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Abstract We present a model in this paper for predicting the inverse Hall–Petch phenomenon in nanocrystal-
line (NC) materials which are assumed to consist of two phases: grain phase of spherical or spheroidal shapes
and grain boundary phase. The deformation of the grain phase has an elasto-viscoplastic behavior, which
includes dislocation glide mechanism, Coble creep and Nabarro–Herring creep. However the deformation of
grain boundary phase is assumed to be the mechanism of grain boundary diffusion. A Hill self-consistent
method is used to describe the behavior of nanocrystalline pure copper subjected to uniaxial tension. Finally,
the effects of grain size and its distribution, grain shape and strain rate on the yield strength and stress–strain
curve of the pure copper are investigated. The obtained results are compared with relevant experimental data
in the literature.

Keywords Nanocrystalline materials · Pure copper · Micromechanics · Hall–Petch relation

1 Introduction

In general, NC materials refer to the class of materials whose average grain size is tens of nanometers or
smaller than 100 nm. NC materials have attracted much interest from researchers recently due to their superior
mechanical properties in comparison with their coarser-grained counterparts. The grain size has a substantial
effect on the mechanical properties of metallic materials. Normally, the yield strength is a function of grain size
described by Hall–Petch relation, i.e., σy = σ0 +K d−0.5, where σy is the yield stress, σ0 is the Peierls (friction)
stress, K is a constant, and d is the grain size. According to Hall–Petch relation, the yield strength would reach
infinity as the grain size tends to zero. This was not an issue in the past, but since NC materials were reported
by Birringer et al. [1], many experiments have indicated that Hall–Petch relation did not always hold as the
grain size decreased to the nanometer regime. This phenomenon is called inverse Hall–Petch relation.

Many investigations attempted to explain the inverse Hall–Petch relation of NC materials in which two
approaches are commonly used. One approach is molecular dynamics (MD) simulation, and the other is rules
of mixture. Indeed, MD simulations have made great progress in understanding mechanical properties and
deformation behavior of NC materials. But, in this paper only the latter approach will be described in detail.
The premise of this approach is that an NC material is considered as a two-phase composite material, includ-
ing grain and grain boundary phases, since the grain boundaries could occupy relatively significant volume
fraction. Thus, the overall yield strength of an NC material can be evaluated as the effective mean of these
two phases. For example, Carsley et al. [2] used the mixture rule to obtain the hardness of nickel, iron and
copper. Their results showed that a negative slope in the hardness versus d−0.5 plot did appear as the grain size
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Fig. 1 Two phase model of NC materials

decreased to nanometer regime. Subsequently, Wang et al. [3] also considered a unit cell consisting of crystal-
line phase and inter-crystalline phase, and adopted different strengths and volume fractions for these regions to
estimate the overall flow stress versus d−0.5 relation. They also found significant deviation from the traditional
Hall–Petch relation. The same unit cell was also made by Kim et al. [4–6] to study the strain-rate sensitivity
of the material. They considered that the overall creep rate of the NC metal was the sum of three creep rates
of dislocation gliding, lattice diffusion and grain-boundary diffusion plus that of the grain boundary phase.
The results suggested that the flow stress increases with decreasing grain size, but in the nanometer regime
further decrease in grain size would result in the softening of the material. Another important contribution of
this approach was due to Meyers et al. [7,8]. The inner and outer phases are best explained by Ashby’s regions
of statistically stored dislocations and geometrically necessary ones, respectively. Then using the mixture rule
and assuming the thickness of the outer layer to be inverse proportional to the square root of the grain size,
we find that the overall stress-strain curve would also follow Hall–Petch relation in the coarse grain region but
depart from it as the grain size decreases to nanometer regime.

In this paper, the micromechanics approach is used to investigate inelastic deformation of NC materials.
The micro–macro correlation is pursued by volume averaging and by introducing the concepts of stress and
strain concentration tensors, which are determined by a self-consistent approach. NC materials are assumed to
be composed of two phases: grain phase of spherical and spheroidal shapes as well as grain boundary phase.
They have an elasto-viscoplastic deformation behavior by dislocation mechanism. The developed model is
applied to pure copper subjected to uniaxial tension. The results are compared with relevant experimental data
in the literature.

