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Abstract Concrete is heterogeneous and usually described
as a three-phase material, where matrix, aggregate and inter-
face are distinguished. To take this heterogeneity into consid-
eration, the Generalized Beam (GB) lattice model is adopted.
The GB lattice model is much more computationally effi-
cient than the beam lattice model. Numerical procedures of
both quasi-static method and dynamic method are developed
to simulate fracture processes in uniaxial tensile tests con-
ducted on a concrete panel. Cases of different loading rates
are compared with the quasi-static case. It is found that the
inertia effect due to load increasing becomes less important
and can be ignored with the loading rate decreasing, but the
inertia effect due to unstable crack propagation remains con-
siderable no matter how low the loading rate is. Therefore,
an unrealistic result will be obtained if a fracture process
including unstable cracking is simulated by the quasi-static
procedure.

Keywords Concrete · Generalized beam lattice model ·
Inertia effects · Quasi-static and dynamic method · Fracture

1 Introduction

Analysis of fracture processes in concrete is a timely topic.
To conduct numerical investigations, a material model is
required firstly to take the material structure into consider-
ation, and then a proper numerical procedure is necessary.

Microstructure in concrete plays a very important role in
fracture processes. The characteristic inelastic response of

J. X. Liu (B) · S. C. Deng · N. G. Liang
State Key Laboratory of Nonlinear Mechanics,
Institute of Mechanics, Chinese Academy of Sciences,
100080 Beijing, China
e-mail: liujx@lnm.imech.ac.cn

concrete is very difficult to interpret without appealing to
their micro-structure (see for instance [9]). Concrete is usu-
ally described as a three-phase material, where matrix, aggre-
gate and interface zones are distinguished (see for instance
[11,13,14,17,19,20]). Among different kinds of microstruc-
tural models, lattice type models are being applied by more
and more investigators. One important reason is that the lat-
tice model allows a straightforward implementation of the
material heterogeneity [13]. Lattice type material modeling
has been successfully used for solving classical problems of
elasticity [7]. More recently, it has been employed for simu-
lating the progressive failure in heterogeneous media, espe-
cially by theoretical physicists [5,6]. To investigate fracture
processes in concrete, many different types of meso-level
lattice models have been developed in the past. As has been
generally accepted, it is necessary to project the material
structure directly on to the lattice in order to obtain more
realistic results [11,13,20]. Schorn et al. [18] and Bazant et
al. [1] used truss elements, which require some numerical
measures to exclude instability during fracture propagation.
Schlangen et al. [17] adopted Euler–Bernoulli beams of [6].
Bolander et al. [2] developed a kind of spring element, which
is equivalent to the Euler–Bernoulli beam element in a special
case. Generally, the Timoshenko beam is more proper than
the Euler–Bernoulli beam as each beam in the lattice is short
and deep [11,13]. However, in order to include the interface
zones directly, the mesh size, i.e. the span of beams, must
be limited to the same order of magnitude as the interfacial
thickness. As a result, this leads to practical difficulties, due
to the extremely large computational effort.

In order to solve the problem of computational effort in
the beam lattice models, the GB lattice model firstly devel-
oped by Liu et al. [14] is adopted. Obviously, according to the
basic idea of finite element method, the mesh size has to be of
the same order of magnitude as the meso-level characteristic
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length in order to observe the detailed response at this level.
This investigation shows that, however, the three-phase mate-
rial structure can be projected directly on top of a regular tri-
angular GB lattice whose mesh size can be even larger than
the maximum aggregate. The key technique is the develop-
ment of a kind of two-node and three-phase elements, which
are different from beam elements, truss elements or springs.
Thus, the three-phase element is called generalized beam
(GB) element, and the corresponding lattice is called GB
lattice. A GB element is composed of three beams. Every
beam in GB elements can be a matrix beam, interface beam
or aggregate beam. In the beam lattice 10–100 nodes are
usually needed to simulate an aggregate, but just a single
node is required to model an aggregate in the GB lattice.
As a result, computational effort is extremely reduced when
the GB lattice model is adopted. The justification of the GB
lattice model was done in [14].

