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Abstract
A constitutive model, based on an (n + 1)-phase mixture of the Mori–Tanaka average theory,
has been developed for stress-induced martensitic transformation and reorientation in single
crystalline shape memory alloys. Volume fractions of different martensite lattice
correspondence variants are chosen as internal variables to describe microstructural evolution.
Macroscopic Gibbs free energy for the phase transformation is derived with thermodynamics
principles and the ensemble average method of micro-mechanics. The critical condition and the
evolution equation are proposed for both the phase transition and reorientation. This model can
also simulate interior hysteresis loops during loading/unloading by switching the critical driving
forces when an opposite transition takes place.

1. Introduction

Shape memory alloys have been recognized as promising
materials for various applications for decades [1, 2]. More
recently, they have also found applications as micro-actuator
devices in MEMS [2–5]. The mechanism behind the
unique shape memory phenomenon is the diffusionless phase
transformation between the high-temperature stable phase
austenite and low-temperature stable phase martensite, and
reorientation among martensite variants. Modeling mechanical
and microstructural behaviors of shape memory alloys is
considerably complex due to the nonlinear behavior and the
presence of hysteresis. Furthermore, those behaviors are
temperature dependent in many cases.

In view of engineering applications, multidimensional
constitutive models have been developed recently; see, for
instance, [6–19]. Most previous models adopted a statistical
strategy ranging from the microscale, through the mesoscale
to the macroscale. However, confusion with regard to the
fundamentals of micromechanical models still exists, largely

due to the complexity in microstructure during the martensitic
transformation. Those fundamental concepts are critical to
understanding the mechanism of martensitic transformation.
To name a few:

(1) What are the potential wells of martensitic transformation;
habit plane variants (HPVs) or lattice correspondence
variants (LCVs), or both?

(2) How can one model the interaction energy between
martensite and austenite, and among martensite variants?

(3) What is the mechanism of forming an interior hysteresis
loop, and how does one model it?

These three aspects of martensitic transformation are further
reviewed as follows.

Lattice correspondence variant and habit plane vari-
ant. The phenomenological theory of martensite crystallog-
raphy [20–23] has been successfully applied in investigating
the microstructure evolution of the martensite/austenite inter-
phase and martensite twins. This theory allows continuous

0964-1726/08/015041+10$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0964-1726/17/01/015041
http://stacks.iop.org/SMS/17/015041


Smart Mater. Struct. 17 (2008) 015041 J J Zhu et al

macro-displacement with heterogeneous microscopic defor-
mation. Hence, the Hadamard jump condition becomes an
internal geometric restraint, which requires the interface be-
tween the martensite lattice correspondence variants to be a
twin plane and that between austenite and martensite to be a
habit plane [24, 25]. It is noted that habit plane variants are not
always the elementary units that compose the bulk martensite.
Instead they are often formed by even smaller single crystalline
units, which have a unique lattice correspondence with austen-
ite [26]. In this paper, we use ‘habit plane variant’ to describe
the morphological change of forward and reverse transforma-
tions between austenite and martensite, while employing ‘lat-
tice correspondence variant’ to specify martensite lattice corre-
spondence during the reorientation process. Since the order of
symmetry of martensite is lower than that of austenite, n lattice
correspondence variants may be induced from one austenite
crystal after martensitic phase transformation. In some shape
memory alloys (e.g., CuZnGa and CuZnAl, which involve DO3

austenite and 18R martensite) [27], the habit plane variant is a
martensite lattice correspondence variant. In other shape mem-
ory alloy transformations, such as the DO3 austenite to 2H
martensite transformation in CuAlNi [28–31], and B2 austen-
ite to B19′ martensite transformation in TiNi [32], the habit
plane variant includes two twin-related lattice correspondence
variants. Figure 1 is a sketch of a habit plane variant which
consists of a pair of twinned lattice correspondence variants.
Assuming Ui is the right stretch tensor of Bain strain in lat-
tice correspondence variant i , the deformations in the two lat-
tice correspondence variants i and j are Ui and U j , respec-
tively. Thus, the deformation of a habit plane variant may be
expressed as κU j + (1 − κ)RUi , where R is the rotation of
variant i with regard to variant j . The volume fraction ratio
between the twinned lattice correspondence variants κ is a con-
stant, as determined by the lattice parameters of austenite and
martensite. In the case of CuAlNi, the type II twin habit plane
variant has one lattice correspondence variant of 0.3007 and
another of (1 − 0.3007) [28, 29].

