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Abstract

The thermovibrational instability of Rayleigh–Marangoni–Benard convection in a two-layer system under the high-frequency vibra-
tion has been investigated by linear instability analysis in the present paper. General equations for the description of the convective flow
and within this framework, the generalized Boussinesq approximation are formulated. These equations are dealt with using the averaging
method. The theoretical analysis results show that the high-frequency thermovibrations can change the Marangoni–Benard convection
instabilities as well as the oscillatory gaps of the Rayleigh–Marangoni–Benard convection in two-layer liquid systems. It is found that
vertical high-frequency vibrations can delay convective instability of this system, and damp the convective flow down.
� 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Vibrations are known to be among the most effective
ways of affecting the behavior of fluid systems in the sense
of increasing or reducing the convective heat transfer. Most
of the material in this paper is devoted to the case of high-
frequency vibration, where it is necessary to suppose that
the vibrations frequency is high enough for the period to
be small with respect to all the reference hydrodynamic
and thermal times. Besides, the amplitude of vibration
must be finite. So we can use the averaging method.

We focus our attention on the case where a system filled
with fluids heated from below is subjected to arbitrary
high-frequency vibrations. The description of the therm-
ovibrational flows in the limiting case of high-frequency
and small amplitude of vibrations may be effectively
obtained in the frame of the averaging method, which leads
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to the system of equations for averaged fields of velocities
and temperatures. The averaging method is that proposed
by Kapitsa when solving the problem of a pendulum with a
vibrating pole. Simonenko and Zen’kovskaja (1966) were
the first to use this method and proposed the time-averaged
form of the Boussinesq equations. Subsequently, it was
demonstrated that high-frequency vibrations are most rele-
vant in modifying stability characteristics. Gershuni and
Zhukhovitskii (1979) introduced the vibrational Rayleigh
number, Rav, to present the intensity of the vibrational
source. Using the time-averaged method, Gershuni and
Zhukhovitskii studied the vibrational thermal convection
under the weightlessness in a rectangular cavity, cylindrical
enclosure and a heated cylinder, respectively, in an uncon-
fined fluid. Due to the high-frequency assumption, many
important phenomena, like the resonant state and the
detailed variation of the heat transfer rate could not be
investigated. A more detailed study was carried out by
Fu and Shieh (1992) to investigate the effects of the
vibration frequency and Rayleigh number on the thermal
rved.
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Fig. 1. Schematic diagram of the two-layer fluids.
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convection. The vibration frequency varied from 1 to
1 · 104 and three different regimes of the Rayleigh number
were discussed. According to the results, when the Rayleigh
number is large enough (Ra = 106), gravitational thermal
convection dominates, and the vibration motion does not
markedly enhance the heat transfer rate. In contrast, in
the lower Rayleigh number (Ra = 104) case, except in the
quasi-static convection region, the vibration thermal con-
vection is dominant, and the vibration enhances the heat
transfer significantly.

Convection structure and instability in two-layer liquid
system heated from below have been extensively studied
in the past two decades (Johnson, 1975; Richter and
McKenzie, 1981; Liu et al., 1998; Colinet et al., 2001). It
has been known that the convection in two-layer system
has many new features, which have no counterpart in a sin-
gle-layer system (Zen’kovskaya and Shleikel, 2001; Cisse
et al., 2004). The effects of thermovibrations on the stabil-
ities have been studied about the classical Rayleigh–Benard
problem (Cisse et al., 2004) and for Marangoni convection
(surface-tension-driven convection) in one-layer system
(Zen’kovskaya and Shleikel, 2001). All the results arrived
at the conclusion that the vertical vibration can hinder
the instability and horizontal vibration can enhance the
instability. However the effects of high-frequency thermov-
ibrations on two-layer system convection have not been
studied so much. Only Birikh (2003) has done some work
on thermocapillary convection in a two-layer system.

All the results were of great help for understanding the
g-jitter effects during fluid and material science micrograv-
ity experiments. On available space platforms, a systematic
characterization of the accelerations has shown that the
microgravity environment is dynamic, depending on many
sources, e.g., aerodynamic forces, on-board machinery,
crew operation or servicing activities. It is recognized that
the presence of g-disturbances may cause strong discrepan-
cies, and so, the fluid science processes may be substantially
changed by g-disturbances. To reduce the convective con-
tributions of these g-jitters, it is convenient to consider
acceleration fields as an expansion of harmonic oscilla-
tions, and to use a time-averaged method formulation.

2. Problem description and basic equations

We consider a two-layer system heated from below.
Only in the vertical direction the depth is finite. The system
is described in Fig. 1.

Our study will concern the effects of thermovibrations
on the convective instability in Marangoni–Benard convec-
tion and Rayleigh–Marangoni–Benard convection in a
two-layer system.

