, N* < N} corresponds to the case that

the rays propagate both equatorward and poleward, while,
N* > N* means that the ray angles are less than 90°.

[18] Figure 4 shows the dependence of N*? on latitude 6.
First, it is seen that the line denoting N*? lies in the range of
(0, 1), and is divided into two parts by the line & = 6, (or
N*¥2 =2 — *%). The part below the critical latitude 6.
represents the limiting value for the right branch and that
above . denotes the limiting value for the left branch.
Apparently, the critical value of N* has a maximum, 1, and
that does not exist any longer for 6 less than a minimum
value, 0,, = cos™ ! Q* !~ 15.55°. This implies that below

'8, the internal waves can never propagate vertically,

neither for those with frequency N larger than w.

[19] On the other hand, another singular limit can be
produced as well by the nontraditional effects at the
critical latitude. We can find from equation (19) that as
6 — 6, R, tends to infinite, while R, drops to zero,
equivalent to the case of the vertical propagating right
branch and horizontal propagating left branch. Note that
the nature of this singular limit at § = 6, can be entirely
changed by the traditional approximation, as implied by
equation (17).

[20] It is also clear from equation (19) that the ray slopes
R lie in a monotonic dependence on the dimensionless
frequency N*. As a result, the ray angles will reach their
limit when N* = 0 (in this limit the internal waves are pure
gyroscopic and their existence has been revealed by Van

Figure 2. (a) Behavior of ray angles as functions of N* for
various values of @ [ray angles under the traditional
approximation, lines correspond to the right branches of
rays and scattered symbols to the left branches.].
(b) Behavior of ray angles as functions of N* for various
values of @ [ray angles of the superinertial frequencies (wo >
£, or, 8 < 8,) with the inclusion of f}, lines correspond to the
right branches of rays and scattered symbols to the left
branches]. (¢) Behavior of ray angles as functions of N* for
various values of @ [ray angles of subinertial frequencies (¢ >
0.) with the inclusion of f;, lines correspond to the right
branches of rays and scattered symbols to the left branches].
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Table 1. Results for the Maximal Elevations of Isotherms (),
Amplitudes of Velocity Components (i, Vm, Wm) and the
Minimum of the Ray Slope |Ry;n| in Each Case of Figure 3

1

- Case Gy M Uy, oms™' v, cms” Wiy oS~ Ronin
A 3.04 5.45 5.47 427 x 1072 7.8 x 107%
B 3.03 5.51 5.53 426 x 1072 7.71 x 1072
C 2.73 6.24 6.26 384 x 1072 6.13 x 1072
D 317" 4.54 4.54 445 x 1072 9.8 x 1073
E 1.9 2.07 267 x 1072 1.29 x 1072

2.07_

Haren and Millot [2004]). The corresponding limits of the
ray slope R can be expressed as:

1—0*2sin® 0

hle =

1 7
sga(1 — Q% sin’ 6) - VO — 15.0% 5in 26
_O%2 gin2
limR, = — 1 - Q*sin” 0 (1)

1 -
sgn(1 — Q**sin® 0) - VO** — 1'+EQ*2 sin 26

For superinertial waves (6 < 6,), limR; denotes the upper
limit of the right branch of the rays, and limR, the lower
limit of the left branch. Conversely, for subinertial waves
(6 > 6.), limR, and limR, represent, respectively, the lower
limit of the right branch and the upper limit of the left
branch of the rays.

[21] To more closely diagnose the nontraditional effects,
the dependence of the limits of ray angles, v,,, on latitude &
are graphed in Figure 5, from which we can find, i.e., at 0 =
15°, the maximum v of the right branch and minimum v of
the left branch of the rays are approximately 90° and 120°,
respectively. This implies that at latitude 6 = 15° the ray
angle of the right branch is always below 90°, while that of
the left branch is situated in the range from 120° to 180°.

[22] In particular, it is noteworthy that for the subinertial
wave, the ray angle of the right branch meets a maximum,
Vm, @S po equals zero, and at the same time, the two
characteristic lines of internal waves are incorporated. The
corresponding upper limit of the dimensionless frequency,
N*,., when po = 0, is:

(22)
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As is obvious from Figure 2¢, ray angles of the two
branches become identical when the dimensionless fre-
quency variable N* reaches the upper limit N7, The ray
slope for this case is easily determined from equation (19)
as:

O*2sin? 0 -1 0* — 1
Q*Z sin 26 - \/ENm*z _ 1)(Nm*2 + Q*Z . 1)
(23)

Rm[N»_W;;:

The corresponding ray angles are represented by symbol
cross as plotted in Figure 5, where the limiting value of the
ray angles is specified, ie., at latitude § = 80° the
approximate upper limit of the right branch or lower limit
of the left branch is 30°. Note that along with the proximity
of N¥ — N*,, the horizontal wavelength of the internal
wave becomes infinitely long and the wave amplitude tends
to zero.