Continuum thermoelasticity, developed by Ericksen [33],
Ball and James [24] and others, studies the atomic
displacement and macroscopic deformation in crystalline
solids undergoing a martensitic transformation. It uses the
Cauchy–Born hypothesis, where minimum total free energy is
required for any mechanical response. The total free energy
usually comprises deformation energy (or elastic strain energy)
and loading device energy (refer to equation (13) in [34], and
equation (8) in [35]). The deformation energy is assumed to
be a smooth function of temperature and deformation gradient.
It must be frame independent and reaches its minimum at
the bottom of the potential well. According to continuum
thermoelasticity, each lattice correspondence variant is a
potential well. The system would have n + 1 potential wells
(n lattice correspondence variants for martensite plus one
for austenite). Thus, the deformation energy is minimized
if the total strain equals the eigenstrain of each martensite
lattice correspondence variant (without elastic strain) or zero
(corresponding to austenite). It is well known that in forward
transformation austenite is much easier to transform into habit
plane variants than lattice correspondence variants. In order
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Figure 1. A habit plane variant consists of a pair of twinned lattice
correspondence variants.

to obtain thermodynamic forces corresponding to habit plane
variants, some previous models simply chose habit plane
variants (or lattice correspondence pairs) as potential wells.
It should be pointed out that a habit plane variant does not
always correspond to an energy potential well. In order to
establish the kinetic mechanism of martensitic transformation,
the relationship between the martensite lattice correspondence
variant and habit plane variant has to be identified. It is obvious
that if the habit plane variants are chosen as potential wells,
martensite reorientation cannot be properly described, since
reorientation happens among lattice correspondence variants,
which are subunits of habit plane variants. A particular
example is discussed in [34]. In some of the previous
models [12, 36–39], lattice correspondence variants are chosen
as potential wells instead of habit plane variants. These models
use a transformation ‘yield’ surface [40] to simulate the phase
transformation process, rather than proposing thermodynamic
driving forces for martensite habit plane variants. In the present
paper, we demonstrate that lattice correspondence variants
should be chosen as potential wells. Thermodynamic driving
forces corresponding to martensite habit plane variants can
still be explicitly derived out under this framework. Further,
thermodynamic models for forward/reverse transformations
between austenite and martensite, and reorientation among
martensite variants, have been developed using this protocol.

Interaction energy. Determination of the overall
deformation energy is critical in modeling the transition in
shape memory alloys. Although continuum thermoelasticity
has outlined the main characteristics of deformation energy
(e.g. potential wells, frame independence, and smoothness of
deformation gradient and temperature) and the upper bound
and lower bound of deformation energy have been discussed
previously [38, 41], no explicit formula for the deformation
energy has been proposed. In practice, Hooke’s law, linking
the deformation energy with the local elastic deformation,
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applies reasonably accurately in the close vicinity of a local
well [42]. We recently combined Hooke’s law with the
volume average scheme and suggested that the macroscopic
deformation energy can be divided into two parts: the energy
induced by macroscopic external stress and internal interaction
energy [43]. Internal interaction energy is generated by the
inhomogeneous phase transformation eigenstrain and it does
not depend on the external (macroscopic) stress. Therefore,
the only issue remaining is how to determine the internal
interaction energy.

Previously, martensite variants have been considered as
inclusions within an austenite medium and the interaction
energy of a multicomponent system is estimated by Eshelby’s
inclusion theory. Eshelby’s inclusion theory is only valid
for one ellipsoidal inclusion embedded within an infinite
matrix; it may not be accurate for a multi-inclusion case.
Martensite/austenite interface and interface among martensite
variants are planes; martensite must be in polyhedral shape
rather than ellipsoid. Furthermore, inclusion theory is not
applicable for the phase transformation in single crystalline
shape memory alloys, in which case an austenite single crystal
transforms into one martensite variant upon loading. The
internal interaction energy of a multicomponent mixture can
be derived by the interface operator technique [14, 44]. In
Siredey’s work, grains are divided into a series of domains.
Each domain is assumed to end at a grain boundary and a
domain meets others on one side only. By definition, only
one type of martensite habit plane variant is assigned for
each domain. The internal stress caused by incompatible
deformation in each domain is assumed to be constant.
Subsequently, a second-order polynomial function in terms
of volume fractions of martensite habit plane variants can be
obtained. Coefficients of this polynomial are determined by
the interfacial operator. Hence, they are dependent upon the
microstructure of a particular shape memory alloy, and can be
determined at a microscopic level.