Here, we propose a theoretical model of two-layer con-
vection with high-frequency thermovibrations as shown
schematically in Fig. 1. In the system both the top wall
and the bottom one are considered as rigid isothermal flats,
perfectly conducting boundaries. The system is heated from
the bottom. The walls are infinite in the horizontal direc-
tion. The fluids are bounded by the two flats and the fluid
upper is Silicone oil (Si 10cst) and Flourinert (FC70) is the
fluid bottom since this fluid pair has been more recently
investigated theoretically (Liu, 2004; Liu et al., 2005; Zhou
et al., 2004) and experimentally (Degen et al., 1998). The
vector n (n = (cosa, sina)) is the unit vector of vibrations
with a as the angle of vibrations and they are all change-
able. Temperature difference DT = T2 � T1 is imposed per-
pendicular to the interface of the fluids, where the
subscripts 1 and 2 refer to the fluids upper and bottom,
respectively. H1, H2 denote the depths of the fluids, respec-
tively. According to the results about the deformable inter-
face (Zen’kovskaya and Shleikel, 2001; Birikh, 2003) before
here the interface is considered to be flat. The interfacial
tension at the interface is assumed to be a linear function
of temperature: r ¼ r0 � rT ðT � T 0Þ, where T0 is the refer-
ence temperature of the interface. The acceleration of
vibrations can be defined as a ¼ bX2 cos Xtn, then the total
acceleration will include both the static gravity acceleration
and the vibrational part: g! g + (bX2cosXt)n. Using the
total depth of the system H = H1 + H2 as the non-dimen-
sional scale for length, the non-dimensional depths
h1 = H1/H, h2 = H2/H can be got.

In this non-inertial system, the equations describing nat-
ural convection differ from the standard Boussinesq equa-
tions only by the complete acceleration, which now
includes both the static gravity acceleration and the vibra-
tional part. Thus, the complete set of equations of natural
convection under static gravity and vibration in the frame-
work of Boussinesq approximation has the form as Eqs.
(1)–(6)

r � vm ¼ 0 ð1Þ
ovm

ot
þ ðvm � rÞvm ¼ �

1

qm
rpm þ mmDvm þ gbmT mc

þ bmT mbX2 cos Xtn ð2Þ
oT m

ot
þ vm � ðrT mÞ ¼ vmDT m ð3Þ

z ¼ h1 : u1 ¼ v1 ¼ 0; T 1 ¼ h1 ð4Þ
z ¼ �h2 : u2 ¼ v2 ¼ 0; T 2 ¼ h2 ð5Þ

z ¼ 0 :



Fig. 2. Hr = 0.667. At vertical and horizontal vibrations, the neural curves
of Ma–k.
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u1 ¼ u2; v1 ¼ v2 ¼ 0; T 1 ¼ T 2; j1oT 1=oz ¼ j2oT 2=oz;

l1ou1=oz� l2ou2=oz ¼ or=ox ð6Þ

Here the notations are as usual: v is the velocity, T is the
temperature counted from relative zero, q is the constant
density corresponding to T = 0, p is the pressure deviation
from the hydrostatic one at the constant density q, c is the
unit vector directed vertically upward and m, v, b are,
respectively, the kinematical viscosity, heat conductivity
and thermal expansion coefficients. Here m = 1,2.

Then as usual q2, j2, v2, m2, b2, l2 are chosen to denote the
density, the thermal conductivity, the thermal diffusivity,
the kinematical viscosity, the thermal expansion coefficient,
the dynamical viscosity of the fluid below, respectively. At
first the averaging method (Gershuni and Lyubimov,
1997) will be applied to deal with the governing equations
Eq. (1) and boundary conditions Eq. (2). Then H2/m2,
v2/H, DT, q2m2v2/H2 are adopted as the scaling factors for
time, velocity, temperature and pressure, respectively, and
the spatial normal perturbations proportional to exp[kt +
ikx] are employed into the linearization of all the governing
equations. At last the complete set of dimensionless equa-
tions of convection under static gravity, thermocapillary
and thermovibrations in the framework of Boussinesq
approximation has the form described as Eqs. (7)–(16).

