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The time correlations of pressure modes in stationary isotropic turbulence are investigated under the
Kraichnan and Tennekes “random sweeping” hypothesis. A simple model is obtained which predicts
a universal form for the time correlations. It implies that the decorrelation process of pressure
fluctuations in time is mainly dominated by the sweeping velocity, and the pressure correlations
have the same decorrelation time scales as the velocity correlations. These results are verified using
direct numerical simulations of isotropic turbulence at two moderate Reynolds numbers; the mode
correlations collapse to the universal form when the time separations are scaled by wavenumber
times the sweeping velocity, and the ratios of the correlation coefficients of pressure modes to those
of velocity modes are approximately unity for the entire range of time separation. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2870111�

I. INTRODUCTION

In an incompressible flow, pressure fluctuations are re-
lated to velocity fluctuations through the Poisson equation

�2p = −
�ui

�xj

�uj

�xi
. �1�

All variables used in this article are dimensionless, with the
velocity normalized by a reference velocity Uref, pressure
normalized by �Uref

2 , spatial coordinates by a reference
length Lref, and time by Lref /Uref, where � is density. Since
velocity derivatives only appear as a source on the right-hand
side of Eq. �1�, the small scale pressure fluctuations are
mainly determined by the small scale velocity fluctuations.
However, in contrast to the −5 /3 scaling law for the velocity
energy spectra Eu�k� in the inertial range, the inertial scaling
law for the pressure spectra is controversial.1 Kolmogorov’s
theory predicts that pressure spectra should scale as Ep�k�
�k−7/3 �Refs. 2 and 3� in the inertial range. This result has
been supported by the experiments4,5 but challenged by sev-
eral direct numerical simulations �DNS� of isotropic
turbulence.6–8 The DNS results claim that the pressure spec-
tra should have the same scaling as kinetic energy spectra,
that is, Ep�k��k−3/5. The recent DNS with 10243 grid points
by Gotoh and Fukayama9,10 points out that the pressure spec-
tra scale approximately with k−7/3 at lower wavenumbers,
followed by a bump of nearly k−5/3 scaling at higher wave-
numbers. In spite of disagreements on the slope of the spec-
tra, all previous experiments and DNS support Kolmogor-
ov’s prediction on the universality of pressure spectra. Note
that the pressure spectra mentioned above are the wavenum-
ber spectra. A related problem is the frequency spectra, or

more generally the two-time, two-point correlations of pres-
sure fluctuations in physical space. In this paper, we will
address the universal form of pressure time correlations.

The spatio-temporal statistics of hydrodynamic pressure
fluctuations are relevant to flow-generated sound and
flow-structure interaction.11–13 Kraichnan and Tennekes
propose the random sweeping hypothesis for isotropic
turbulence,14–16 which yields a universal form of velocity
correlations at two times. This universality is demonstrated
by He et al.13 in decaying isotropic turbulence using DNS
and LES. He and Wang further suggest an elliptic model of
velocity correlations for turbulent shear flows,17 and the
model is verified in turbulent channel flows,18 in the sense
that the time correlations for several spatial separations col-
lapse when the time separations are scaled using this elliptic
model. Therefore, the time correlations for velocity have a
universal form in isotropic turbulence as well as turbulent
shear flows. Those results motivated us to explore the uni-
versal form of pressure correlations at two times.

The paper is organized as follows: In Sec. II, a random
sweeping model is developed for pressure time correlations
in isotropic turbulence. This model is verified using DNS of
isotropic turbulence at two moderate Reynolds numbers in
Sec. III. The conclusions are presented in Sec. IV.

II. A RANDOM SWEEPING MODEL FOR PRESSURE
TIME CORRELATIONS

For brevity, we henceforth refer to the time correlation
for a pressure mode simply as the pressure time correlation,
and the one for a velocity mode as the velocity time corre-
lation. The pressure time correlation is defined as

Cp�k,�� = �p�k,t�p�− k,t + ��� , �2�

and its normalized form is defined as
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cp�k,�� =
�p�k,t�p�− k,t + ���

�p�k,t�p�− k,t��
. �3�

The latter is also called as the correlation coefficient. Simi-
larly, we will define the velocity time correlation and its
correlation coefficient, respectively, as