4, Tidal Conversion

[23] For purposes of studying the internal tide generation
and understanding the deep-ocean mixing, the most impor-
tant issue is to estimate the rate at which energy is extracted
from barotropic tide, and radiated into internal gravity
waves at topographic features. In this paper the conversion
rate is calculated following Bell [1975] and Khatiwala
[2003]. The pressure field associated with the internal wave
solutions derived previously exerts a net force on the bottorn
topography, which implies that net work is done by the
background flow in generating the internal wavefield. The
rate of work is the power, or the energy flux, P. In order to
compute it an expression for pressure p is required. Elim-
inating u and v from the momentum equations gives:

p0 (O +12) 8+ 110, [ = Pyt (24)

Application of the Laplace and Fourier transforms results in:

(s> +£2)W. + ikffyw = P (25)

Ao

Figure 3. (a) Density plots of the buoyancy field computed from equations (10) or (11) for a Gaussian profile. Parameters
for the tide and topography are the same as those in Figure 1. The propagation is in the meridional direction. The latitude
and nondimensional buoyancy frequency are 6 = 74°, N* = 0.2. The maximal elevations of isotherms are found to be
3.04 m. (b) Density plots of the buoyancy field computed from equations (10) or (11) for a Gaussian profile. Parameters for
the tide and topography are the same as those in Figure 1. The propagation is in the meridional direction. The latitude and
nondimensional buoyancy frequency are 8 = 74°, N* = 0.958. The maximal elevations of isotherms are found to be 3.03 m.
(c) Density plots of the buoyancy field computed from equations (10) or (11) for a Gaussian profile. Parameters for the tide
and topography are the same as those in Figure 1. The propagation is in the meridional direction. The latitude and
nondimensional buoyancy frequency are 6 = 74°, N* = 5. The maximal elevations of isotherms are found to be 2.73 .
(d) Density plots of the buoyancy field computed from equations (10) or(11) for a Gaussian profile. Parameters for the tide
and topography are the same as those in Figure 1. The propagation is in the meridional direction. The latitude and
nondimensional buoyancy frequency are 8 = 75°, N* = 0.963. The maximal elevations of isotherms are found to be 3.17 m.
(e) Density plots of the buoyancy field computed from equations (10) or (11) for a Gaussian profile. Parameters for the tide
and topography are the same as those in Figure 1. The propagation is in the meridional direction. The latitude and
" nondimensional buoyancy frequency are = 75°, N* = 3.3. The maximal elevations of isotherms are found to be 1.9 .
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Figure 4. Critical value of dimensionless frequency N* as a function of the latitude 6.

Substituting equation (9) into the above equation gives: After applying the inverse Laplace transform to the above
equation, we obtain the following description for the Fourier
transformation of p:

e KLtKh" CHE)  (26) py— LDHE K mT oy ~f?

Z%(k7 _ho) lpOUO

—h ks kg wi,, (0K/0s)_y,
ewimt e—iwlmi #fz H( )
. <w1m_w0_wlm +wo> _pOU wp k &
. COtth()i (27)
L 3 ' ) T E 1 T
150 -
o - :
O f
g the max. v of the nght branch ) 5
> B0 Ll the min. v of the left branch T
0F 'm-o-w——the min. v of the right branch M"ﬁ """" i
I - =~ the max. v of the leftbranch =™
: . i : 1 . i . I ; I ; 1
? 0 15 30 45 60 75 90

| , - | 6 (deg)

Figure 5. Limits of ray angles. v as a function of latitude 6. For superinertial waves, solid line
corresponds to the upper limit of v of the right branch, and dashed lin€ to the lower limit of v of the left
branch. For subinertial waves, solid line plus symbol circle correspond to the lower limit of v of the right
branch), dashed line plus symbol star to the upper limit of v of the left branch, and symbol cross to the
common limit of v of the two branches.
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where

N2 — 2 . £2
Kk = (V2 — b) (o8 fz) T, (28)

(w§ —12) ;
Invoking the two-function version of Parseval’s theorem,
the work per unit cross-stream length acting on the
topography can then be written as:

oo o0
W(t) = / p(y, —ho,t)il—ljUdy = —i / plk, —ho, )k H Udk
) —00

—0Q

- (29)

where * denotes complex conjugate. After substituting
equatlon (27) into equation (29), the W01k is eventually
glven by:

’ wZ f2 =]
H(k 30

m > Ak 30)

Averaged over the fundamental period 27/w,, the power per

unit cross-stream length in the internal wavefield (vertical
energy flux C) is expressed as:

—27r2‘°°

2 fwy

)
C=o— / wadt
0

P03 196 =12 <™ 170012
:WJ}TJQL%_;I%IH(M)’ 31)

For comparison with the traditional result, the result of
Khatiwala [2003] for the tidal conversion is used which is
given as:

Cx = 4p, Z Zﬁ (k UO) "o v -

m=1 n=

wp) (e —f?)

|7 km)| (32)

,;mw IN2 —uwd .

Invoking the relation of Bessel function for small y, J,(y) =~
(y/2)"/n, one can have that for small excursion parameter,
kUylwy, the term for n = 1, the lowest harmonic, dominates
in equation (32) [St. Laurent and Garrett, 2002; Garrett and
Kunze, 2007], and Khatiwala’s result hence reduces to:

where

_ pOUg‘*‘%ffz o~ |
CI(—Wh—O—kaH

Wo

(6)’] (34)

m=1

Thus it is apparent that if the traditional approximation,
namely, f;, = 0, is adopted, the result of this paper C agrees
well with Khatiwala’s result Cg. Furthermore, it is
straightforward to normahze the energy flux by a reference
value, Cy = pOUOwOHO, and the dimensionless conversion
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rates for a Gaussian topography, defined by H(y) = Hy
exp(—y*/2L%), as:

X:a—-ﬂl——ﬂ*zsm 9‘7’;/@" " 4 (35)
and
Xg = %ﬁ (1 — Q** sin® 6) fyz K e | (36)
0 e
where

3

(N¥2 —1) (1 — Q**5in* §) + Q* cos? 0
Km = kyl = mw
m W\j (1 - % sin 6)’

N* —1

K =k L=mm _—
m o m gl 1 — Q*2sin? 0

(37)

The nondimensional variables v is defined as v = L/hq.
[24] The behavior of the conversion rate X as a function
of the latitude @ is illustrated in Figure 6, and compared with
Xx under the traditional approximation. As distinct from
Figure 6 (a) where N* = 10, the differences between X and
Xy are indiscernible, implying the nontraditional effects are
trivial for sufficiently large values of N*. Furthermore, the
curves with different values of v show dissimilar perform-
ances against latitude 6. For v = 5, tidal conversions are
more powerful at lower latitudes and are a maximum near &
= 40°, but, however, diminish rapidly for higher latitudes
and approach zero when the latitude tends to the critical
value. By contrast, for a wider topography (y = 10), the tidal
conversions are extremely weak at lower latitudes, and
significant contributions occur principally at middle and

‘higher latitudes (50° < # < 70°). This fact reveals 2

resonance character of internal tide generation over the
ridge. Since latitude 6 is connected with the horizontal
wave number of the internal tide for a given N*, OQ* and
the total depth hg, as implied by equation (6), one can
consequently recognize from equations (35) and (36) that
the expressions of tidal conversion reflect a combined effect
of two horizontal characteristic scales, i.e., the horizontal
wave numbers of internal tide and the topography. It is
difficult to determine directly from equations (35) and (36)
how these two scales are affected and the location of the
critical point is where the final effect is maximum, mostly

- due to the horizontal scale of the internal tide-a result by

superimposition of infinite discrete waves of various wave
numbers and amplitudes. Therefore the information can
only be sought numerically and has been illustrated in

- Figure 6a, that is, the resonance latitudes where the con-

versions get the maximum are approximately 40°and 65°
for v = 5 and 10, respectively. This conclusion resembles

~ that made by Flasenko et al. [2003] who found amplitudes

of the generated internal semidiurnal waves got their highest
values upon different resonant latitudes for various values
of the length of the underwater ridge. Another common
feature in Figure 6a is that the two curves both end at the
critical latitude, indicating that above the critical latitude the
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Figure 6. (a) Behavior of X as a function of § (V* = 10).
(b) Behavior of X as a function of @ (V* = 1.5). (c) Behavior
of X as a function of 6. (V* = 0.5).

internal tide cannot be generated in oceans with strong
stratifications.