kðD2 � k2ÞV 1 ¼ t�ðD2 � k2Þ2V 1 þRavb
�2ð�k2A1

� cos2 ah1 þ ikA1 cos aDW 1 þ k2A1

� sin aW 1Þ �Rak2b�h1 ð7Þ

kPrh1 � A1V 1 ¼ v�ðD2 � k2Þh1 ð8Þ

ðD2 � k2ÞW 1 ¼ �ðik cos aDh1 þ k2 sin ah1Þ ð9Þ

kðD2 � k2ÞV 2 ¼ ðD2 � k2Þ2V 2 þRavð�k2A2 cos2 ah2

þ ikA2 cos aDW 2 þ k2A2 sin aW 2Þ �Rak2h2

ð10Þ

kPrh2 � A2V 2 ¼ ðD2 � k2Þh2 ð11Þ

ðD2 � k2ÞW 2 ¼ �ðik cos aDh2 þ k2 sin ah2Þ ð12Þ
z ¼ h1 : V 1 ¼ dV 1=dz ¼ 0; h1 ¼ 0; W 1 ¼ 0 ð13Þ
z ¼ �h2 : V 2 ¼ dV 2=dz ¼ 0; h2 ¼ 0; W 2 ¼ 0 ð14Þ
z ¼ 0 :

W 1 ¼ W 2 ¼ 0; V 1 ¼ V 2 ¼ 0; h1 ¼ h2;

dV 1=dz ¼ dV 2=dz ð15Þ

j�dh1=dz ¼ dh2=dz; l�d2V 1=dz2 � d2V 2=dz2 ¼ k2Mah2

ð16Þ

where D is the dimensionless differential operator D = d/
dz. k, k, a denote the dimensionless wavenumber, the time
growth rate, and the angle of vibration, respectively. And
q*, j*, v*, m*, b*, l* are the ratios between the properties
of the upper and the lower layers. Ma is the Marangoni
number defined as Ma ¼ rT DTH=l2v2, and Ra is the Ray-
leigh number defined as Ra ¼ gb2H 3DT =m2v2. Rav, which is
defined as Rav ¼ ðb2bXDTHÞ2=2m2v2, is the vibrational
Rayleigh number. Here q* = 0.4844, j* = 1.917,
v* = 2.7616, l* = 0.3443, t* = 0.7143, b* = 1.10, Pr =
m2/v2 = 406.0. We select the relation between the Ra and
Ma numbers, Bond ¼ Ra=Ma ¼ gb2q2H 2=rT .
3. Numerical results

The linear governing Eqs. (7)–(12) together with the
boundary conditions Eqs. (13)–(16) are discretized using
the spectral numerical method (Tau-Chebychev) (Steven
and Qrszag, 1971) and then resolved as the general eigen-
value problem. The complex time growth rate k is com-
puted in complex double precision.

As it is known in a system there are two convection
models, when there is not gravity or the gravity is micro
the convection is Marangoni–Benard convection driven
by thermocapillary force and the other convection model
is the Rayleigh–Marangoni–Benard convection driven by
gravity and thermocapillary. Then the results in our pre-
sentation will be studied in two parts. The first one is the
effects on Marangoni–Benard convection, and then it is
about the Rayleigh–Marangoni–Benard convection. Many
of our stability results are concerned with the vibrational
parameter Rav, which depends on the vibrational effects
and the temperature difference.
3.1. The effects of thermovibration on the Marangoni–
Benard convection

Here two cases will be selected to discuss. As we know at
different depth ratio Hr(Hr = H1/H2), the neutral curves of
Ma–k are different (Colinet et al., 2001).

When the depth ratio Hr = 0.667, the results are shown
as Figs. 2 and 3. In Fig. 2, it is about the Ma numbers at
different wavenumbers under vertical vibrations or hori-



Fig. 4. Hr = 3.0. The curves of Ma–k and ki–k.
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zontal vibrations. At the same angle but different Rav, the
corresponding Marangoni numbers are different. Each
curve has a smallest Marangoni number we call it critical
Marangoni number Mac. In Fig. 3, it is about the curves
of Mac–Rav, which give the critical Marangoni numbers
under different vibrations.

In all the figures, the symbol // means the vibration is
horizontal, and ? means the vibration is vertical. And they
have the same meaning in the flowing.

The results show that in the Marangoni–Benard convec-
tion, when the vibration is horizontal, the system is more
apt to lose stability, and when the vibration is vertical the
instability of the system is hindered. From Fig. 3, we can
say that the critical Marangoni numbers Mac, which is the
smallest Ma at this depth ratio under all the wavenumbers,
change as the same pattern. At the same vibration but differ-
ent vibrational angles the critical Marangoni numbers are
different. The critical Marangoni numbers Mac change very
little when the vibrations are in the direction of angle 60�.

Then it is the case when the depth ratio Hr is 3.0. The
results are shown in Figs. 4 and 5.

The results in Figs. 4 and 5 show that when the wave-
numbers are small there are oscillatory regions and the lar-
ger the vibrations in horizontal the wider the regions, while
the larger the vibrations in vertical the sharper the regions.
In the oscillatory regions the image of the eigenvalue ki is
larger than zero. From Figs. 4 and 5, all the results show
that, at small and large k regions except the intermediate
regions from the small k to the large k, vertical vibration
can enhance the stability of the system and the vibrations
in horizontal enable the system easier to lose stable.