Mori and Tanaka [45] have proven that if two phases
are mixed together in a random and uniform fashion, the
interaction energy produced by the incompatible deformation
is proportional to z(1 − z) [46]. Here z is the volume
fraction of one phase. Similar formulae have been used for
shape memory alloys [47–51]. Unfortunately, this simple
closed-form solution is only for two-phase mixtures. In
shape memory alloys, there are n martensite variants plus
one for austenite. Thus, the interaction energy in an (n + 1)
component mixture has to be considered. We recently extended
the Mori–Tanaka theory to an (n +1)-component mixture [43].
It can subsequently be concluded that the inclusion theory
is only applicable for one ellipsoidal inclusion case, while
Mori–Tanaka theory is valid for the multi-inclusion case. The
volume fraction of martensite has to be much less then 1 in the
inclusion theory, while it can be any value between 0 and 1
in Mori–Tanaka theory. It is noted that the interaction energy
of a two-component mixture estimated by the inclusion theory
also appears as a second-order polynomial. But this is quite
different from that predicted by Mori–Tanaka theory. The
coefficient is determined by an Eshelby tensor in the former,
while the calibration can be done by a macroscale experiment

Figure 2. Sketch of an interior hysteresis loop.

in the latter. In addition, it has been proven that the total
number of independent constants in the interaction energy is
no more than the number of martensite lattice correspondence
variants [43].

Interior hysteresis loop. A complex interior hysteresis
loop was observed in uniaxial tensile tests in single crystalline
shape memory alloys [47–53], and a similar phenomenon
has been reported in martensite reorientation between two
martensite lattice correspondence variants [34]. These interior
hysteresis loops were given various names, such as internal
elasticity, internal yield and internal recovery in the literature
(for example figure 2 in [48], figures 1 and 4 in [49], figures 4,
5 and 8 in [50]). Considering an isothermal loading/unloading
process as shown in figure 2, phase transformation starts
at B upon loading. If unloading at C, it moves from C
to D. During reloading from D, it returns to C elastically.
As there is no reverse phase transformation upon unloading,
the last transformation state in the forward transition at
point C is remembered. The forward transition will not
restart until reloading to C. If unloading from point E, a
reverse transition appears (E → F → G as shown in figure 2);
the last transformation state in the forward transition at
point E is obliterated. During reloading from G, the
forward transformation restarts at H. A similar phenomenon
happens in the reverse transformation and reorientation (e.g.,
tension/compression cycling). Oblivion plays an important role
in the formation of an interior hysteresis loop, which happens
when an internal state crosses lines l1 and l2 in figure 2. Huo
and Müller [50] concluded that the interior hysteresis loop
is due to history-dependent pseudoelasticity, and the fraction
of the last transformation state is remembered. Fedelich and
Zanzotto [48] suggested choosing the fraction of martensite
variant in the last transformation as an additional internal
variable to describe these loops. The present paper only
deals with transformations with a stable hysteresis loop; refer
to [54, 55] for the instability of the phase transformation.

We aim at developing a robust micro-mechanical model to
address the above three issues in this paper. In section 2, the
macroscopic Gibbs free energy is expressed as a function of
volume fractions of different martensite lattice correspondence
variants. Basic transition processes (e.g. forward/reverse
transformations and reorientation) and the transition law, and
the prediction of an interior hysteresis loop are investigated
in section 3. Conclusions and outlook of the proposed
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Figure 3. Sketch of a representative volume element. Areas with
different shades stand for different martensite lattice correspondence
variants. k = 0, 1, 2 . . . n, l = 1, 2, . . . Qk .

thermodynamic models for shape memory alloys are given in
section 4.

2. Thermodynamics of martensitic transformation

In this section, the non-equilibrium thermodynamics of
martensitic transformation is investigated using the ensemble
average method. Martensite lattice correspondence variants
are chosen as internal variables to describe the microstructural
configuration. Potential differences between the martensite
lattice correspondence variant and austenite are derived from
macroscopic Gibbs free energy.

A single crystalline shape memory alloy is pure austenite
if the material is stress-free and the temperature is higher
than its austenite finish temperature. Taking a representative
volume element (with volume V and its boundary A0) from
a single crystal, a martensitic transformation may be induced
by either stressing or cooling (figure 3). In both cases,
the microstructural evolution is by means of the growth of
martensite at the expense of austenite until, ideally, no more
austenite exists.

Within martensite, there are n possible lattice correspon-
dence variants. Therefore, in a representative volume element,
n + 1 components may coexist (let k = 1, 2 . . . n represent
n martensite lattice correspondence variants, and k = 0 for
austenite). As shown in figure 3, one martensite lattice corre-
spondence variant may be found inside many different regions
in the representative volume element. The same martensite lat-
tice correspondence variants are represented by the same shade
in figure 3. We assume that the number of regions with a par-
ticular type of martensite lattice correspondence variant k is
Qk and the volume of the lth (l = 1, 2 . . . Qk ) region with
martensite lattice correspondence variant of type k is Vkl (with
boundary Akl ). For consistency, all vectors and tensors are in
bold face and the summation convention for repeated indices is
not used in this paper. For simplicity, we only consider elastic
deformation and deformation due to the phase transformation;
and we assume that the two phases (martensite and austenite)

share the same thermal and physical properties. Thus the fol-
lowing assumptions are made:

(1) The total deformation can be divided into two parts:
namely, the elastic deformation and deformation induced
by the transformation.