Two approaches can be distinguished to deal with frac-
ture of concrete: quasi-static method and dynamic method. In
the present investigation, only ideally brittle lattices are dis-
cussed. Once a strength criterion is adopted for failure of the
elements, a typical procedure for the quasi-static simulation
is as follows (see for instance [6,11,16]). The load is applied
gradually and linear elastic analysis is performed until the
element with the highest stress-to-strength ratio reaches the
prescribed threshold value (see for instance [13]). The critical
element is then eliminated and a new analysis is performed
after updating the stiffness matrix while the applied load is
kept unchanged to check whether another element will fail.
If no more elements fail, the calculation is restarted from
zero loads again until the complete failure of the specimen.
Obviously, the fracture process obtained by the quasi-static
method is composed of a series of static equilibrium states.
In the dynamic method, critical elements are also eliminated
immediately, just as what has been done in the double can-
tilever beam (DCB) test [10,15]. The essential difference
between two methods is: fracture processes are simulated by
solving the dynamic equations of motion of the system in the
dynamic method, but they are obtained by solving the equi-
librium equations in the quasi-static method. Additionally,
the quasi-static method is much more computationally effi-
cient than the dynamic method because the time step has to be
set small enough to guarantee the accuracy of the simulation
in the dynamic cases (see for instance [4,21]).

Then, what is the difference between results obtained by
the two methods? Are the two kinds of results consistent
with each other when the loading rate is enough low? The
first question has been investigated by many researchers.
For example, Ibrahimbegovic et al. [9] showed that inertial
effects have an important role in the crack pattern. The second
question is equivalent to the assumption of the quasi-static
method. In this paper, cases where the loading rate is respec-
tively 1.0, 10−1, 10−2 and 10−3 m/s are simulated. Moreover,

they are respectively compared with the corresponding
quasi-static result. In a dynamic fracture process, there are
two kinds of inertia effects: that due to load increasing, and
that due to crack propagation. The two inertia effects are
discussed in detail. It is found that the inertia effect due to
unstable crack propagation still has a considerable influence
on fracture processes even though the loading rate is very
low. Therefore, the quasi-static method is not suitable to be
used to simulate fracture processes including unstable crack
propagation.

2 GB lattice model [14]

2.1 The geometry of the model

At first, the creation of the beam lattice model is recalled.
To obtain more realistic results, the material structure is pro-
jected directly on to the lattice [11,20]. In Fig. 1, if both ends
of a beam fall in the matrix (aggregate) phase, it is assigned
the equivalent matrix (aggregate) properties. If however one
of its ends is in the matrix phase and the other is in the aggre-
gate phase, then it is assigned the equivalent interface proper-
ties. The relationship between the properties of a continuum
phase and its representative beams in the lattice is obtained
by the equivalence of strain energy stored in a unit cell under
constant strains (see for instance [11,16]).

Like the above beam lattice, it is also in a very straight-
forward way that the GB lattice corresponds to the mate-
rial structure. In Fig. 2, an aggregate is projected on to a
matrix GB lattice, with its center lying on node i . The six
elements around node i are partly overlain by the aggregate.
These parts are assigned the equivalent aggregate properties.
The interface is simplified as a thin layer with a rectangular
cross-section clinging to the aggregate. The parts of the six
elements overlain by the interface are assigned the interfacial
properties.

The GB element is apparently a two-node and three-phase
element. Every phase of the element is represented by a beam
of corresponding (equivalent) properties. For example, in
Fig. 2, the six GB elements around node i are all composed
of an aggregate beam, an interface beam and a matrix beam.
However, it can be imagined that the GB element which is not
overlain by any aggregate is actually one-phase, i.e. matrix-
phase. Nevertheless, in order to make up the deficiency of
the relatively coarser GB lattice, the one-phase GB elements
are divided into three matrix beams of the same span. When
a GB element is overlain by two aggregates, the element is
actually composed of two aggregate beams, two interface
beams and one matrix beam. For simplification, this kind of
elements is considered to be composed of one interface beam
and two aggregate beams of the same span. In a word, all GB
elements are composed of three beams.
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Fig. 1 Particle structure modeled by the beam lattice model: a gen-
eral particle structure; b definition of matrix, interface and aggregate
element

Found when Fig. 1b is compared with Fig. 2, an aggre-
gate usually covers 10–100 nodes in the beam lattice, but an
aggregate just overlays a single node in the GB lattice. As a
result, computational effort is extremely reduced in the GB
lattice model.