From the results above the conclusion will be presented
as that in the Marangoni convection the vibrations in ver-
tical can hinder the instability of the system and the system
with horizontal vibrations will lose stability in small wave-
numbers compared with the system without vibrations. In
all the vibrations in arbitrary angles, the vibrations in the
Fig. 3. Hr = 0.667. The neutral curves of Mac–Rav.

Fig. 5. Hr = 3.0. The curves of Ma–k and ki–k at large k.
direction of 60� have smallest effects on the instability of
the system. In this case, thermovibrations have two effects
of vertical vibrations and horizontal vibrations and the two
effects in this direction are equal and so the vibrations’
effects are very weak.
3.2. The effects of thermovibration on the Rayleigh–
Marangoni–Benard convection

Previously a lot of results (Nepomnyashchy et al., 2006;
Liu, 2004; Liu et al., 2005; Zhou et al., 2004; Colinet and
Legros, 1994; Simanovskii and Nepomnyashchy, Convec-
tive Instabilities in Systems with Interface, 1993; Gershuni
and Zhukhovitsky, 1982) have been got about the convec-
tive instability in a two-layer system, especially about the
Hopf bifurcation occurring in the two-layer Rayleigh–
Benard and Rayleigh–Marangoni–Benard convective
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instability. In order to understand the effects of g-jitter on
this problem, we study hereafter the effects of vibrations on
different depth ratios in the Rayleigh–Marangoni–Benard
convection, in comparison with previous works which con-
cerned the Hopf bifurcation with the effects of buoyancy or
thermocapillary. The results will be discussed in three parts
when the depth of the system H is 4 mm when the Bond
number is 6.82.

As it is known the neutral curves in Rayleigh–Marang-
oni–Benard convection can be described in Fig. 6. The
results in the figure show that the neutral curve is divided
into three parts and there is an oscillatory gap. So three
depth ratios will be selected to discuss, Hr = 1.5, Hr = 2.5
and Hr = 4.0, respectively. The case when the depth ratio
Hr = 2.5 is in the oscillatory gap.
Fig. 6. Neutral curves of Mac–Hr in R–M–B.

Fig. 7. Hr = 1.5. The curves of Mac–k, ki–k.

Fig. 8. Hr = 1.5. The curves of Mac–Rav.
At first we will discuss the case when the depth ratio Hr

is 1.5 which is a case before the oscillatory gap. In Figs. 7
and 8, the results show that there are oscillatory regions
when the wavenumbers are small. The vibrations also have
effects on the oscillatory regions. Here we can see in the
Rayleigh–Marangoni–Benard convection the vibrations in
vertical direction also enhance the stability of the system
and the horizontal vibrations can decrease the stability
and the vibrations in 60� also have the least effects.

Then the case when the depth ratio Hr = 2.5 is dis-
cussed, which shown in Fig. 9 and it is in the oscillatory
gap. The last part of the results is about the case after
the oscillatory gap when the depth ratio Hr = 4.0, which
shown in Fig. 10. Results in Figs. 9 and 10 show that the
Fig. 9. Hr = 2.5. The curves of Ma–k, the dashed lines means it is
oscillatory instability.



Fig. 10. Hr = 4.0. The curves of Ma–k.
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vertical vibrations can hinder the instability in the Ray-
leigh–Marangoni–Benard convection, and the horizontal
vibrations have the opposite effects.

All the results above show that thermovibrations have
complex effects on the R–M–B convection and the effects
depending on the angle of the vibrations mainly. The effects
of thermovibrations on the Hopf bifurcations will be dis-
cussed elsewhere.

4. Conclusions and discussion

The thermalvibrational instabilities of the Marangoni–
Benard convection and Rayleigh–Marangoni–Benard
convection in a two-layer liquid system have been stud-
ied theoretically in the present paper. The linear instabil-
ity analysis results show that thermovibration have the
similar effects on the Marangoni–Benard convection
and the Rayleigh–Marangoni–Benard convection. The
vibrations with the direction vertical to the interface
can enhance the stability of the two-layers system and
damp the convective flow down. Horizontal vibrations
enhance the instability of the system and make the sys-
tem apt to lose stability. When the angle of vibrations
is 60�, the thermovibrations have almost no evident
effects on the instability of the system. It is noted that
thermovibrations can also change the oscillatory regions,
especially when the wavenumber of the system is small.
In summary, former work on the thermovibrations
mainly focused on single layer, and here we presented
the effects of thermovibrations on the instability of
two-layer system convection.
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