(2) The elastic modulus (L) of austenite is the same as that
of martensite. The elastic compliance tensor is given by
M = L−1.

(3) The specific heat CV and heat conduction coefficient k0 of
austenite and martensite are the same.

(4) Martensite in three-dimensional space is randomly and
uniformly distributed.

(5) The density ρ, temperature field T , heat flow q and
specific heat source ṙ are uniform in the representative
volume element. Only macroscopic heat conduction
is considered and the heat conduction among different
phases within the representative volume element is
ignored.

(6) Thermal expansion is ignored.

According to assumption 1, the total strain ekl is the sum
of elastic strain and phase transition strain:

ekl = ee
kl + Etr

k (l = 1, 2, . . . , Qk) (1)

where ee
kl is the elastic strain and Etr

k is the eigenstrain
due to the phase transformation from austenite to type k
martensite lattice correspondence variant. It is noticed that, for
Vkl(l = 1, 2, . . . , Qk), which corresponds to the same variant
of type k located at various places, their phase transformation
eigenstrains are the same although their elastic strain ee

kl may
be different.

If the point group of austenite is given by Pa and that of
martensite is Pm, then Pm is a subgroup of Pa [43]. Let L be
the left coset of Pm in Pa, i.e.,

Pa = L ⊗ Pm. (2)

We have
Etr

k = RkEtr
1 RT

k , Rk ∈ L, (3)

where k = 1, 2, 3, . . . n, and n is the total number of lattice
correspondence variants. For austenite (k = 0), there is no
phase transformation term but elastic deformation only, i.e.,

e0l = ee
0l (l = 1, 2, . . . , Q0). (4)

Assuming that the specific internal energies and specific
entropies of austenite and martensite at the reference
temperature T0 are uA

0 , uM
0 , hA

0 , and hM
0 , respectively, then the

specific entropy ηM, elastic energy φkl , and specific internal
energy ukl for martensite Vkl (k �= 0) may be expressed as

ρηM(T ) = hM
0 + CV ln

(
T

T0

)
(k �= 0), (5)

φkl = 1
2 (ekl − Etr

k ) : L : (ekl − Etr
k ) = 1

2σ kl : M : σ kl , (6)

ρukl = uM
0 + CV (T − T0)+ φkl (k �= 0), (7)

where l = 1, 2, . . . , Qk and σkl is the stress applied on the
martensite volume specified by kl. For austenite V0l(k = 0),
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the specific entropy ηA, elastic energy φ0l , and specific internal
energy u0l are

ρηA(T ) = hA
0 + CV ln

(
T

T0

)
(k = 0), (8)

φ0l = 1
2 e0l : L : e0l = 1

2σ 0l : M : σ 0l, (9)

ρu0l = uA
0 + CV (T − T0)+ φ0l, (10)

where l = 1, 2, . . . , Q0. Hence, ekl = Etr
k (k = 1, 2, . . . n)

and e0l = 0 form n + 1 potential wells.
For any given microscopic quantity ψ , define its

corresponding macroscopic average as

〈ψ〉 = 1

ρV

∫ ∫ ∫
V
ρψ dV = 1

ρV

n∑
k=0

Qk∑
l=1

∫ ∫ ∫
Vkl

ρψkl dV ,

(11)
where ρ is the macroscopic density of the representative
volume element. Recalling assumption (4), one has

〈ψ〉 = 1

V

∫ ∫ ∫
V
ψ dV = 1

V

n∑
k=0

Qk∑
l=1

∫ ∫ ∫
Vkl

ψkl dV .

(12)
Let the volume fraction of type k lattice correspondence variant
in a representative volume element be

zk = Vk

V
, (13)

where

Vk =
Qk∑
l=1

Vkl . (14)

Obviously,
n∑

k=0

zk ≡ 1. (15)

The macroscopic volume average strain (i.e. in equation (11)
ψ = e) may be defined by [56, 57]

E = 〈e〉 = 1

V

n∑
k=0

Qk∑
l=1

∫ ∫ ∫
Vkl

ekl dV (16)

where e is the microscopic strain; thus

E = Ee + Etr, (17)

where Ee and Etr are the macroscopic elastic strain and
macroscopic phase transformation strain, respectively, and

Ee = 〈ee〉 = 1

V

n∑
k=0

Qk∑
l=1

∫ ∫ ∫
Vkl

ee
kl dV , (18)

Etr =
n∑

k=1

zkEtr
k (19)

where ee is the microscopic elastic strain. Similarly, the
macroscopic average of specific entropy ξ , elastic energy 	
and specific internal energy U can be defined as

ξ = 〈η〉, (20)

	 = 〈φ〉, (21)