Cu�k,�� = �ui�k,t�ui�− k,t + ��� �4�

and

cu�k,�� =
�ui�k,t�ui�− k,t + ���

�ui�k,t�ui�− k,t��
. �5�

The random sweeping hypothesis suggests that the decorre-
lation process of fluctuating velocities in time is dominated
by the sweeping of small eddies by energy-containing ed-
dies. The process can be described mathematically as
follows:15 Consider a Fourier mode u�k , t� of fluctuating ve-
locity convected by a large scale velocity field v, where v is
a uniform Gaussian field and independent of the fluctuating
velocity u�k , t�. Following the assumption in the random
sweeping hypothesis that the viscous effect and nonlinear
terms in u may be neglected in the Navier-Stokes equations,
we obtain

�u�k,t�
�t

+ i�k · v�u�k,t� = 0. �6�

The solution of Eq. �6� is

u�k,t� = u�k,0�exp�− i�k · v�t� . �7�

Then, the velocity time correlation can be expressed as13,15

Cu�k,�� = �ui�k,t�ui�− k,t��exp�−
1

2
v2k2�2	 , �8�

where the sweeping characteristic velocity v= 
v
 is the rms
of velocity fluctuations. This is the random sweeping model
for velocity time correlations in isotropic turbulence.

Now we solve the Poisson equation for the fluctuating
pressure in Fourier space

p�k,t� = −
kikj

k2 �
p=−�

�

�
q=−�

�

�ui�p,t�uj�q,t���p + q − k�� . �9�

Introduction of Eq. �7� into Eq. �9� at t+� gives

p�k,t + �� = −
kikj

k2 �
p=−�

�

�
q=−�

�

�ui�p,t + ��uj�q,t + ��

���p + q − k��

= −
kikj

k2 �
p=−�

�

�
q=−�

�

�ui�p,t�uj�q,t�

���p + q − k��exp�− i�p + q� · v�� . �10�

Substitution of Eqs. �9� and �10� into the pressure time
correlations �2� yields

Cp�k,�� =
kikjkmkn

k4 �
p1=−�

�

�
p2=−�

�

�
q1=−�

�

�
q2=−�

�

� �ui�p1,t�uj�q1,t�um�p2,t�un�q2,t��

� ��p1 + q1 − k���p2 + q2 + k�

� �exp�− i�p1 + q1� · v���

= �p�k,t�p�− k,t��exp�− 1
2k2v2�2� , �11�

where the first step invokes the independence of v from u,
and the second one uses the assumption that v is uniform
Gaussian. The latter leads to

�exp�− ik · v��� = exp�− 1
2k2v2�2� . �12�

However, the derivation does not invoke the quasinormal
approximation, in contrast to earlier work in which pressure
spectra are often deduced using the quasinormal
assumption.1

The model given by Eq. �11� predicts a universal form
for time correlations of pressure modes in isotropic turbu-
lence. It suggests that the fluctuating pressure has the same
decorrelation time scales “kv” as the fluctuating velocity.
Therefore, the decorrelation process of fluctuating pressure is
also dominated by the sweeping velocity.

III. COMPARISON WITH NUMERICAL RESULTS

We now use the data from DNS of isotropic turbulence
to verify the random sweeping model for pressure time cor-

TABLE I. Relevant parameters and statistical quantities in DNS.a

Case Nodes �t urms L � � CFL Re�

Case 1 1283 0.002 0.843 1.597 0.599 1.445 0.194 78.75

Case 2 2563 0.001 0.864 1.471 0.341 1.207 0.267 148.92

aHere L is the integral length scale, � is the Taylor microscale, �=kmax	
indicates the spatial resolution, CFL is the CFL number, and Re� is the
Taylor-scale Reynolds number.
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FIG. 1. Normalized time correlations of pressure modes vs time separations
for wavenumbers k=10,15,20,25,30,35,40, at Re�=78.75.
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relations. The DNS for isotropic turbulence was performed
using a pseudospectral method. The computational domain is
a box of length 2
 on each side, where the periodic bound-
ary conditions are applied. To keep the turbulence stationary,
an external force f�k� is imposed on the first two shells of
wavenumbers k=1,2. Aliasing errors are removed through
the two-thirds truncation rule. The Adams-Bashforth scheme
is used for time advance. Two cases are run in the present
study: Case 1 with Re�=78.75 on a 1283 grid and case 2 with
Re�=148.92 on a 2563 grid, respectively. The relevant pa-
rameters in the DNS are listed in Table I.