If three beams in each GB element are assumed to cling
firmly to each other and deform together without sliding, the
displacements of two ends of the middle beam in the GB
element are completely determined by the displacements of
the two nodes of the GB element, which will be discussed
in detail in Sect. 2.4. Then, the degrees of freedom of two
ends of the middle beam are not necessarily included in the
discrete system of equations of equilibrium, resulting that
computational effort is further reduced.

Fig. 2 A GB lattice including particle structure

Fig. 3 Kinematics and statics of a beam

2.2 Stiffness matrices of matrix, aggregate and interface
beams

Matrix beams and aggregate beams are described by Tim-
oshenko beam theory. However, Timoshenko beam theory
can not describe interface beams, because the aspect ratio of
interface beams is usually too high. In this paper, interface
beams are described by Eq. (A1) in Appendix A of [2]. These
two kinds of stiffness matrices have the following common
expression (Fig. 3):
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where, F12 = {Q1 N1 M1 Q2 N2 M2}T and u12 = {u1 v1

ϕ1u2v2 ϕ2}T are the generalized force vector and the gener-
alized displacement vector, respectively.
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For a Timoshenko beam, the independent elements in
Eq. (1) can be expressed in the form [8,21]

M11 = 12E (b) I

(1 + b)h3 , M34 = 6E (b) I

(1 + b)h2 , M22 = E (b) A

h
,

M33 = E (b) I (4 + b)

h(1 + b)
, M36 = E (b) I (2 − b)

h(1 + b)
(2)

where, E (b) is the Young’s Modulus; t (b), h and l are respect-
ively the thickness, the span and the height of the Timoshenko
beam; A = t (b)l is the cross-section area; I = t (b)l3

/
12 is

the moment of inertia; b = aE (b)l2
/

G(b)h2 is the dimen-
sionless parameter in Timoshenko beam theory; G(b) =
E (b)

/
2(1 + ν(b)) is the modulus of rigidity, where ν(b) is

the Poisson’s ratio.
By comparing Eq. (A1) in Appendix A of [2] with Eq. (1),

the independent elements in Eq. (1) can be expressed in the
form

M11 = G(b) A

h
, M34 = G(b) A

2
, M22 = E (b)′ A

h
,

M33 = G(b) Ah

4
+ E (b)′ I

h
, M36 = G(b) Ah

4
− E (b)′ I

h
(3)

where, E (b)′ = E (b)/[1 − (ν(b))2].
In the following, a superscript is added to M in order to

declare the material property, i.e. Mm, Ma and Mi are respec-
tively, the stiffness matrix of matrix, aggregate and interface
beams. When an aggregate is very small, the interface beams
clinging to the aggregate have a relatively lower aspect ratio.
In this case, it is more proper to take these interface beams
as Timoshenko beams. However, in the present investiga-
tion, for simplification, all interface-phase beams adopt the
stiffness matrix in Eq. (3).

2.3 Parameter calibration of the regular triangular
GB lattice

Spans of three beams of each GB element are determined as
soon as the particle overlay [20] is projected on top of the
GB lattice. To an interface beam, the properties of interface
material themselves instead of its equivalent properties are
assigned. Moreover, the depth of the interface beam can be
calculated in the form

l =
⎧
⎨

⎩

2di

/√
3 (di ≤ L

/
2)

2(L − di )
/√

3 (L
/

2 ≤ di ≤ L)
(4)

where, L is the length of the GB element, and di denotes the
distance between node i and the middle point of the interface
beam along its span-direction, in the GB element i − j .