U = 〈u〉. (22)

Substituting equations (5)–(10) into (20)–(22), and referring to
equation (21), one has

ρξ = 〈ρη〉 = z0

[
hA

0 + CV ln

(
T

T0

)]

+
n∑

k=1

zk

[
hM

0 + CV ln

(
T

T0

)]
, (23)

ρU = 〈ρu〉 = z0[uA
0 + CV (T − T0)]

+
n∑

k=1

zk[uM
0 + CV (T − T0)] +	. (24)

Supposing that the macroscopic stress applied on volume V is
Σ, it is the conjugate stress with macroscopic strain E [56–59],
which has to satisfy

1

V

∫ ∫ ∫
V
σ : ė dV = Σ : Ė. (25)

It would be convenient to define all stress and strain tensors
in a reference configuration, say the σ (or Σ) second Piola–
Kirchhoff stress tensor (or Lagrangian Piola–Kirchhoff stress)
and the e (or E) Lagrangian strain tensor. According to [43],
the total macroscopic deformation energy is a sum of macro-
elastic energy in the absence of transformation and the internal
interaction energy due to martensitic transformation in the
absence of external stress, that is

	 = 1
2Σ : M : Σ + f s, (26)

where f s is the ‘stored elastic energy’—internal energy due to
the internal stress field σ int (induced by eigenstrain ε∗).

f s = 	int = − 1

2V

∫ ∫ ∫
V

σ int : ε∗ dV (27)

and

ε∗ =
{

Etr
k if x ∈ Vkl

0 if x ∈ V − Ω,
(28)

is the microscopic eigenstrain of the phase transformation; Ω
denotes the total volume occupied by martensite.

It has been proved that f s does not directly depend
upon the external stress field; it is a second-order
polynomial function of martensite lattice correspondence
variant fractions [43], i.e.,

f s = 	int = Az0(1 − z0)+ 1
2

n∑
k=1

n∑
l=1
l �=k

Bkl zk zl, (29)

where A and Bkl are material constants describing the
interaction between austenite and martensite and among
martensite variants, respectively. A and Bkl should be
calibrated experimentally at macroscopic scales. It was also
proved that the maximum total number of independent Bkl is
n − 1 [43]. Substituting equation (26) into (24) results in

ρU = 1
2Σ : M : Σ + z0[uA

0 + CV (T − T0)]

+
n∑

k=1

zk[uM
0 + CV (T − T0)] + f s. (30)

5
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The total work includes work done by the surface force and the
body force, respectively. We define the total work rate per unit
volume as

Ẇ = 1

V

[∫ ∫
A0

σ : (v ⊗ n) dA +
∫ ∫ ∫

V
f · v dV

]
, (31)

where v is the velocity, n is the outwards normal direction of
boundary A0, and f is the body force. Note the equilibrium of
an object subjected to an external stress and body force:

∂σ

∂x
+ f = 0. (32)

Referring to equation (25), equation (31) can be rewritten as

Ẇ = 1

V

∫ ∫ ∫
V

σ : ė dV = � : Ė. (33)

One may choose (Σ, zk, T ) as independent variables at the
macroscopic scale. The macroscopic Gibbs free energy
function is defined by

ρG = ρU − Tρξ − Σ : E. (34)

By substituting equations (17), (19), (23), and (30) into (34),
we obtain that

ρG = ρU − Tρξ −� :
(

Ee +
n∑

k=0

zkEtr
k

)

= ρU − Tρξ −� : M : Σ − Σ :
( n∑

k=0

zkEtr
k

)

= z0[uA
0 + CV (T − T0)] +

n∑
k=1

zk[uM
0 + CV (T − T0)]

+ f s − T

{
z0

[
hA

0 + CV ln

(
T

T0

)]

+
n∑

k=1

zk

[
hM

0 + CV ln

(
T

T0

)]}

− � :
( n∑

k=0

zkEtr
k

)
− 1

2Σ : M : Σ. (35)

From equation (35), we get

E = −ρ ∂G

∂�
= M : � +

n∑
k=0

zkEtr
k (36)

and

ξ = −∂G

∂T
. (37)

Let�k be potential difference between type k martensite lattice
correspondence variant and austenite, then

�k = −ρ ∂G

∂zk
= Σ : Etr

k + (hT −u)− ∂ f s

∂zk
, (38)

where
h = hM

0 − hA
0

u = uM
0 − uA

0 .
(39)

The phase equilibrium temperature is determined by T eq =
u
h .

Letting ρTη∗ be the total entropy product in representative
volume element (V ), which includes contributions from phase
transformation and heat conduct, the second thermodynamic
principle may be written as

ρTη∗ =
n∑

k=1

�k żk − 1

T
q · ∇T � 0. (40)

3. Transition process

In this section, we use progress variables and stoichiometric
coefficients to describe the transition process in shape memory
alloys. The thermodynamic driving force for an individual
progress variable is obtained. Critical conditions and
evolution equations for the forward transformation, reverse
transformation and reorientation are derived.

