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Derivation of a Nonlinear Reynolds Stress Model Using Renormalization Group
Analysis and Two-Scale Expansion Technique ∗
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Adopting Yoshizawa’s two-scale expansion technique, the fluctuating field is expanded around the isotropic field.
The renormalization group method is applied for calculating the covariance of the fluctuating field at the lower
order expansion. A nonlinear Reynolds stress model is derived and the turbulent constants inside are evaluated
analytically. Compared with the two-scale direct interaction approximation analysis for turbulent shear flows
proposed by Yoshizawa, the calculation is much more simple. The analytical model presented here is close to the
Speziale model, which is widely applied in the numerical simulations for the complex turbulent flows.
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In complex turbulent flows, the influence of extra
strain rates on turbulent flow structure is profound,
and it is a challenge for turbulence modelers to predict
such types of flows accurately. The conventional K−ε
model based upon the linear eddy viscosity model has
been widely used in practical applications because of
its simplicity and its efficiency compared to CPU time
requirements. However, since it fails to include the
anisotropy of the Reynolds stress, it could not pre-
dict many complex turbulent flows accurately. In the
last decades, the nonlinear Reynolds stress models
have been developed for overcoming this deficiency. It
could generate a secondary flow in a straight square
duct and yield improved results for turbulent flow past
a backward-facing step,[1−3] etc. How to formulate
the nonlinear Reynolds stress models receives much
attention [1−9]. Many of them are constructed by the
dimensional analysis and the invariance principles for
the intrinsic of the Navier–Stokes equation. In these
models there are some turbulent constants that are
determined from the experimental data.

From the 1980s, the statistical mechanical ap-
proach has been applied to derive the turbulence clo-
sure models. In order to generalize the statistical the-
ory of isotropic turbulence to analyse the fluctuating
field of turbulent shear flows, Yoshizawa proposed a
two-scale direct interaction approximation (TSDIA).
In the procedure of the TSDIA, a two-scale expan-
sion is introduced for separating the fluctuating field
from the mean field so that the fluctuating field is ex-
panded around the isotropic field, then Kraichnan’s
DIA theory for analysing isotropic turbulence is gen-
eralized to analyse the fluctuating field of turbulent
shear flows. Using the TSDIA technique, Yoshizawa
derived an eddy-viscosity representation for Reynolds

stress.[10] By renormalizing an asymptotic expansion
for the Reynolds stress with the eddy-viscosity ap-
proximation as the leading part, a closure model for
the Reynolds stress transport equation was presented.
Then, assuming an equilibrium state in the sense that
the convection and diffusion effects do not play the im-
portant roles, the nonlinear Reynolds stress model was
obtained.[11] Rubinstein and Barton[12,13] are pioneers
to utilize the renormalization group (RNG) method
for turbulence, which was developed by Yakhot and
Orszag (YO)[14], to formulate the nonlinear Reynolds
stress model and the second-order closure model.

In the RNG method for turbulence, Yakhot and
Orszag [14] suggested that homogeneous isotropic tur-
bulent flow could be described by the Navier–Stokes
equation with the Gaussian random force f , which is
an explicit external force that maintains turbulence in
a statistically steady state. This was called the corre-
spondence principle. The Gaussian random force f is
characterized by its correlation function:

〈fα(k̂)fβ(k̂′)〉 = 2D(2π)d+1Pαβ(k)k−yδ(k̂ + k̂′), (1)

where k̂ = (k, ω), Pαm(k) = δαm − kαkm/k2, the
parameter D determines the intensity of the random
force and 〈 〉 denotes the ensemble average. With the
RNG analysis, some turbulent constants, for example,
the Kolmogorov constant and the velocity skewness,
were calculated. They were in agreement with the
experiments. Assuming that the infrared limit corre-
sponded to the mean field of turbulent shear flows, the
mode coupling approximation in the RNG method was
applied to analyse turbulent shear flows. However, the
derivations for the nonlinear Reynolds stress model di-
rectly using the renormalization-group method were
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very complicated and some inconsistent problems
occurred.[15]