Then we introduce how to calculate the geometrical and
material properties of both matrix and aggregate beams. The
basic idea is based on the equivalence of strain energy stored

Fig. 4 A triangular matrix/aggregate GB lattice with a hexagonal unit
cell

in a unit cell (Fig. 4) of a lattice with its continuum counter-
part under constant strains

Ucell = Ucontinuum (5)

The detailed process has been presented by both Ostoja–
Starzewski [16] and Karihaloo et al. [11] to obtain the rela-
tionship between the triangular Timoshenko beam lattice and
its micropolar continuum equivalent. In the present investi-
gation, the result of Karihaloo et al. [11] is used directly in
our parameter system (Fig. 4):
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where, E (b) and E are the Young’s modulus of the Timo-
shenko beams and its continuum equivalent. h and l are the
span and depth of the Timoshenko beam. t (b) and t are the
thickness of the Timoshenko beam and its continuum equiv-
alent. Moreover,

b = 12 + 11ν(b)

20

(
l

h

)2

(7)

The second equation of Eq. (6) can be rewritten in the form

b = 1 + ν

4(1 − 3ν)

(
l

h

)2

− 1 (8)

Substitution of Eq. (7) into the second equation of Eq. (6)
yields the result

ν(b) = 5(1 + ν)

11(1 − 3ν)
− 20

11

(
l

h

)−2

− 12

11
(9)
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Fig. 5 A GB element composed of an aggregate beam, an interface
beam and a matrix beam: a the GB element; b the aggregate beam;
c the interface beam; and d the matrix beam

Substitution of Eq. (8) into the first equation of Eq. (6) yields
the result

E (b) = 2√
3

(
l

h

)−1 t

t (b)

E

1 − ν
(10)

In this investigation, all matrix beams and aggregate beams
have rectangular cross-sections, the same aspect ratio l

/
h =

1, and the same thickness t (b) = t . The Poisson’s ratio of
both matrix and aggregate is 11

/
40. Then, from Eqs. (9)

and (10), their equivalent material properties ν(b) and E (b)

respectively become

ν(b) = 31

77
(11)

E (b) = 80

29
√

3
E (12)

2.4 The stiffness matrix of a GB element

This section is going to introduce how to determine the stiff-
ness matrix of a GB element from its three beams. For the
sake of simplification and without loss of generality, a GB
element composed of one aggregate beam, one interface
beam and one matrix beam is under investigation (Fig. 5).

In the GB element i − j (Fig. 5a), when external gener-
alized forces are applied on node i and j , the relationship
between the generalized nodal forces and the generalized
nodal displacements can be expressed in the form

Fi j = Kui j

Fi j = {
Qi Ni Mi Q j N j M j

}T (13)

ui j = {
ui vi ϕi u j v j ϕ j

}T

where, K, a symmetric matrix, denotes the stiffness matrix
of the GB element.

Analogously, for the aggregate beam i − I (Fig. 5b), the
interface beam I − J (Fig. 5c), and the matrix beam J − j
(Fig. 5d), the relationships between the kinematics and statics

can be expressed in the forms, respectively
i − I :

Fi I = Maui I

Fi I = {Qi Ni Mi QI NI MI }T

ui I = {ui vi ϕi u I vI ϕI }T (14)

I − J :

FI J = MiuI J

FI J = {−QI −NI −MI Q J NJ MJ }T

uI J = {uI vI ϕI u J vJ ϕJ }T (15)

J − j :

FJ j = MmuJ j

FJ j = {−Q J −NJ −MJ Q j N j M j
}T

uJ j = {
u J vJ ϕJ u j v j ϕ j

}T (16)

In consideration of the equilibrium conditions at I and J ,
a system of algebraic equations expressed in the general-
ized displacement vector uI J can be obtained when ui j are
assumed to be known
[

Ma
III + Mi

I Mi
II

(Mi
II)

T
Mi

III + Mm
I

]

︸ ︷︷ ︸
A

uI J =
[−(Ma

II)
T 0

0 −Mm
II

]

︸ ︷︷ ︸
B

ui j

(17)

where, Ma
I , Ma

II and Ma
III denote the top-left, top-right and

bottom-right 3 × 3 sub-matrix of Ma, respectively, and the
same denotation rule is also used to Mi and Mm. Both A and
B are 6 × 6 matrices.