2 Micromechanics model

The micromechanics model is motivated by recent molecular dynamics simulation of NC materials. Such sim-
ulations have been performed by a number of investigators such as, Schiotz et al. [9–11], van Swygenhoven
et al. [12,13], Yamakov et al. [14,15], etc. The simulation results suggested that two distinct regions consisting
of the grain and the grain boundary are present in NC materials.

The atomistic model from Schiotz et al. [9] is sketched in Fig. 1a, showing the distinct grain and grain
boundary phases, and is replaced by a micro-geometry model shown in Fig. 1b. To simplify the analysis, the
effect of triple junctions is considered by grain boundary phase in terms of volume fraction. The thickness
of grain boundary phase is not negligible in comparison with the grain phase. In addition, perfect bonding
between two phases is assumed. The deformation characters of both the grain and the grain boundary phases
are elasto-viscoplastic. The grain and grain boundary phases are postulated to be isotropic.

2.1 Grain phase model

It is assumed that the grain shape in an NC material is spherical or spheroidal. When the grains are all spherical

in shape, the volume fraction of the grains is f = (d−w)3

d3 , where d is the grain size, and w is the grain boundary
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thickness. When the grains are all spheroidal in shape, we define the ellipsoidal domain as:

x2
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a2
1

+ x2
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a2
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+ x2
3

a2
3

≤ 1 (1)

where ai (i = 1, 2, 3) is one of the three semi-axes of the ellipsoid. Further, the grain shape is considered
to be spheroidal when the condition a2 = a3 = a �= a1 is satisfied. Thus, the volume fraction of grains is

f = (βa−w)(a−w)2

βa3 , where β = a1
a , and a = d

23
√

β
.

The constitutive relation of grain is:
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where σ̇
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where Sg
i j and σ

g
eq are the deviatoric stress and von Mises equivalent stress of grain, respectively, with:
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where δi j is the Kronecker delta,
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The strain rate of grain is the sum of three deformation mechanisms, i.e., dislocation glide mechanism,
Coble creep mechanism, and lattice diffusion mechanism. Therefore, the equivalent viscoplastic strain rate of
grain is:

ε̇
vpg
eq = ε̇dis + ε̇co + ε̇N-H (7)

The strain rate of dislocation glide is related to the equivalent stress of grain using the power law [4]:

ε̇dis = ε̇∗
(

σ
g
eq

σ0

)m

Z− m
2 (8)

The strain rate sensitivity index is defined as:

m = ∂
(
ln

∑)

∂
(
ln Ė

) (9)

where
∑

and Ė are overall equivalent stress and strain rate, respectively, Z is normalized dislocation density,
ε̇∗ is reference strain rate, and σ0 is related to the microstructure variables.

The evolution of dislocation density with dislocation glide strain is described by Krausz et al. [16]:

dZ

dεdis = C + C1
√

Z − C2 Z (10)
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where C is expressed by:

C = M
b

d

(
MαG

σ0

)2

(11)

where M is the Taylor factor which is assumed to be a constant in the present model, b is the Burger vector,
G is the shear modulus, α is a material constant, C1 is a constant accounting for the dislocation storage, and
C2 represents the thermally activated dynamic recovery process given by:

C2 = C20

(
ε̇dis

ε̇0

)− 1
n

(12)

where C20 and ε̇0 are material constants, and n is inversely proportional to the temperature and is considered
a constant for a given temperature.

The plastic strain rate of grain associated with the Coble creep mechanism [17] is:

ε̇co = 14π�wDbdσ
g
eq

kT d3 (13)

and that associated with the lattice diffusion mechanism (Nabarro–Herring creep) [18] by:

ε̇N - H = 14π�Dldσ
g
eq

kT d2 (14)

where � is atomic volume, Dbd and Dld are boundary and lattice diffusion coefficients, respectively, k is
Boltzman constant, and T is absolute temperature.