3.1. Basic transition process

In section 2, we have defined and derived potentials for
each martensite lattice correspondence variant and austenite.
However, austenite and martensite lattice correspondence
variants may simultaneously vary their volume fractions in a
real transition process. For instance, upon cooling in a piece
of stress-free austenite shape memory alloy, all martensite
habit plane variants may be produced equally and grow
simultaneously at a critical temperature (also called self-
accommodation martensite). For a simplest transition process,
the phase transformation starts with austenite transforming
into a habit plane variant, which may include two lattice
correspondence variants in some shape memory alloys. On the
other hand, reorientation is a transition process between two
martensite lattice correspondence variants.

In a given transition process (denoted by subscript l),
the volume fractions of austenite and each martensite lattice
correspondence variant vary proportionally. The rate among
these variations may be described in terms of stoichiometric
coefficients (ν0l, ν1l, ν2l , . . . , νnl). Mass conservation yields

n∑
k=0

νkl = 0. (41)

The progress state of the process may be presented by a
progress variable ζl . It varies between 0 and 1, where ζl = 0
is for the beginning of a process and ζl = 1 when the process
finishes. Thus, the variations of volume fractions of austenite
and each martensite lattice correspondence variant due to this
transition process can be expressed by

żk = νkl ζ̇l (k = 0, 1, 2 . . . n). (42)

From equation (42), the total potential variation rate of
martensite takes the form of

n∑
k=1

�k żk =
[ n∑

k=1

�kνkl

]
ζ̇l = �l ζ̇l, (43)

6
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where

�l =
n∑

k=1

�kνkl . (44)

This is the thermodynamic driving force for a specific progress
variable ζl . Equation (44) shows that the thermodynamic
driving force of any transition process is a linear combination
of thermodynamic driving forces of lattice correspondence
variants. The combination coefficient is the stoichiometric
coefficient of the transition process.

Any complex transition process can be considered as
a combination of these basic processes, namely, forward
transformation, reverse transformation and reorientation. In
the case where the habit plane variant is the lattice
correspondence variant, the stoichiometric coefficient of the
forward phase transformation (from austenite to type l
martensite lattice correspondence variant) is

element 0 element l
� �

(ν0l, ν1l, ν2l, . . . , νnl) = (−1, 0, . . . 0, 1, 0, . . . 0) .
(45)

The first element in the right-hand side of equation (45) is −1,
the lth element is +1, and all other columns are 0. Substitution
of equation (45) into (44) yields

�l = �l . (46)

If the habit plane variant is not a subunit of martensite, it
has to be composed of a pair of twinned martensite lattice
correspondence variants. Under this condition, in a forward
phase transformation austenite transforms into two twinned
martensite lattice correspondences (e.g. element j and i).
Then, the stoichiometric coefficient of this process is written
as

element 0 element i element j
� � �

(ν0l , ν1l , ν2l , . . . νnl ) = (−1, 0, . . . 0, 1 − κ, 0, . . . 0, κ, 0, . . . 0).
(47)

Here, κ is the volume fraction ratio of two twinned
martensite lattice correspondence variants. On substitution of
equation (47) into (44) and considering equation (38), we have

�l = (1 − κ)�i + κ� j

= � : E∗
l + (hT −u)−

[
(1 − κ)

∂ f s

∂zi
+ κ

∂ f s

∂z j

]
, (48)

where
E∗

l = (1 − κ)Etr
i + κEtr

j (49)

is the phase transformation eigenstrain of the habit plane
variant. Equations (48) and (49) give the explicit expressions
of the thermodynamic driving force of habit plane variants in
terms of the phase transformation eigenstrain of habit plane
variants. Although equation (48) is similar to previous models
developed based on choosing martensite habit plane variants
as potential wells (e.g. [7, 9, 11, 14–16, 18, 19, 60]), it is
important to point out that martensite habit plane variants are
not the potential wells as observed in some shape memory
alloys, where habit plane variants consist of twined martensite

correspondence variant pairs [29–31]. This similarity also
indicates that our model is robust in supporting the previous
models from a more fundamental sense.

We denote the volume fraction of a habit plane variant
as z∗

l to distinguish it from the lattice correspondence variant,
as traditionally z∗

l was denoted as z. In the forward phase
transformation process, z∗

l can also be considered as a progress
variable, i.e. ζl = z∗

l (ζl = 0 stands for the case of whole
material being austenite, while ζl = 1 stands for the case of
whole material being type l martensite habit plane variant).