By solving the system of Eq. (17), the relationship between
uI J and ui j can be expressed in the form

uI J = A−1B︸ ︷︷ ︸
R

ui j (18)

where, R = A−1B.
RI, RII and RIII respectively denote the top-left, top-right,

bottom-right 3 × 3 sub-matrix of R. After a lengthy but ele-
mentary calculation, the stiffness matrix of the GB element
K can be expressed in the form

K =
[

Ma
I + Ma

IIRI Ma
IIRII

SYM (Mm
II)

T RIII + Mm
III

]

(19)

3 Quasi-static method and dynamic method to simulate
fracture processes

3.1 Quasi-static method

As pointed out in the introduction, fracture is simulated by
subsequent removal of critical elements from a lattice. Three
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beams in every GB element are judged whether to be critical
independently. Once a beam approaches criticality, the corre-
sponding GB element becomes a critical element. A criterion
must be set to decide when a beam must be removed. In this
paper the maximum tensile stress in each beam is computed
in the following form (see for instance [20])

σe f f = N

A
+ α

(|Mi |,
∣
∣M j

∣
∣)max

W
< ft (20)

where, N is the normal force in the considered beam, Mi

and M j are the bending moments at the nodes i and j of
the beam, and W = t (b)l2

/
6 is the section modulus. The

coefficient α regulates what part of the bending moment is
considered. In this paper, α is 0.005 [11,13,19,20]. When
the effective stress of a particular beam reaches its tensile
strength ft , brittle fracture is simulated by instantaneously
removing the beam from the lattice.

3.2 Dynamic method

The dynamic equations of motion of the system can be
expressed in the form

Mü(t) + Cu̇(t) + Ku(t) = Q(t) (21)

The symbols in Eq. (21) are explained one by one in the
following.

(1) M is the mass matrix of the lattice. It is assumed that
mass of each GB element concentrates on its ends in the
triangular GB lattice. As a result, M can be written as

M = diag(m1, m1, J1, m2, m2, J2, . . . , mn, mn, Jn)

(22)

where n is the total of nodes. The diagonal matrix M is
3n ×3n. For the sake of simplicity, it is assumed that the
three phases have the same density ρ. Then, mi and Ji

can be written as

mi =
√

3ρL2t

2
,

Ji = 5ρL4t

8

(√
3

9
− 3π

64

)

(i = 1, 2, . . . , n) (23)

(2) u(t) is the vector of nodal displacements at time t :

u(t) = {u1(t) v1(t) ϕ1(t) u2(t) v2(t) ϕ2(t)

×. . . un(t) vn(t) ϕn(t)}T (24)

Analogously, u̇(t) and ü(t) are the vector of nodal veloc-
ities and the vector of nodal accelerations, respectively:

u̇(t) = {u̇1(t) v̇1(t) ϕ̇1(t) u̇2(t) v̇2(t) ϕ̇2(t)

×. . . u̇n(t) v̇n(t) ϕ̇n(t)}T (25)

ü(t) = {ü1(t) v̈1(t) ϕ̈1(t) ü2(t) v̈2(t) ϕ̈2(t)

×. . . ün(t) v̈n(t) ϕ̈n(t)}T (26)

(3) K is the stiffness matrix of the lattice.
(4) C is the Rayleigh damping matrix of the lattice and can

be written as

C = αM + βK (27)

where, α = 0.5 s−1, and β = 10−4 m s, which are the
same as those in [9].

(5) Q(t) is the total load vector.

In this work, the differential equations of motion in
Eq. (21) are solved by using the central difference method.
In the method, velocity and acceleration can by expressed as

u̇(t) = 1

2�t
[u(t + �t) − u(t − �t)] (28)

ü(t) = 1

�t2 [u(t − �t) − 2u(t) + u(t + �t)] (29)

where, �t is the time step.
Substitution of Eqs. (27), (28) and (29) into Eq. (21) yields

the result as
(

1

�t2 M + α

2�t
M + β

2�t
K
)

u(t + �t)

= Q(t) + 2

�t2 Mu(t) − Ku(t) −
(

1

�t2 − α

2�t

)

× Mu(t − �t) + β

2�t
Ku(t − �t)

(30)

In the dynamic simulations, the strength criterion in Eq. (20)
is adopted. When the effective stress of a particular beam
reaches its tensile strength ft , brittle fracture is simulated by
instantaneously removing the beam from the lattice. Then a
new time step is solved [10,15].