The time correlation Cp�k ,�� for each wave number k is
computed as a function of time lag �. The ensemble average
is performed over the wave number shell k= 
k
 and the dif-
ferent start times t as defined in Eq. �2�. In the present case,
t is chosen from 0.0 to 2.0 eddy turnover times with an
increment of 0.25.

Figures 1 and 2 plot the normalized time correlations
of pressure modes for wavenumbers k=10,15,20,25,30,
35,40. All curves show a decrease in correlation, as separa-
tion increases, with vanishing slopes at zero separation. The

time separation in Fig. 2 is scaled using the scale-dependent
similarity variable vk, while the time separation in Fig. 1 is
not scaled. It is observed from Fig. 2 that with the vk scaling
all points collapse onto a single curve. The result is in agree-
ment with the prediction of the random sweeping hypothesis
on pressure time correlations. Therefore, the random sweep-
ing model given by Eq. �11� for pressures indeed predicts a
universal form of the time correlations of pressure modes.

To investigate the model’s prediction of the decorrelation
time scales, we examine the ratio of the correlation coeffi-
cient for the kth pressure mode to that for the velocity modes

r�k,�� =
cp�k,��
cv�k,��

=
cp�k,0�
cv�k,0�

. �13�

Based on the models given by Eqs. �8� and �11�, the ratio
should be unity for each wavenumber. Figure 3 plots the
ratios for wavenumbers k=10,15, . . . ,40. It is observed that
the ratios for all wavenumbers are almost unity, although
some very small deviations are observed at large time sepa-
rations. These deviations are shown to decrease with increas-
ing statistical sample size and thus do not affect the interpre-
tation of our results. Therefore, the DNS result confirms the
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FIG. 2. Normalized time correlations of pressure modes vs time separation
scaled by the sweeping time scale �vk�−1, �*=vk�, for wavenumbers
k=10,15,20,25,30,35,40, at Re�=78.75.
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FIG. 3. The ratios of pressure correlation coefficients to velocity correlation
coefficients as a function of scaled time separations �*=vk� at different
wavenumbers, for Re�=78.75. The solid line represents r=1.0.
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FIG. 4. Normalized time correlations of pressure modes vs time separations
for wavenumbers k=10,20,30,40,50,60,70, at Re�=148.92.
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FIG. 5. Normalized time correlations of pressure modes vs time separation
scaled by the sweeping time scale �vk�−1, �*=vk�, for wavenumbers
k=10,20,30,40,50,60,70, at Re�=148.92.
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theoretical prediction that pressure time correlations have the
same decorrelation time scales as the velocity time correla-
tions.

To investigate the effect of Reynolds number on the ran-
dom sweeping model for pressure time correlations, we use
the data from the higher Reynolds number case �case 2� to
plot the mode correlations against the un-scaled and scaled
time separations in Figs. 4 and 5, respectively, for wavenum-
bers k=10,20,30,40,50,60,70. The ratios of pressure cor-
relation coefficients to velocity correlation coefficients are
plotted in Fig. 6. As in case 1, Fig. 5 exhibits a very good
collapse of correlation data based on the sweeping hypoth-
esis and Fig. 6 shows that the correlation ratios are well
approximated by the straight line r=1.0. The random sweep-
ing model for pressure time correlations is as accurate for
Re=148.92 �case 2� as for Re=78.75 �case 1�.

IV. CONCLUSIONS

In summary, a simple model for the time correlations of
pressure in Fourier space is developed for isotropic turbu-
lence. The model is based on the Kraichnan and Tennekes
“random sweeping” hypothesis. It predicts that, as with ve-
locity correlations, the random sweeping effect dominates
the decorrelation of pressure fluctuations, and that the deco-
rrelation time scales for pressure fluctuations are the same as
the ones for velocity fluctuations. These results are verified
using DNS of stationary isotropic turbulence at two moder-
ate Reynolds numbers. The model exhibits a universal form

in the sense that the correlation coefficients collapse when
plotted against time separations normalized by the sweeping
time scale. An interesting question to be asked is whether
pressure correlations share the same decorrelation time
scales with velocity correlations in turbulent shear flows,
where random sweeping is not the dominant effect.18
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FIG. 6. The ratios of pressure correlation coefficients to velocity correlation
coefficients as a function of scaled time separations �*=vk� at different
wavenumbers, for Re�=148.92. The solid line represents r=1.0.
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