[2s] In Figure 6b the nondimensional buoyancy frequen-
Cy drops to 1.5 and at this stage the difference between the
- conversion rates X and Xz becomes remarkable. At sub-
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critical latitudes, an increase of «y decreases the conversion
rate, but increases the difference between X and Xg. Also, it
can be noted that the resonant latitude increases with +.
Above the critical latitude, the effect of v is insigniﬁcant
The most important conclus1on is that the conversion rate
made without invoking the traditional approximation is
notably higher than that under this approximation. This
finding indicates that effects due to the account of horizon-
tal component of the Earth’s rotation become significant, or,
in other words, the traditional approximation turns to be
quite inapplicable, as the buoyancy frequency is close to
that of the tide. It should be noted that oceans with such a
characteristic stratification are possibly quite rare, although
that has not been established yet. Thus it would be helpful if
the probability of such situations can be estimated using
available data. However, this task is not the major objective
of this study and is planned for a future study.

[26] For N* = 0.5 as depicted in Figure 6c, the tidal
conversion under the traditional approximation is zero,
implying that internal tide cannot be generated under this
approximation neither for supercritical nor subcritical lat-
itudes. However, if the horizontal component of the Coriolis
vector is accounted for, there is still considerable energy
converted from the barotropic tide to the internal tide. This
is the most important conclusion of this paper. The effect of
the horizontal scale of the topography is also evident. The
conversion rate is confined in a narrow range from the
critical latitude. Increasing - decreases the range, but the
maximum value of the conversion rate keeps almost un-
changed. Generally, the major conclusion of this part is that
the internal tide can be generated freely beyond the critical
latitude in a weakly stratified ocean, which provides another
substantial explanation for the observations by Pisarev
[1996] and Parsons et al. [1996] besides that made by
Vlasenko et al. [2003] accounting mainly for the occurrence
of nonlinear waves.

5. Conclusions

[27] The objective of this paper is motivated by a con-
tradiction that above the critical latitude the existing linear
theories of baroclinic tides prohibit the tidal activity, while
in situ data have revealed evidence of semidiurnal internal
tides. For the purpose of studying the physical mechanisms
of the generation of internal tides at high latitudes and
understanding the basic parameters that control their exci-
tation, a linear model is constructed, taking both the vertical
and horizontal components of the Earth’s rotation into
consideration. Analytical solutions for the generation of
internal tides have been derived with the aid.of transient
wave method, providing an important conclusion that the
wave properties differ fundamentally from those under the
“traditional approximation” on the f~plane.

[28] The most pronounced change in the attributes of
internal waves due to the presence of nontraditional terms is
the asymmetry of internal wave ray paths. For various
combinations of latitude # and dimensionless buoyancy
frequency N*, propagating directions of rays can basically
have five kinds of modes: (1) both equatorward, (2) both
poleward, (3) equatorward plus vertical, (4) poleward plus

- vertical, and (5) poleward plus equatorward. The findings of

the modes, both equatorward and both poleward, agree with
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Durran and Bretherton [2004] and Gerkema and Shrira
[2005b]. Furthermore, under the traditional approximation
the singular limit of the ray slope develops at which the rays
propagate vertically as the critical condition N* = 1 is
approached. However, this tidal limit at N* = 1 is healed
and two other kinds of critical conditions for the ray angle
belng 90° are created by nontraditional effects, which are
N#¥2 =1 — O*? cos’0 and 0 = 6. The former condition
ensures that the right branch or the left branch favors the
vertical direction, depending on whether latitude 6 is below
or above the critical latitude 6,.. On the other hand, the latter
critical condition permits the right branch to propagate
vertically at the critical latitude, perpendicular to the left
branch.

[29] The conversion rate for a Gaussian topography is
calculated and compared with the result made under the
traditional approximation. For a sufficiently large value of
N*, the two results are approximately identical, and both
end at the critical latitude, indicating that above the critical
latitude the internal tide cannot be generated in oceans with
strong stratifications. A resonance characteristic of internal
tide generation created by the interplay between the internal
wave and the topography is revealed. A wider topography
corresponds to a higher resonant latitude where the conver-
sion rate reaches the maximum. If the buoyancy frequency
is close to the tidal one the differences between the two
kinds of conversion rates become remarkable. The conver-
sion rates made without invoking the traditional approxi-
mation show notably higher than those under this
approximation. This finding indicates that the traditional

approximation turns out to be quite irrelevant in such a.

situation. For a weakly stratified ocean (V* less than 1), the
traditional approximation leads to that no energy can be
converted from the barotropic tide to the internal tide. In
other words, under this approximation the internal tide
cannot be generated either for supercritical or- subcritical
latitudes. However, if the horizontal component of the
Coriolis vector is considered, a substantial conversion can
still occur in the weakly stratified ocean, although which
may be quite rare but still possible.

[30] Acknowledgments. This work was supported by the National
Natural Science Foundation of China under grant 10602060.
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