2.2 Grain boundary phase model

Since the atoms in grain boundary are arranged relatively loosely, the diffusion mechanism associated with
mass transport along the boundaries is considered. The constitutive relation of the grain boundary phase is:

σ̇
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i j = Cgb

i jkl

(
ε̇

gb
kl − ε̇

vpgb
kl

)
(15)

The viscoplastic strain rate of grain boundary phase ε̇
vpgb
i j is related to the equivalent viscoplastic strain rate

ε̇
vpgb
eq , according to the modified Prandtl–Reuss flow rule:
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where Sgb
i j and σ

gb
eq are deviatoric stress and von Mises equivalent stress of the grain boundary phase, respec-

tively, i.e.,
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The use of Prandtl–Reuss flow rule written by Eqs. (3) and (16) implies that elastic deformation is considered
in the following calculation, and that the grain and grain boundary phases are all plastically isotropic.

The equivalent viscoplastic strain rate is equal to the grain boundary diffusion strain rate [5], such that:

ε̇
vpgb
eq = ε̇gb = 2�Dbdσ

gb
eq

kT d2 (19)
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2.3 Effective nanocrystalline constitutive relation

From a micromechanics point of view, the modeling of heterogeneous materials is based on the averaging oper-
ation using the original Eshelby’s solution of ellipsoidal inhomogeneity. The self-consistent method is that
the interaction among various kinds of inhomogeneities of finite volume concentrations is taken into account
by embedding the inhomogeneities in a medium with effective thermomechanical properties. Originally, the
self-consistent method has been introduced to describe the elastoplastic behavior of polycrystalline materials
with two different approaches: Kroner [19], Budiansky and Wu approach [20] and Hill approach [21]. In the
first approach, the elementary problem of inclusion–matrix interaction is solved by taking the difference of
plastic strain between the inclusion and surrounding matrix as the Eshelby strain, the constraint power of the
matrix remains constant, and therefore overestimates the internal stress. In the second approach where the
problem is treated incrementally using the elastoplastic tangent modulus. The constraint power of the matrix
depends on the tangent modulus of the matrix, and therefore weakens the internal stress during the plastic
deformation. In general, the Hill self-consistent approach shows a better accuracy in describing the behavior of
polycrystalline materials and thus can be used for incremental calculations. So Hill’s approach is used to derive
the constitutive relation of NC materials in the present work. The model is isothermal, neglecting temperature
change. The macroscopic constitutive equation is written as:

∑̇

i j
= Ceff

i jkl

(
Ėkl − Ėvp

kl

)
(20)

where Ceff
i jkl is overall elastic modulus, Ėkl is global strain rate, and Ėvp

kl is effective viscoplastic strain rate.
The relations between local strain rate and macroscopic strain rate are given below:

{
ε̇

g
i j = Ag

i jkl Ėkl + ag
i j

ε̇
gb
i j = Agb

i jkl Ėkl + agb
i j

(21)

where the fourth order concentration tensors Ag
i jkl and Agb

i jkl take into account the heterogeneity of the elastic

modulus in the material, and the second order tensors ag
i j and agb

i j account for the heterogeneity of inelastic
deformation in the material.

It is evident that macroscopic strain and stress rates are, respectively, the volume average of microscopic
strain and stress rates. The relations are written as:

Ėi j = 1

v

∫

v

ε̇i j dv =〈
ε̇i j

〉
v

(22)

and

	̇i j = 1

v

∫
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〉
v

(23)

Equations (22) and (23) are the definitions of general case, and the average strain rate Ėi j and the average
stress rate 	̇i j are consistent in the following analysis.

The relations between microscopic and macroscopic strain and stress rate are given below:

ε̇i j = Ai jkl Ėkl + ai j (24)

and

σ̇i j = Bi jkl

∑̇

kl
+ bi j (25)

where Ai jkl and Bi jkl , are respectively the fourth- order strain and stress concentration tensors while ai j and
bi j are the corresponding second order tensors.