The RNG method is intrinsically appropriate for
analysing the statistical self-similar system, where the
characteristic length tends to infinity. It might be
plausible that the RNG method is appropriate for
analysing isotropic turbulence. However, the charac-
teristic length of turbulent shear flow is limited by
the scale of the large eddies. How to apply the RNG
method into analysis for turbulent shear flows re-
mains the scientific interests. In this Letter, adopting
Yoshizawa’s two-scale expansion technique, the fluctu-
ating field is expanded around the isotropic field. In-
stead of using the DIA theory, we apply the mode cou-
pling approximation in the YO RNG theory to study
the fluctuating field of turbulent shear flows. At the
lower order expansion, the nonlinear Reynolds stress
model is derived and the turbulent constants inside
are evaluated analytically.

For the incompressible turbulent flows, the fluctu-
ating velocity is governed by
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where ταk = −〈uαuk〉 is the Reynolds stress tensor.
In order to separate the slow variation of the mean
field from the fast variation of the fluctuating field, a
scale parameter δ is introduced,[10,11]

x,X(= δx) ; t, T (= δt). (3)

It is assumed that

u = u(x,X; t, T ), p = p(x,X; t, T ),
U = U(X;T ), ταk = ταk(X;T ) (4)

Since the anisotropy appears through X and T , we
expand the fluctuating field around the isotropic field:

u = u(0) + δu(1) + δ2u(2) +
∑

n≥3

δnu(n),

p = p(0) + δp(1) + δ2p(2) +
∑

n≥3

δnp(n), (5)

where u(0) is the isotropic part of fluctuating field and
u(n)(n ≥ 1) denotes the anisotropic part of fluctuating
field. Substituting Eq. (5) into Eq. (2), we obtain
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(6)
for u(n)(n ≥ 1):
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In order to maintain isotropic turbulence in a sta-
tistically steady state, a Gaussian random force is in-
troduced. It can be thought as the effective force
felt at smaller length scales, which results from the
larger scales transmitted by the nonlinear terms of the
Navier–Stokes equations (correspondence principle in
the YO RNG method for turbulence).[14] For remov-
ing the sweeping effect, we adopt the Taylor hypoth-
esis with the Galilean transformation: x → x − Ut.
Then, in the Fourier space, we have

u(0)
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·
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for u(n) (n ≥ 1):
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(9)

where G0(k̂) = (−iω + ν0k
2)−1, Pαmn(k) =

kmPαn(k) + knPαm(k); λ0 is a formal expansion pa-
rameter which will eventually be set equal to 1; Λf

corresponds to the largest fluctuating scale and the
cutoff wave number Λ0 is beyond the dissipation wave
number at which substantial modal excitations cease.
For simplicity, we analyse the Reynolds stress ταβ =
−〈uαuβ〉 at the lower order expansion. Up to the or-
der of O(δ2), the terms ∂F/∂T and ∂H/∂X have no
contribution. In the following analysis, these terms
are not written explicitly.

The RNG analysis for the isotropic field u(0) was
performed extensively in Ref. [14]. The purpose of
RNG theory is weeding out of small scales. It is pro-
posed that the equation is averaged over the fine-scale
ensemble and all the terms involving only large-scale
quantities are assumed to be the same for each real-
ization in the fine-scale ensemble. After removing the
velocity components with the wave number in the in-
terval (Λ,Λ0), according to the RNG analysis of YO,
we have

〈u(0)
i (k̂)u(0)

j (k̂′)〉 =2D(2π)d+1|G(k̂)|2
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· Pij(k)k−yδ(k̂ + k̂′),
(10)

where G(k̂) = (−iω + ν(k)k2)−1 and ν(k) =[3(d− 1)
8(d + 2)

D0Sd

(2π)d

]1/3

k−4/3.[14,16,17]