The stoichiometric coefficient in reorientation (from
lattice correspondence variant i to lattice correspondence
variant j) can be presented as

element i element j
� �

(ν0l, ν1l , ν2l · · · νnl) = (0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . , 0) .
(50)

Substituting equation (50) into (44) and using equation (38)
gives [61]

�l = � j −�i = � : (Etr
j − Etr

i )−
(
∂ f s

∂z j
− ∂ f s

∂zi

)
,

(i, j = 1, . . . n, i �= j). (51)

In this transition process, the volume fraction of martensite
lattice correspondence variant j may also be taken as a
progress variable. ζl = 0 stands for the situation where
the whole material is lattice correspondence variant i , and
ζl = 1 stands for the case of the whole material being
lattice correspondence variant j . It can also be seen from
equation (51) that the reorientation between the two adjacent
martensite lattice correspondence variants is independent of
temperature T .

According to equation (44), if the stoichiometric
coefficients of two basic processes ζl and ζm satisfy νkl =
−νkm , then �l = −�m. Therefore, ζm can also be
represented as −ζl , or vice versa. It is apparent that ζl

and ζm are mutual reverse processes of each other. For the
process variable ζl , ζ̇l > 0 is the forward process, while
ζ̇l < 0 is the reverse process. Similarly, ż∗

l > 0 stands
for the forward transformation process, and ż∗

l < 0 for
reverse transformation process. Reorientation from the lattice
correspondence variant j to the lattice correspondence variant
i may be considered as a reverse process of the reorientation
from the lattice correspondence variant i into the lattice
correspondence variant j .

Supposing the number of martensite habit plane variants
is H , there will be a total of 2H processes (i.e. H forward
transformation processes and H reverse transformation
processes). Because there are n(n − 1) reorientation processes
among n martensite lattice correspondence variants, the total
number of basic transformation process is given by

M0 = 2H + n(n − 1). (52)

Otherwise the total number of basic transformation process
will be H + n(n−1)

2 if two mutual reverse processes are
considered as one independent process. In the present paper
we take two mutual reverse processes as two processes, so that

7
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for each basic process we always have ζ̇l � 0. Any complex
transformation process can be considered as a combination of
basic transition processes. The variation of volume fractions
of martensite lattice correspondence variants can be expressed
in terms of the variation of M0 basic progress variables ζ̇l (l =
1, 2, . . .M0),

żk =
M0∑
l=1

νkl ζ̇l (k = 0, 1, 2 . . . n). (53)

For a given process, not all basic processes are involved (or in
action). If basic process l is inactive, its variation is 0, i.e.,
ζ̇l = 0.

After substituting equation (53) into (40) and considering
equation (44), the second law of thermodynamics can be
expressed as [61]

ρTη∗ =
M0∑
l=1

�l ζ̇l − 1

T
q · ∇T � 0. (54)

The strong form of equation (54) may be given as

− 1

T
q · ∇T � 0, (55)

and
�l ζ̇l � 0. (56)

3.2. Transition law

Transition laws of these M0 basic transformation processes
are considered in this section. According to the experimental
results in [50], the critical condition for starting a phase
transformation is

�l = �c±
l , (l = 1, 2, . . . H ), (57)

where ‘+’ stands for the forward transformation, and ‘−’ for
the reverse transformation. �c+

l > 0 and �c−
l < 0 correspond

to the critical thermodynamic driving forces for the start of
the forward transformation and the reverse transformation,
respectively.

The variation of volume fraction of a martensite
habit plane variant is proportional to the variation of its
thermodynamic driving force during a forward or reverse
phase transformation [49, 50]. Thus, the phase transformation
evolution equation can be expressed as

2

(
λ+ μ

1

z0

)
ż∗

l = �̇c+
l = �̇l (forward transformation)

2

(
λ+ μ

1

z∗
l

)
ż∗

l = �̇c−
l = �̇l (reverse transformation).

(58)
Here, λ and μ are non-negative material constants. λ is
employed to illustrate the linear hardening phenomenon during
the transformation process (i.e. the slope of lines BE, HI and
FG in figure 2 is 2λ); μ is introduced to describe the nonlinear
hardening behavior when the transformation approaches its end
(i.e. z0 → 0 or z∗

l → 0). In the forward transformation, �c+
l

increases with the thermodynamic driving force �l ; while in
the reverse transformation, �c−

l decreases with the decrease
of thermodynamic driving force �l . Once nucleation starts in
the forward transformation, �c−

l moves back to the maximum
value (�−

0 ) instantly. On the other hand, when the reverse
transformation starts,�c+

l returns to the minimum value (�+
0 ).

�+
0 and �−

0 are materials constant with �+
0 > 0 and �−

0 < 0.
In most cases, �+

0 = −�−
0 = �0.