Substitution equations (24) and (25) into equations (22) and (23) will result in the following:
〈
Ai jkl

〉
v

= 〈
Bi jkl

〉
v

= Ii jkl (26)
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and
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where
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Substituting equations (24) and (25) into Eqs. (2) and (15), and comparing with Eq. (20), then using Eqs. (26)
and (27), we find
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The volumes of two phases are denoted by vg, vgb, respectively. So we obtain:
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The expressions [22] of the fourth-order tensors and the second-order tensors are expressed as follows, respec-
tively:
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where Si jkl is Eshelby’s tensor [see Appendix].

3 Results and discussion

We now apply the developed model to evaluate the stress-strain relation and yield strength of pure copper
subjected to uniaxial tension as the grain size decreases from coarse grain to nanometer regime. The val-
ues of shear modulus and Poisson’s ratio of grain and grain boundary phases used in the calculation are
µg = 42.1GPa, νg = 0.3 and µgb = 25.26GPa, νgb = 0.33, respectively. The other parametric values [4]
are ε̇∗ = 0.005s−1, σ0 = 160 MPa, M = 3.06, α = 0.33, G = 42.1 GPa, b = 25.6 nm, C1 = 52.86, C20 =
40.5, n = 21.25, ε̇0 = 0.001 s−1, � = 1.18 × 10−29 m3, k = 1.38 × 10−23 Pa m3, T = 300 K, Dbd =
2.6 × 10−20m2 s- 1, Dld = 1.512 × 10−40m2 s−1.

A set of equations (2), (7), (8)–(14) were used to calculate the grain phase deformation behavior, and equa-
tions (15)–(19) were used for grain boundary phase. Finally, equations (20)–(21), and (31)–(36) were applied
to investigate the overall deformation behavior. Implicit iteration algorithm was employed in this calculation.
Then, the curves of stress–strain at different grain sizes under different strain rates, and of yield strength versus
grain size are obtained. The predicted behavior was compared with the experimental data in the literature.

3.1 Spherical grains

In this section, we discuss the effect of spherical grains on the stress–strain relations and yield strength for
pure copper subjected to uniaxial tension.
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Fig. 2 Stress–strain relations for Cu of different grain sizes with strain rate of 1 × 10−3 s−1

0.00 0.02 0.04 0.06 0.08 0.10

Strain

0

200

400

600

800

1000

1200

1400

S
tr

es
s 

[M
P

a]

strain rate=1e-3 s-1

strain rate=1e-4 s-1

strain rate=1e-5 s-1

Fig. 3 Stress–strain relations for Cu under different strain rates with average grain size of 49 nm

3.1.1 Without considering the distribution of grain size

The stress–strain curves of different grain sizes under different strain rates are plotted in Fig. 2. The results
indicate that the flow stress of coarse grain Cu (1,000 nm) is the lowest, and it increases with the decrease in
grain size. However, as the grain size approaches to the critical value, further decrease in grain size leads to
the decrease in flow stress.

The stress–strain relations under different strain rates are plotted in Figs. 3, 4 and 5. It is shown that the
flow stress increases with the increase in strain rate, but the amplitude variation is sensitive to grain size.

Figure 6 shows the stress–strain curves of different grain sizes under the strain rate of 1 × 10−3 s−1, and
the colored dots in the figure are the experimental data in the literature [23,24]. Our calculated results are in
good agreement with experimental data when the strain is less than 2%.

The yield strength versus inverse square grain size curves are plotted in Fig. 7 for the strain rate of
1×10−3s−1 . The solid line is the result predicted by the present model while the dots correspond to the exper-
imental data [23,25,26]. It is shown that the yield stress increases with decreasing grain size, when the grain
size is larger, but as the grain size arrives at critical scale, the yield stress starts to decrease with decreasing
grain size when the grain size is smaller. The predicted yield stress of NC materials is in agreement with the
experimental data. This phenomenon is the so-called inverse Hall–Petch relation that has been reported in a
number of investigations [1–7].
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Fig. 8 Statistical distribution of grain size for copper [27]. About 300 grains were measured for the sample

3.1.2 Considering the distribution of grain size

Many experimental results demonstrated that there are great difference in flow stress or hardness although
the average grain size was the same. In order to interpret the phenomenon, we investigate the influence of
distribution of grain size. A given distribution of grain size consists of several size ranges, each range being
of its volume fraction, i.e., the contribution of different grain sizes is in inequality, then the mixture rule will
be applied for this case.