4 Numerical examples and discussions

Uniaxial tensile experiments conducted on a concrete plate
were analyzed by van Mier et al. [20] and Karihaloo et al. [11]
by using the beam lattice model. The same experiment on a
GB lattice developed by Liu et al. [14] will be simulated by
the quasi-static method and dynamic method, respectively.
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Table 1 Elastic properties of phases

E (MPa) ft (MPa)

Aggregate 70,000 10.0

Interface 25,000 1.25

Matrix 25,000 5.0

The difference between two kinds of results is discussed in
detail.

The plate is 210
√

3 × 210
√

3 cm2. A regular triangular
GB lattice having a total of 1,593 GB elements and 562 nodes
is used in simulation. All elements are 10

√
3 cm long. The

span of all interface beams is
√

3 cm. one hundred and twelve
particles with diameter 10

√
3 cm are projected randomly on

to the GB lattice. The time step �t is = 10−6 s. In fact, the
choice of the time step depends on the characteristic motion
time of the smallest element (see for instance [4,21]). There-
fore, to avoid a too small time step, the adopted lattice is
very coarse and the sizes of both particles and interface are
much bigger than realistic concretes. Nevertheless, such a
numerical experiment is useful for a qualitative understand-
ing of dynamic fracture processes. Material properties are
shown in Table 1. Three phases have the common density
ρ = 103 kg/m3. All translational degrees of freedom are
fixed along the left edge, while a uniaxial tension is applied
to the right edge through a controlled displacement.

Five cases are analyzed. Case 1 is simulated by the quasi-
static method. The other four cases, i.e. case 2–5 with the
loading rate being 1.0, 10−1, 10−2 and 10−3 m/s, respec-
tively, are done by the dynamic method.

4.1 Results

Figure 6 shows the P–δ curve and crack patterns at typical
load levels in case 1. The inset of Fig. 6a is the enlarged image
from point a to p. Figures 7, 8, 9, and 10 show the comparison
between the P–δ curves of the four dynamic processes and
the quasi-static curve, and also the crack patterns at typical
load levels.

4.2 Effect of inertia effects on the fracture processes

The five cases are analyzed one by one in the following.

(1) Case 1.
At the peak load level (point a in Fig. 6a), localized
crack appears near the middle of the specimen due to
failure of interface beams (Fig. 6b). Then, a series of
steep drops in load follow even though the increase of
the controlled displacement is very small. This kind
of steep drops corresponds to unstable crack propaga-

tions. In Fig. 6c, the damaged band has formed through-
out the specimen. With the controlled displacement fur-
ther increasing, the damaged band becomes a macro
crack (Fig. 6d). In Fig. 6e, the crack nearly separates
the specimen into two parts. For the quasi-static case,
the main crack progresses through by connecting the
jaggered profile of the successive weakest links [9]. In
other words, the crack path is the weakest path in the
specimen.

(2) Case 2.
In the beginning of the curve, the slope of the elastic
regime is much larger than that in case 1 (Fig. 7a),
which is also observed in dynamic physical experi-
ments [3,12]. The peak load is nearly four times bigger
than that in case 1. Moreover, at the peak load level,
the controlled displacement is 6.90×10−5 m, which is
much smaller than 2.77 × 10−4 m in case 1.
The above feathers can be explained as follows. The
loading rate, 1.0 m/s, is so high that the deformation has
not enough time to distribute throughout the specimen.
Therefore, deformation concentration appears near the
displacement-controlled edge, leading to the failure of
GB elements near the edge (Fig. 7b, c). On the other
hand, this kind of failures makes the propagation of
deformation from the controlled edge into the speci-
men more difficult. In the quasi-static case, the crack
path depends only on three-phase material structure.
In the present case with a high loading rate, however,
crack pattern depends on both the material structure
and the inertia effect due to load increasing, and the
latter plays a more important role than the former. Ele-
ments fail near the controlled edge (Fig. 7b). The local
crack appears in the pure matrix region (Fig. 7c). The
crack path is smoother than that in case 1 because the
inertial effects appear to even out the material structure
(Fig. 7d) [9]. Figure 7e shows the crack pattern at the
load level d.