Shown in figure 2, lines l1, l0 and l2 correspond to the cases
where � = �0, � = 0 and � = −�0, respectively. The size
of the hysteresis loop depends not only on the distance between
l1 and l2 (i.e., the magnitude of �0), but also on the slope of
l0 (i.e., 2A, as also defined by equation (29)). The parameter
�0 stands for the internal friction in the phase transformation,
while A represents the elastic energy stored in the interphase
between martensite and austenite. Lexcellent [19] and others
neglected the stored energy and took A = 0. Thus, the internal
friction is the only cause of hysteresis in phase transformation.
On the other hand, Huo and Müller [50] considered �0 = 0,
i.e., the hysteresis is due to the interphase elastic energy only.
In such a case, the lines l1, l0 and l2 in figure 2 coincide.
It is also worth mentioning that for a material with apparent
hardening behavior, the following relation holds (see also
figure 2 and compare the slopes of line BE and l0):

λ > A. (59)

Referring to equation (58), in the forward transformation (ż∗
l >

0), one has

�l ż
∗
l = z0

2(λz0 + μ)
�l�̇l = z0

4(λz0 + μ)

d

dt
(�c+

l )
2 � 0.

(60)
In the reverse transformation (ż∗

l < 0)

�l ż
∗
l = z∗

l

2(λz∗
l + μ)

�l�̇l = z∗
l

4(λz∗
l + μ)

d

dt
(�c−

l )
2 � 0.

(61)
Thus, equation (56) can always be satisfied.

The critical condition for starting reorientation can be
expressed by

�l = �c±
l , (62)

where ‘+’ denotes the forward progress (ζ̇l > 0), and ‘−’ the
reverse progress (ζ̇l < 0), and �c+

l > 0, �c−
l < 0.

Therefore the evolution equation for the reorientation
process is

�̇l = �̇c+
l = λ1ζ̇l, when ζ̇l > 0

�̇l = �̇c−
l = λ1 ζ̇l, when ζ̇l < 0.

(63)

Here, the variation rate of the progress variable is also assumed
to be proportional to the variation of the thermodynamic
driving force. λ1 is a material constant with a positive sign.
If �̇c+

l > 0, ζ̇l > 0; if �̇c−
l < 0, ζ̇l < 0. Once the forward

process starts, �c−
l moves back to its maximum value (�−

Re),
where the subscript Re stands for reorientation. When the
reverse process starts, �c+

l returns back to its minimum value
(�+

Re). Here, �+
Re and �−

Re are material constants. Note that
�+

Re � 0 and �−
Re � 0. In most cases, �+

Re = −�−
Re = �0

Re.
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Referring to equation (63), in the forward process (ζ̇l > 0)

�l ζ̇l = 1

λ1
�l�̇l = 1

2λ1

d

dt
(�c+

l )
2 � 0; (64)

in the reverse process (ζ̇l < 0)

�l ζ̇l = 1

λ1
�l�̇l = 1

2λ1

d

dt
(�c−

l )
2 � 0. (65)

Again, equation (56) is always satisfied.
Equations (29), (36), (38), (44), (57), (58), (62) and (63)

are the basic governing equations for the phase transformation
and reorientation in shape memory alloys.

4. Conclusions

A constitutive model for stress-induced phase transformation
and reorientation in shape memory alloy single crystal is
developed. This is the first time that both forward (reverse)
phase transformation and reorientation are modeled under the
same thermodynamic framework. Based on the principles
of thermodynamics and the ensemble average method of
micro-mechanics, the macroscopic Gibbs free energy is
expressed as a function of the volume fractions of different
martensite lattice correspondence variants (instead of habit
plane variants); those variants are chosen as the internal
variables to describe the microstructure configuration of shape
memory alloys. Thermodynamic driving forces corresponding
to the forward/reverse phase transformation and reorientation
are derived from the macroscopic Gibbs free energy.

The total elastic strain energy includes two parts: the
elastic strain energy caused by the applied external load
in the absence of phase transformation eigenstrain, and the
interaction energy induced by the internal stress. The internal
stress comes from the phase transformation eigenstrain in the
absence of external load. The second part is not directly
dependent on the applied external load, but indirectly on the
volume fractions of martensite lattice correspondence variants.

Mori–Tanaka average theory for randomly distributed
two-phase mixture is extended to the (n + 1)-component
mixture to evaluate the interaction energy in the phase
transformation. The interaction energy is expressed as a
second-order polynomial function in terms of the volume
fractions of the martensite lattice correspondence variants.
The total number of independent material constants in the
interaction energy is no more than the number of martensite
lattice correspondence variants.

The critical condition and the evolution equation for the
forward/reverse phase transformation and reorientation are
obtained. It is proposed to describe the complex interior
hysteresis loop by a critical thermodynamic driving force jump
when the opposite transition takes place.
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