The statistical distribution of grain size for pure Cu is reproduced in Fig. 8, with the average grain size of
75 nm. Figure 9 shows the effect of distribution of grain sizes on stress–strain relations. It is seen that, with
considering the distribution of grain size, the flow stress decreases in comparison with the uniform distribution
of grain size.

3.2 Spheroidal grains

In this section, we investigate the influence of spheroidal grains on stress–strain curves for pure copper subjected
to uniaxial tension with considering distribution of grain size. The direction of uniaxial load is correspondent
to a1 axis (i.e., x direction).

The effect of β (as defined in 2.1) on stress is shown in Figs. 10 and 11. The results indicate that the flow
stress increases with the increase in parameter β. Such an increase is substantial as β is larger than one, but it
diminishes as β is less than one.
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4 Summary

The paper is the extension of existing two-phase models incorporating a third element, the triple junctions.
The elastic deformation is included and a self-consistent approach has been adopted. The paper addresses the
mechanical response of nanocrystalline materials, as exemplified by copper, in terms of an elastic-viscoplastic
model in which the grain phase of spherical (or spheroidal) shape and grain boundary phase are separated
phases with distinct constitutive behavior.

In this paper, the micro–macro correlation is realized by volume averaging and by introducing the concepts
of stress and strain concentration tensors which are determined by self-consistent approach. A micromechanics
method was presented and applied to pure copper subjected to uniaxial tension so as to analyze the dependence
of grain sizes and strain rates on yield strength and stress–strain curve, respectively. In addition, the influence
of grain size distribution and grain shape on stress–strain curve was also investigated. The following results
are obtained:

(1) Flow stress increases with a decrease in grain size before it approaches to the critical value.
(2) Flow stress increases with an increase in strain rate, but the amplitude variation is sensitive to grain size.
(3) The stress–strain relations of different grain sizes given by the developed model agree well with experi-

mental data.
(4) The breakdown of Hall–Petch relation is reproduced. During the transition from the Hall–Petch relation

to one with a negative slope, both grain phase and grain boundary phase contribute competitively to the
overall plastic deformation of the nanocrystalline materials.

(5) Considering the distribution of grain size, one finds that flow stress decreases in comparison with the
uniform distribution of grain size.

(6) Flow stress increases with an increase in parameter β.

Moreover, more experiments and simulations are needed to verify the model for different materials.
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Appendix

Eshelby (1957) proved that the Eshelby’s tensor does not depend on the location of the point in an inclusion. Explicitly, the
Eshelby’s tensor for a spheroidal grain is [28,29]:

Si jkl = 1

4
(
1 − νgb

)
[

S(1)
I K δi j δkl + S(2)

I J

(
δikδ jl + δilδ jk

)]
(A.1)

In which the following summation convention has been used: repeated lower case indices are summed over from one to three;
upper case indices take on the same numbers as the corresponding lower case ones but are not summed. The components of the
Eshelby’s tensor for a spheroidal inclusion can be explicitly described as:
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S(2)
12 = S(2)

13 = S(2)
21 = S(2)

31 =
[
−νgb − β2 + 2

β2 − 1

]
g(β) − 2νgb − 2

β2 − 1
(A.7)

S(2)
22 = S(2)

23 = S(2)
32 = S(2)

33 =
[

2νgb − 4β2 − 7

4
(
β2 − 1

)

]

g(β) + β2

2
(
β2 − 1

) (A.8)
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where β = a1
a , and g(β) is given by:

g(β) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β
(
β2 − 1

) 3
2

[
cosh−1 β − β

(
β2 − 1

) 1
2

]
for β > 1

β
(
1 − β2

) 3
2

[
β
(
β2 − 1

) 1
2 − cos−1 β

]
for β < 1

(A.9)

Specially, for the special case of a spherical grain (β = 1), the Eshelby’s tensor reduces to:

Si jkl = 1

15
(
1 − νgb

)
[(

5νgb − 1
)
δi j δkl + (

4 − 5νgb)(δikδ jl + δilδ jk
)]

(A.10)
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