Based upon Yoshizawa’s two-scale expansion, we
analyse the Reynolds stress using the YO RNG
method. Substituting the two-scale expansion given
in Eq. (5) into the Reynolds stress expression ταβ =
−〈uαuβ〉, we obtain
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According to Eq. (10), the term τ
(0)
αβ can be evalu-

ated directly as follows:
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The higher order terms τ
(n)
αβ (n ≥ 1) denote the

anisotropic effect due to shear flow. In the following,
we analyse the terms τ

(1)
αβ and τ

(2)
αβ using the YO RNG

method. The fluctuating velocity u is divided into two
parts: the fast mode u>(k̂)[k ∈ (Λ − dΛ,Λ)] and the
slow mode u<(k̂)[k ∈ (Λf ,Λ − dΛ)]. The term τ
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Substituting Eq. (9) into Eq. (18) and adopting the
conditional average 〈u>

α u>
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γ ,[14] we
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Removing the fast modes successively, we have the
recursion relation
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Consequently, after taking the average over the
fast modes in the interval [Λf ,Λ0], we obtain
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Similarly to the analysis for τ
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αβ , after taking av-

erage of all the modes for the interval [Λf ,Λ0], we
obtain
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Substituting Eqs. (15), (21) and (22) into Eq. (11)
and utilizing the scales relation X = δx, at the second
expansion O(δ2), the Reynolds stress ταβ is modelled
as
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From Eq. (23), we have
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Utilizing the results of the YO RNG theory:
2D/(2π)d = 1.594ε and ν(Λf )Λf

2 = 1.195ε/K, we
reach

ταβ = − 〈uα(x, t)uβ(x, t)〉

= − 2
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where Sαβ =
1
2

(∂Uα

∂xβ
+

∂Uβ

∂xα

)
is the mean rate-of-

strain tensor, Wαβ =
1
2

(∂Uα

∂xβ
− ∂Uβ

∂xα

)
is the mean-

vorticity tensor, and the constants Cµ, C1, C2, C3 are
calculated to be

Cµ = 0.097, C1 = 0.076, C2 = −0.032, C3 = 0.
(26)

Table 1. Comparison for the turbulent constants of different
nonlinear Reynolds stress models.

Model constants C1 C2 C3

Speziale’ model[2] 0.055 −0.055 0

Demuren and Rodi’s model[1] 0.209 −0.079 0

Yoshizawa’s theoretical model[11]] 0.048 −0.0047 −0.057

Rubinstein and Barton’s model[12] 0.228 −0.048 0.188

Huang model (Jaumann derivative)[9] 0.0234 −0.0174 0.0069

Huang model (Oldroyd derivative)[9] 0.0253 −0.0174 0.0087
The theoretical model of this Letter 0.076 −0.032 0

In Table 1, we list the turbulent constants of dif-
ferent nonlinear Reynolds stress models. According to
the comparison, the model constants calculated in this
study are close to the constants of the Speziale model.

Here we should emphasize that we do not claim the
superiority of the present modelling method to the
conventional modelling method, the TSDIA analysis,
etc. A major interest of this work is the effort on
generalizing the mode coupling approximation in the
RNG method into analysis of shear turbulence.

The mean field is the ensemble average of tur-
bulence field, so it normally has much bigger char-
acteristic length than that of the fluctuating field.
Based upon this viewpoint, Yoshizawa introduced two
scales that the small and large scales correspond to
the fluctuating and the mean fields, respectively. In
this study, adopting Yoshizawa’s two-scale expansion
technique, the governing equations for isotropic part
u(0) and anisotropic part u(n) (n ≥ 1) are derived.
We use the RNG method to calculate the covari-
ance of the fluctuating field at the lower order ex-
pansion. Compared with the TSDIA analysis for tur-
bulent shear flows proposed by Yoshizawa,[10,11] the
calculation is much more simple. Speziale presented
the arguments for the realizable solutions of the non-
linear Reynolds stress models and proposed that the
constant C3 in Eq. (25) needs to be zero.[18] The the-
oretical model given in Eqs. (25) and (26) satisfies
Speziale’s arguments. In this study, the Reynolds
stress ταβ = −〈uαuβ〉 is analysed at the order of
O(δ2). It is expected that the cubic model for the
Reynolds stress can be derived if taking the expan-
sion at the order of O(δ3), where the terms ∂F/∂T
and ∂H/∂X in Eq. (9) generate the higher order con-
tributions such as ∂nU/∂Xn (n ≥ 2).
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