(3) Case 3.
In Fig. 8a, both the elastic slope and the peak load
are still larger than those of case 1. However, the dif-
ferences have reduced obviously when compared with
the differences between case 2 and case 1 in Fig. 7a.
P–δ curves of case 3 and case 1 have the approximately
similar up-down tendency except that the curve of case
3 has a strong vibration throughout the whole experi-
mental process (Fig. 8a). Now, material structure plays
a dominant role in the crack path instead of deformation
concentration due to load increasing as in case 2. There-
fore, in Fig. 8b and c, the path of the localized crack
is nearly consistent with that in the quasi-static case 1.
However, case 3 has different failure details along the
path, which can be found when comparing Fig. 8d with
Fig. 6e. When the crack runs through the specimen, a

123



654 Comput Mech (2008) 41:647–660

Fig. 6 In case 1, a the P–δ

curve; and crack patterns at four
load levels: b point a; c point b;
d point c; and e point d

compression wave [3,4,12] begins propagating from
the newly-produced crack surface to the displacement-
controlled edges. When the compression wave reaches

the edge, load P will be reduced. In the neighborhood
of point c in Fig. 8a, the compression wave even leads
to a negative value of load P.
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Fig. 7 In case 2, a the P–δ

curve compared with the
quasi-static curve; and crack
patterns at four load levels:
b point a; c point b; d point c;
and e point d

(4) Case 4.
This case has an elastic slope agreeing to that in case
1 (Fig. 9a). Moreover, case 4 and case 1 have nearly
equivalent peak load values: 2.62 and 2.70 MN, respec-
tively. However, an obvious difference can be found in
the long tail after the peak, i.e. the post-peak regime.

A load vibration directly follows every steep drop, e.g.
at point b and c in Fig. 9a. From point a to point b, the
increase of the controlled-displacement is just 2.84 ×
10−5 m, and the duration is just 2.84×10−3 s. The local
crack forms at point a (Fig. 9b), but during the duration
2.84×10−3 s a crack-like band has almost run through
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Fig. 8 In case 3, a the P–δ

curve compared with the
quasi-static curve; and crack
patterns at three load levels:
b point a; c point b; and
d point c

the whole specimen at point b (Fig. 9c). It suggests that
the local crack propagates unstably and quickly. Iner-
tia effect due to the unstable propagation leads to the
load vibration directly following every steep drop. In
the long tail regime, case 4 (Fig. 9d and e) and case 1
(Fig. 6d and e) have very different failure details along
roughly the same crack path.
Found from Fig. 9a, the load vibration period is roughly
2.5×10−3 s. In case 2 (Fig. 7), the total experiment time
is 10−3 s, which is smaller than the vibration period.
Therefore, although the loading rate in case 2 is the
highest, load vibration due to unstable propagation
can’t yet be found in Fig. 7a. In case 3 (Fig. 8), the
total experiment time is 10−2 s, which is equal to sev-
eral vibration periods, leading to an obvious vibra-
tion feather throughout its P–δcurve. In case 4, the
total experiment time is 10−1 s, which is much larger
than the vibration period, 2.5 × 10−3 s. As a result, in
Fig. 9a, between two steep drops, e.g. between point b
and point c, the load vibration takes place near point
b, then a roughly line-segment appears until point c,
which is very like the zigzag feather of the quasi-static
curve.

(5) Case 5.
In Fig. 10a, the two P–δcurves have a good agree-
ment. Moreover, the curve of case 5 also has the zigzag
feather similar to the quasi-static curve. However, it is
still hard to say that case 5 can be also simulated cor-
rectly by the quasi-static method. Actually, in case 5,
the inertia effect due to unstable crack propagation still
has a considerable influence. From the inset of Fig. 10a,
an obvious load vibration occurs after the steep drop
near point e, just as discussed in case 4. This kind of
vibration leads to a deviation from the corresponding
equilibrium field. Because of the same reason, the crack
pattern can be changed. Figure 10b–e shows a cracking
process obviously different from that in the quasi-static
case (Fig. 6b–e).

4.3 Difference of the two methods in simulating unstable
crack propagation

When the loading rate is very low, the inertia effect due to
load increasing becomes ignorable, but the inertia effect due
to unstable crack propagation remains considerable. During
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Fig. 9 In case 4, a the P–δ

curve compared with the
quasi-static curve; and crack
patterns at four load levels:
b point a; c point b; d point c;
and e point d

the steep drops, the controlled displacement keeps unchanged
in the quasi-static case, but keeps increasing at the loading
rate in the four dynamic cases. Although the increase of the
controlled displacement is very small due to the steep drops
being quick, it is hard to say that the difference between quasi-

static and dynamic results is not caused by this increase of
the controlled displacement.

To clarify the above question, the following experiment
is conducted. The state at point a in Fig. 6a is chosen as the
initial state. The dynamic method is employed to simulate

123



658 Comput Mech (2008) 41:647–660

Fig. 10 In case 5, a the P–δ

curve compared with the
quasi-static curve; and crack
patterns at five load levels:
b point a; c point b; d point c;
e point d; and f point e

the process directly following point a until reaching a new
equilibrium state. The controlled displacement keeps
unchanged, i.e. the value at point a, 2.77 × 10−4 m.

The load P is shown versus the time in Fig. 11. In the
beginning, the load reduces sharply due to the appearance of
failures in succession. In fact, 20 elements fail successively in
the whole process. All the failures happen during the period
of 0–750µs. Then, the load vibration regime follows, and
trends to equilibrium under the action of the damping. After

0.02 s, the load becomes nearly unchanged with time, and
the unchanged value is 2.27 MN. It indicates that the sys-
tem has reached a new static equilibrium. In the quasi-static
simulation (Fig. 6a), the load of the new equilibrium state
denoted by point p is 2.58 MN. Obviously, final equilibrium
loads obtained by the quasi-static method and the dynamic
method are very different.

Figure 12a and b shows the failure sequences of the quasi-
static process and the dynamic process respectively, where
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Fig. 11 The load P versus time during the unstable crack propagation

the element denoted by “A” is the first failed element. In
the quasi-static process, failed elements concentrate on a
small region (Fig. 12a), and the total of failures is 4. In the
dynamic process, however, failures are almost scattered over
the whole specimen, and the total of failures, 20, is much
larger. Figure 12c and d shows the crack patterns respec-
tively at the load level p (Fig. 6a) in the quasi-static process
and at time = 0.03 s in the dynamic process. Again, an obvious
difference can be found.

In a word, results by the two methods are different even
though exactly the same initial state is chosen.

5 Conclusions

To solve the problem of computational effort, the generalized
beam lattice model was adopted. To simulate fracture pro-
cesses, both the quasi-static method and dynamic method
were introduced, and implemented in a finite element code.

Fig. 12 Comparison of results
in the final equilibrium state by
the quasi-static method and the
dynamic method: distribution
and sequence of failures: a the
quasi-static method; b the
dynamic method; and crack
patterns: c point p in Fig. 6a;
and d at time = 0.03 s in the
dynamic simulation
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Numerical experiments were conducted on a concrete
plate subjected to uniaxial tension. Case 1 was simulated
by using the quasi-static method. Case 2–5 with the loading
rate being 1.0, 10−1, 10−2 and 10−3 m/s, respectively, were
simulated by the dynamic method. The numerical results
show that the inertia effect due to load increasing becomes
weaker and weaker with the loading rate decreasing. How-
ever, the inertia effect due to unstable crack propagation
remains considerable in spite of the very low loading rate.
Numerical experiment in Sect. 4.3 shows that the quasi-static
method can’t obtain the same result as the dynamic method
in simulating unstable crack propagation.

In a word, it may be questionable that all inertia effects are
ignored in the quasi-static method. The inertia effect due to
unstable crack propagation, which is still considerable dur-
ing quasi-static loading processes, is the source of the ques-
tion. However, simulating a fracture process by the dynamic
procedure, requires a substantial increase of computational
effort. Therefore, we are developing a new kind of numer-
ical algorithm, combining the quasi-static method and the
dynamic method. Results of the new method will be reported
in our further investigation.
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